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Abstract—The modern production of industrial goods is often
based on Just-In-Time delivery of required resources. This
paradigm makes a variety of demands on the infrastructure in
which production takes place or in which services are provided
and consumed. The reasons for introducing this strategy and its
potential benefits are in large parts applicable to the area of Web-
based Natural Language Processing services. This contribution
focuses on prerequisites and potential outcomes of a Just-In-Time-
capable infrastructure of Natural Language Processing services
using examples in the context of real-world research projects.
The benefits of this endeavor are sketched with a focus on the
ongoing development of large scale service delivery platforms
like the European Open Science Cloud, CLARIN, or similar
projects. As a major outcome, the creation of ”performance
catalogs” containing extensive information about the run-times
and performance of every involved tool is seen as an essential
precondition for these environments.

Keywords–Just-In-Time Delivery; Performance Catalog; Natural
Language Processing Services; Research Infrastructure; Cluster
Computing.

I. INTRODUCTION

This article is an extended version of the conference
publication ”Just-In-Time Delivery for NLP Services in a Web-
Service-Based IT Infrastructure” presented at the Adaptive
Workflow Management for NLP Data Processing workshop at
ADAPTIVE 2019 [1]. This article provides a more detailed
discussion of relevant parameters defining performance profiles
of services. These parameters, which may impact the perfor-
mance of services, such as language and quality of input mate-
rial are defined and an extended set of experiments depending
on different hardware configurations and tool parameters are
conducted.

In industrial production environments, providing resources
immediately before they are required in the context of a larger
production chain – typically called Just-in-Time Delivery (JIT
delivery) – is a standard procedure for many decades now.
The transfer of this concept into the area of information
technology offers a new competitive opportunity that promises
significant advancements, such as faster responses, improved
quality, flexibility, and reduced storage space [2].

The use of Natural Language Processing (NLP) applica-
tions – i.e., tools for preprocessing, annotation, and evaluation
of text material – is an integral part for a variety of applications
in scientific and commercial contexts. Many of those tools
are nowadays available and actively used in service-oriented

environments, where – often complex – hardware and software
configuration is hidden from the user. In the context of large
research infrastructures, like CLARIN [3] or DARIAH [4], or
cross-domain projects, like the European Open Science Cloud
(EOSC) [5], one of the key goals is to facilitate the use of
services which, are seen as integral and indispensable building
blocks of a modern scientific landscape.

These research infrastructure projects can be seen as driv-
ing forces for current trends in the dissemination and delivery
of tools and services. However, in many respects, they are
undergoing a similar development as already completed in
many commercial areas where delivery and use of services
are performed in an industrial scale. Systematic assessment
and improvement of quality, measurement of throughput times
or other criteria are prerequisites for the use of services even
for time-critical applications [6].

One of the potential outcomes and goals of a more ”in-
dustrialized” infrastructure could be a just-in-time delivery of
services, providing the benefits – while requiring comparable
prerequisites – already accustomed in the industrial production
of goods. They include reduced response times, reduction
of required storage facilities [7], and more. However, those
topics are hardly addressed in today’s text-oriented research
infrastructures. Some of the missing preliminary work that
is required to offer JIT delivery of linguistic services – like
the transparency of the process and its sub-processes, deep
knowledge about required resources and execution times – are
addressed in this contribution.

One of the important challenges in JIT delivery is the
applied strategy to address the reliability and predictability
of services [8]. In IT infrastructures, utilizing fault-tolerant
techniques is one of the solutions to improve the reliability
of an application. Parallelised implementations using cluster-
based processing architectures are technologies that are utilized
to decrease run-times and to enable the processing of large
scale resources. Furthermore, they provide a helpful means
to configure processes in a dynamic manner. This allows
suggesting several configurations based on the available re-
sources of the service provider or temporal requirements of
the user. Clear information about potential expenses and the
estimated delivery time for each configuration gives users a
means to select a suitable service (or service chain) or service
configuration that fits their needs best.

This also helps users to have a clear strategy for data
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storage, duration of data retention, and delivery time. These
features have the potential to enhance the user’s satisfaction
and provide added values that lead to a stronger position in
competitive industrialized IT infrastructures.

In this contribution, we present examples of Natural Lan-
guage Processing services with a focus on their transparency
regarding execution times and required resources. As a re-
sult, valid resource configurations can be chosen considering
available resources and expected delivery times. It should be
pointed out that multiple NLP tools have been implemented
to prove the suggested approach and more tools and the
other methods – such as machine-learning-based or hybrid
approaches – can be contemplated as the future extension of
this research.

The following Section II gives more details about the
parallelism of just-in-time delivery of IT services and
their industrial counterpart. Section III describes the used
methodology and its characteristics, technical approaches and
tools. Section IV describes the research infrastructures that
can be used as the base for these tools and compares them
with commercial counterparts. Section V explains the chosen
parameters followed by Section VI showing the outcomes
of the experiments that are performed by assigning various
cluster and tool configurations varying every individual
parameter. Sections VII and VIII illustrate and discuss the
outcomes and results and are followed by a brief conclusion
of this contribution and a short outlook in Section IX.

II. JUST-IN-TIME DELIVERY OF IT-SERVICES

Just-in-time delivery (or just-in-time manufacturing) is a
management concept that was introduced in the Japanese
automotive industry [9] and was adopted for many other
areas of production and delivery of goods since. Based on
experiences and best practices, catalogues were developed that
contain extensive lists of requirements that make the usage of
JIT delivery chains manageable and trustworthy.

Established requirements deal with all kinds of aspects
in the organizational, legal and technical environment of
companies and organizations that are involved in the overall
process. At least a subset of those requirements is directly
transferable to activities in IT processes and infrastructures
[2], including the more recent deployment, provisioning, and
use of services in complex Service-Oriented Architectures
(SOAs). This contains procedures and guidelines like the strict
use of a ”pull-based” system, process management principles
with a focus on flow management, adequate throughput, and
continuous assessment of quality and fitness of used processes
and outcomes. Its obvious benefits have made the underlying
policies also a cornerstone of modern agile management prin-
ciples (c.f. [10]).

There is some research about transferring the JIT concept
and its principles to service-oriented environments, like the
ones gaining momentum in the area of NLP applications. In
the context of such IT services chains, the term just-in-time
can be understood in different ways. It is often referring to
the specific decision for a set (or chain) of services – out
of a potentially large inventory of compatible services from
different providers – as part of the typical discovery/bind-
process at run-time, i.e., without a fixed decision for specific
providers or even prior knowledge about the current inventory

of available services. This is sometimes called ”just-in-time
integration” of services (for example in IBM’s developer
documentation [11]).

Many essential requirements for a JIT integration are
already handled in existing frameworks – for example
CLARIN’s WebLicht [12] –, like compatibility-checks of all
services regarding their input parameters and generated output,
a systematic monitoring of all participating service providers
of the federation, or – in parts – even adherence to legal
constraints.

A different approach for services-based JIT delivery fo-
cuses on the estimated time of arrival (ETA) of the required
results for a specific service chain. This is especially impor-
tant considering the growing amount of text material that is
required to be processed. Most academic providers of NLP
services are not able to guarantee acceptable processing times
– or the completion of large processing jobs at all – with their
current architectures for (very) large data sets in the context
of SOAs. However, this kind of functionality is required
to reach new user groups and to make them competitive
offerings in comparison with the other (including commercial)
service providers. This aspect is hardly addressed in previous
and current projects of the field but gains significance in
current attempts to make scientific working environments more
reliable and trustworthy with a strong focus on cloud-based
solutions (like the European Open Science Cloud EOSC).

A key idea is the incremental creation and adaptation
of ”performance profiles” for all elements of a provider’s
service catalog. This contains the identification of all relevant
parameters of a tool and well-founded empirical knowledge
about their effects on the run-time of every single NLP task
for all kinds of plausible inputs. This requires a processing
architecture that is able to dynamically allocate resources for
each assigned job while minimizing (or even eliminating) the
effects of other jobs that are executed in parallel.

In the following, we will describe a concrete example of
such a service performance profile depending on the assigned
hardware configuration and workflow arrangement and sketch
its benefits.

III. APPROACH

In this section, the essential features of a JIT delivery in
IT systems are explained. This is followed by a discussion of
the chosen technologies and their specific features relevant to
the context of this contribution. Finally, the implemented NLP
tools and utilized resources are described.

A. Essential Features
Generally speaking, the degree of user acceptance in regard

to JIT delivery in IT systems relies on several parameters such
as diversity of the tools, state-of-the-art technologies, support
for complex requests, and quality of the services. However,
reliability and predictability of services [8] are two of the most
important parameters that have large effects on the success
of JIT delivery in IT systems. Accordingly, it is essential to
choose technologies that support these two parameters.

1) Reliability: The international standard ISO/IEC/IEEE
24765:2017 has defined reliability as the ”degree to which
an object or an object’s services provide agreed or expected
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functionality during a defined time period under specified con-
ditions.” A highly reliable application performs the expected
functionality and is able to avoid, detect, and repair the failures
in a way that users do not notice them. In other words, the
application should be enabled to continue normal operation in
the presence of faults, or be fault-tolerant. Fault tolerance is
defined in ISO/IEC/IEEE 24765:2017 as the ”degree to which
a system, product or component operates as intended despite
the presence of hardware or software faults.” [13]

In the context of this article, fault tolerance refers only
to the ability of a system to detect a hardware fault and
immediately switch to a redundant hardware component. To
increase the degree of fault tolerance and provide more reli-
able applications, distributed systems are implemented using
cluster-based processing architectures [14] [15].

2) Predictability: In general, a predictable system is a sys-
tem that has agreed or expected functionality for the possible
states. Predictability is the degree to which a system or a
component of the system behaves as expected in different
situations. In the field of information technology and computer
science, this criterion is known as the availability of an appli-
cation. Availability refers to the probability that the system
will operate continuously without failure during a specific
time period [16]. High availability, as a critical feature, is
addressed by cluster computation technology. This technology
uses redundancy in order to improve the degree of availability
[17].

B. Technical Approach
For services, where response times are critical, used tech-

nology should support technical features like fault tolerance
and high availability. In addition, the technology should be
able to process large scale data in a feasible time to satisfy the
demand for the processing and analyzing of a rapidly growing
amount of text data.

For this contribution, Apache Hadoop clusters and the
Apache Spark execution engine are used to address the topics
of fault tolerance and high availability. This approach supports
the distribution and parallelization of tasks and significantly
improves execution and response times.

Apache Hadoop is a popular framework to store and pro-
cess large-scale data in a distributed computing environment
that – with its built-in mechanisms – provides a high degree
of parallelism, robustness, reliability, and scalability. One
beneficial approach in this distributed processing technology
is to run processes wherever the data is located. This means
Hadoop initially distributes the data to multiple machines in
the cluster and then assigns computation tasks based on the
locality of data. This location-based assignment reduces the
communication overhead between participating nodes [18].
Apache Hadoop’s large ecosystem consists of the Hadoop
Kernel, MapReduce, Hadoop Distributed File System (HDFS),
Apache Spark, and some other components [19].

In the context of Big Data, partitioning the data across
a number of separate machines is obligatory. HDFS, as the
storage layer of Apache Hadoop, is a distributed file system
that provides access to the data across the Hadoop clusters.
HDFS is a highly fault-tolerant distributed storage system that
is able to handle the failure of storage infrastructure without
losing the data. The application data – the file contents – is

split into large blocks with a default size of 128 MB, and
each block of the file is independently replicated at multiple
machines, where the size of the data blocks and the number of
the replicas can be defined by the user on a file-by-file basis.
Given the importance of the file system namespace, HDFS
makes it resilient to failure by providing a backup of the file
system and also periodically creating a copy of the list of
blocks belonging to each file. Duplicating the copies of data
blocks multiple times in the individual data nodes increases the
reliability, allowing the system to tolerate node failure without
suffering data loss. In the event of failure, this information
facilitates the recovery of data [20].

Apache Spark is also a general-purpose cluster computing
framework for big data analysis with an advanced In-Memory
programming model. It uses a multi-threaded model where
splitting the tasks on several executors improves processing
times and fault tolerance. Apache Spark uses the Resilient
Distributed Dataset (RDD), a data-sharing abstraction that
is designed as a fault-tolerant collection and is capable of
recovering lost data after the failure using the lineage approach.
In this approach, Apache Spark keeps a graph of the data trans-
formations during the construction of an RDD. In the event of
failure, it reruns all failed operations to rebuild the lost results.
The RDDs are persisted and executed completely in RAM
– In-Memory Databases (IMDB) –, therefore generating and
rewriting the recovered data are performed as fast processes
[21] [22].

C. NLP Tools and Resources

Using Hadoop-based cluster computing architecture, a vari-
ety of typical NLP tools were implemented, including sentence
segmentation, pattern-based text cleaning, tokenizing, language
identification, and named entity recognition [23]. These tools
use Apache Hadoop as their framework, Apache Spark as ex-
ecution engine and HDFS as file system and storage manager.
Furthermore, their atomic design facilitates to integrate them
into SOA-based annotation environments.

In order to have an accurate estimation of execution times,
a variety of benchmarks were carried out for the implemented
tools. For these benchmarks, we have used a cluster provided
by Leipzig University Computing Center [24]. Table I illus-
trates the characteristics of this cluster [25]. In this cluster,
Apache Hadoop 2.7.3 is used as framework to process the data
in the distributed environment and store the data on HDFS.
Apache Spark 2.3.0 is used as the execution engine and YARN
is configured as the resource manager.

TABLE I. Cluster Characteristics

Number of nodes CPUs Hard drives RAM Network
90 6 Cores per Node >2PB in total 128GB per Node 10Gbit/s Ethernet

As an example, one of these benchmarks evaluates the
duration of sentence segmentation for datasets of German
documents with sizes from 1 to 10 Gigabytes using different
cluster configurations. The cluster configuration varies in the
number of assigned executors (1 to 32 nodes) and allocated
memory per executor (8 or 16 GB). Each test was repeated
three times; average execution time over all three runs was
used for the following statistics. Figures 1 and 2 show these
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execution times for sentence segmentation from 1 to 10 GB
of input data with different resource configurations.

Figure 1. Run-times for segmenting 1 to 10 GB text materials using 1 to 32
executors and 8 GB memory per executor.

Figure 2. Run-times for segmenting 1 to 10 GB text materials using 1 to 32
executors and 16 GB memory per executor.

A brief explanation is given below for each of the tools.
1) Text Cleaner: This tool is a parallel implementation

of a pattern-based text cleaner that uses sets of rules to
detect invalid character patterns in text documents. General
rules – being language-independent – contain generic unlikely
patterns in written language. Language-based rules consist of
individual rules for each of the defined languages to detect
language specific ill-formed sentences. Genre-based rules are
defined to specify additional patterns typically occurring in
different sources of origin, including Web, Newspapers and
Wikipedia.

2) Sentence Segmentizer: The implemented sentence seg-
mentizer is a distributed version of a rule-based sentence
segmentation tool that uses multiple of rule sets and lists of
tokens to identify the sentence boundaries in a text. Disam-
biguation rules consider preceding and succeeding tokens of
any potential sentence boundary symbol for their decision.
The lists of tokens include typical sentence boundary marks,
abbreviations for different languages, and a set of tokens which
are not indicators of a sentence boundary, like file extensions
(.com, .pdf) or top-level domains in URLs (.com, .de, .org).

3) Tokenizer: The implemented tokenizer identifies token
boundaries using a set of rules and tokens. The tool relies
on lists of typical token boundaries and punctuation charac-
ters, lists of abbreviations, and a list of known phrases and
multi-word units that should be treated as single tokens. The

implementation relies on sentences as input material. In cases
where the input is not already separated into sentences, the
aforementioned sentence segmentizer is called in advance.

4) Language Identification: The language identification
tool utilizes sets of high-frequency words in different lan-
guages and their frequency to calculate the probability of a
sentence belonging to a specific language.

5) Named Entity Recognition: The named entity recog-
nition (NER) tool provides two main functions: the training
of new NER models and the actual annotation task. New
machine-learning-based models can be created and trained
using fully annotated documents as input. The trained models
are used to recognize instances of named entities in new
documents. This functionality can be run on a cluster to
annotate documents in parallel.

IV. APPLICATION

This section gives a short overview of research and in-
frastructure projects relevant to the context of the presented
work. The sketched applications are already in use in some of
them. Furthermore, a short overview of commercial providers
of NLP services gives a broader picture of the current NLP-
services landscape.

A. Leipzig Corpora Collection

The Leipzig Corpora Collection (including its subproject
Deutscher Wortschatz focusing on the German language) uses
a complex crawling infrastructure to continuously gather text
material based on freely-available Web resources. This can
include the acquisition of more than one terabyte of raw data
per day (mostly based on HTML documents). The process-
ing pipeline to convert this vast size of input documents to
statistically and linguistically annotated text corpora contains
a variety of tools with language and – sometimes – genre-
specific configurations. Figure 3 gives a short summary of the
used toolchain, that includes many of the aforementioned tools.
For more details, cf. [26].
When starting the processing of Web material in the early

2000s, a single-threaded processing pipeline with mostly
single-threaded tools was sufficient to convert raw material.
Over time, the amount of gathered material, and thus require-
ments for the processing of this data has increased signifi-
cantly.

As a consequence, most parts of the processing pipeline
were parallelized and different approaches and system architec-
tures were tested. Nevertheless, adequate handling of crawled
material is still problematic and can lead to unprocessed heaps
of data when incoming bandwidth exceeds the processing
capability of subsequent processing and storage solutions.

B. Commercial and Academic Cloud-based NLP Frameworks

As mentioned before, the increase in the importance of
NLP and NLU-based tools in both commercial and scientific
contexts, has strengthen the demand for easy-to-use interfaces
suitable for result-oriented users without deep knowledge of
the underlying algorithms. As a consequence, a variety of
platforms were created that target both user groups and focus
on their specific demands.
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Figure 3. General overview of the processing pipeline of the Leipzig
Corpora Collection.

Noteworthy examples of commercial platforms are Amazon
Comprehend [27], Google Cloud Natural Language Process-
ing [28], and IBM’s Watson Natural Language Understand-
ing [29]. Relevant academic or academic-oriented platforms
include CLARIN’s WebLicht [30](which will be discussed in
more detail in the next subsection), Language Applications
(LAPPS) Grid [31] or GATE Cloud [32].

Comparisons between these competitors may be based on
a variety of evaluation criteria [33], like :

• Quality of documentation
• Openness of the platform
• Scalability
• Responsiveness
• Extent of supported tools
• Supported programming languages
• Supported natural languages (including specific di-

alects or language registers)
• Quality of results
• Costs

Evaluation of available platforms shows significant differ-
ences especially when comparing commercial systems with
their academic counterparts. Typical advantages of the latter
include support of more languages (including languages having
lesser commercial interests), a broader landscape of provided

tools, more options to participate as a service provider, and
a lesser focus on financial gain. On the other hand, commer-
cial platforms typically excel in most of the usability-related
and technical aspects: high-quality documentation, easy-to-use
(Web) interfaces, support of a variety of programming inter-
faces and, furthermore, often a built-in strategy for scalability
aspects that allows the processing of large and very large
data sets inside their system. This is especially obvious for
companies like Amazon and Google being global providers of
cloud computing services (Amazon Web Services AWS, Google
Cloud).

In the context of this paper, the aspect of scalability
obviously stands out as one the most relevant issues and is
seen by the authors as one of the reasons that hinder the
wide application and general success of open platforms in
the field. This is especially problematic considering the sub-
optimal availability of unique tools for a variety of languages
which do not have a commercial focus because of rather small
speaker groups or low commercial relevance. This can be seen
as problematic considering today’s diverse and broad cultural
landscape. Closing the gap regarding scalability aspects can be
helpful to reduce the identified divergence.

C. CLARIN WebLicht
A concrete example of an academic-based annotation

framework is the WebLicht platform [12] of the CLARIN
project [3]. WebLicht is an execution environment for au-
tomatic annotation of text corpora and provides currently
more than 400 services in a federated and service-oriented
environment. The number of supported tools and languages
exceeds those of commercial alternatives and its restriction
for scientific applications makes its use free of charge for
the targeted user group. Its openness towards new service
providers makes it a suitable candidate to evaluate potential
benefits of improved scalability in services endpoints of such
a federated infrastructure.

A WebLicht-compatible endpoint was created that uses
the sketched processing architecture as a back-end (for more
details, cf. [34]). Figure 4 shows the structure of this end-
point in the WebLicht environment. User input is handled by
WebLicht’s Web interface where input documents are uploaded
and pipelines are built and started by the user. The second
layer contains the implemented tools and shows an example
of a user-defined workflow including the reading, annotating,
and returning of processed documents. The format conversion
is also performed in this layer if required. All actual processing
is based on the execution framework providing a file system,
resource manager, and execution engine as depicted above.

V. PARAMETERS

In any services-based environment, service catalogs are
defined and developed based on demand, experiences, and best
practices. These service catalogs contain – among many other
aspects – comprehensive lists of requirements that are needed
to provide services to the customer. As part of a service catalog
management, detailed information about the performance of
each item of the service catalog is required. It is an essential
part of this task to include and consider all relevant parameters
when modifying and improving this data continuously and
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Figure 4. Service-oriented Architecture in WebLicht with Cluster
Computation Technology as Backend.

to create meaningful ”performance catalogs” for all provided
services.

In this contribution, we considered several parameters
relevant for performance evaluation and carried out several
benchmarks to measure the effect of these parameters on the
execution time of the tools. These parameters are categorized
into two main categories: cluster configuration and tool con-
figuration.

1) Cluster Configuration Parameters: These parameters con-
sist of the following hardware resources:

• Executor: The experiments are performed using 8 or
16 worker nodes as executors. On each executor, 5
cores are available allowing 5 concurrent threads on
each executor node. The number of cores multiplied
by the number of executors defines the degree of
parallelization or the maximum number of parallel
tasks.

• RAM: Each machine in the cluster is equipped with
128 GB RAM; the allocated memory per executor is set
to 8, 16, and 32 GB for most experiments. In general,
1 GB of memory is reserved for Hadoop and its related
applications and 7% of the memory is considered for
overhead. The rest will be used to process the data.

2) Tool Configuration Parameters: These parameters are se-
lected based on the input documents and the specific workflow
and include the following:

• Source of data: The input documents for these exper-
iments are taken from the Leipzig Corpora Collection
[26] that are collected from different sources com-
prising of Wikipedia, Newspapers, and general Web
documents.

• Language: The documents are in English or German.
• Data volume: The input document collections are in

sizes of 1 to 7 GB.
• Workflow: Workflows in this contribution are based

either on the sentence segmentation or tokenization
tool, or their combination into a joint workflow.

VI. EXPERIMENTS

Various experiments were performed to analyze the effects
of different cluster and tool configuration parameters on the

execution times of the tools. The cluster is configured in-
dividually for each experiment to show different degrees of
parallelism for all of the tools and origin of documents. Each
experiment was repeated three times and the final execution
time was measured as the average of these three run-times.

The following depicts the outcomes in diagrams which will
be discussed in Section VII.

• Figures 5 to 8 present the run-times for the sentence
segmentation task for different data volumes, text
types, and cluster configurations.

• Figures 9 to 12 present the run-times for the word
tokenization task for different data volumes, text
types, and cluster configurations.

• Figures 13 to 16 present the run-times for the com-
bined sentence segmentation and word tokenization
task as a joint workflow for different data volumes,
text types, and cluster configurations.

VII. RESULTS

As Figures 1 and 2 illustrate, run-times vary for different
job configurations significantly. As expected, using only a
single executor – therefore, executing the job without any
parallelization on the cluster – results in the maximum run-time
for every data volume. The outcomes of all tests comply with
the expected behaviour of parallel processing: a sharp decrease
in execution time by increasing the assigned resources (i.e.,
executors), followed by a smoother reduction and finally no
significant improvement when adding more resources to the
job does not improve run-times anymore. The results show
consistent behaviour for different data volumes using various
cluster configurations.

The statistics also depict other relations: figures 5 to 16 also
show that the execution times differ for various tool configu-
ration parameters. Furthermore, the outcomes illustrate that in
general, English documents need less time to be processed
using these tools. Regarding the source of the documents,
newspaper texts are segmented faster than other text sources in
both English and German language, where this parameter does
not affect the run-times of tokenization tasks significantly.

Another area worth analyzing is the negative impact of
overheads in the processing. Figures 17 and 18 depict the
execution times of sentence segmentation and tokenizing of
7 GB documents in two scenarios: applying the tools separately
or performing the workflow as a combined task. Creating a
joint workflow of both tasks reduces some of the redundant
steps, as well as some I/O tasks and results in an improved
execution time. For instance, processing 7 GB of German
newspaper documents using 16 executors and 32 GB memory
required 665 seconds when each tool applied separately. This
decreases to 552 seconds for a combined toolchain. For English
newspaper material and an identical cluster configuration, this
leads to a decrease from 492 to 376 seconds.

Figure 19 gives an overview of run-times for data sets from
1 to 10 GB using 1 to 32 executors and 16 GB RAM per
executor. It represents a significant reduction in execution times
by providing more executors that is followed by a steady state.

Figure 20 shows the results for the sentence segmentation
task of 10 GB text material which required 2860 seconds using

127

International Journal on Advances in Internet Technology, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. Run-times for segmenting 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 8 executors and 8 GB memory per executor.

Figure 6. Run-times for segmenting 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 8 executors and 16 GB memory per executor.

Figure 7. Run-times for segmenting 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 16 executors and 16 GB memory per executor.

Figure 8. Run-times for segmenting 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 16 executors and 32 GB memory per executor.

Figure 9. Run-times for tokenizing 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 8 executors and 8 GB memory per executor.

Figure 10. Run-times for tokenizing 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 8 executors and 16 GB memory per executor.

Figure 11. Run-times for tokenizing 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 16 executors and 16 GB memory per executor.

Figure 12. Run-times for tokenizing 1 to 7 GB text materials from
Newspapers, Wikipedia, and General Web documents in English and

German, using 16 executors and 32 GB memory per executor.
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Figure 13. Run-times for segmenting and tokenizing 1 to 7 GB text
materials from Newspapers, Wikipedia, and General Web documents in
English and German, using 8 executors and 8 GB memory per executor.

Figure 14. Run-times for segmenting and tokenizing 1 to 7 GB text
materials from Newspapers, Wikipedia, and General Web documents in

English and German, using 6 executors and 16 GB memory per executor.

Figure 15. Run-times for segmenting and tokenizing 1 to 7 GB text
materials from Newspapers, Wikipedia, and General Web documents in

English and German, using 16 executors and 16 GB memory per executor.

Figure 16. Run-times for segmenting and tokenizing 1 to 7 GB text
materials from Newspapers, Wikipedia, and General Web documents in

English and German, using 16 executors and 32 GB memory per executor.

Figure 17. Run-times for applying segmentation, tokenization, and
segmentation and tokenization combined as a toolchain on 7 GB text

materials from Newspapers, Wikipedia, and General Web documents in
English and German, using 16 executors and 16 GB memory per executor.

Figure 18. Run-times for applying segmentation, tokenization, and
segmentation and tokenization combined as a toolchain on 7 GB text

materials from Newspapers, Wikipedia, and General Web documents in
English and German, using 16 executors and 32 GB memory per executor.

8 GB RAM and 2795 seconds using 16 GB RAM on a single
node. Adding a second executor decreases the run-time to 2115
respectively 1480 seconds.

The typical trend can be seen again where run-times
decrease significantly up to (around) 7 assigned executors, and
with no improvements when allocating 14 executors or more.

Figure 19. Run-times for different number of executors and data volumes
using 16 GB memory per executor for sentence segmentation.
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Figure 20. Run-times for different numbers of executors, illustrating
different ”speedup areas”.

VIII. DISCUSSION

Execution times are valuable information that can be uti-
lized for the estimation of times of arrival for annotation jobs
in NLP toolchains. Measured execution times give the oppor-
tunity to configure a cluster dynamically based on expected
response times, available resources and the current load by a
varying number of parallel users or jobs. For instance, if there
are x free resources available on the cluster and a processing
job requires x+y resources, the new job may be scheduled to
be executed after finishing the first running job which, has
allocated at least y resources.

Furthermore, execution times are relevant for estimating
an ”optimal” resource allocation for every individual tool. In
the context of this contribution, these resources include the
number of executors and the amount of memory which, can
be assigned to each task. Obviously, the term ”optimal” is
a very ambiguous one: it depends on the context of which
value should be actually optimized. In this context, this may
be the overall run-time of a job (i.e., a user-oriented view), the
amount of allocated resources (i.e., a cost-oriented view) or a
combination of both (by finding some balance between both).

By allocating more executors, execution times can be
decreased. At a certain point (which may depend on a variety
of parameters), assigning more resources will have no positive
effect on execution times anymore. This point can be seen
as the optimal configuration for the particular task in respect
of optimized run-times, and contains the amount of resources
which, are required to generate a result in the shortest possible
execution time. In this situation, it is also feasible to generate
results by assigning fewer resources – with the drawback of
extended processing times – but it is obviously not reasonable
to assign more resources to the job. As an example, in
Figure 20 the fastest configuration for sentence segmentation
of 10 GB text data consists of 14 executors with 16 GB RAM
per executor where assigning more resources generates more
costs without providing faster execution.

The extracted information helps to provide different re-
source configurations in accordance with the available hard-
ware resources and desired response times for the user’s
requested service and input material. For instance, if a user
wants to segment 10 GB text material in less than 25 minutes,
3 executors with 16 GB RAM or 4 executors with 8GB
RAM would be both suitable configurations. In contrast, for a
response time of up to 5 minutes, a configuration consisting
of at least 14 executors with 8 or 16 GB RAM would suffice.
In an environment where accounting of actual expenses is

included, the balance between technical or financial costs and
acceptable run-times can also be delegated to the user. In such
an environment, a user can choose the desired configuration
considering estimated run-times and incurred expenses.

The presented diagrams also show that for particular con-
figuration changes resulting improvements of run-time are only
marginal. Especially in case of limited available resources or
unexpected usage peaks, these configurations do not have to be
available anymore as their effect from the user’s perspective are
small. For instance, in Figure 20 assigning 7 executors with
16 GB RAM generates the expected result in 467 seconds
whereas doubling the number of executors leads only to an
execution time of 286 seconds (i.e., a 39% run-time reduction).

The diagrams also illustrate the impact of the language
and source of the documents on the response time. In general,
for the considered tools and inputs, German texts required
more processing time than same-sized English texts. As a more
specific outcome, segmenting newspaper texts took less time
for both English and German documents compared with other
sources of origin.

The reasons are related to different aspects. For example,
texts that are published in newspapers typically follow high
standards of writing rules using the correct punctuation marks
which, are the base for segmenting the data, whereas general
web documents and Wikipedia text are less likely to use
adequate punctuation marks. Furthermore, the applied rule-
based approaches use different numbers of more or less
complex rules for different languages and the amount of
considered external resources (like the number of multi-word
units for a tokenization task) also varies between languages.
Language-specific invariants (like the average length of sen-
tences, average number of words per sentence etc.) must also
be considered [35].

In addition, the results illustrate that the local combination
of tools can decrease execution times significantly. This reduc-
tion is achieved by eliminating redundant steps such as reading
common rule sets and abbreviation files and, more importantly,
removing read/write operations between each of the tools. In
our experiments, combining the sentence segmentation and
tokenization tasks can decrease the whole execution times by
about 25% (Figures 17 and 18). Obviously, this effect is much
larger in a distributed environment where format conversion
and network transmission times have to be taken into account
as well.

IX. CONCLUSION AND OUTLOOK
In this contribution, we described some prerequisites for

providing JIT delivery in service-oriented research infrastruc-
tures using typical NLP tasks as an example. We have utilized
Apache Spark as execution engine on an Apache Hadoop
cluster to allow parallel processing of large text collections
and to increase the reliability and predictability of the services.
An evaluation of required resources for processing different
amounts of text offers information about possible hardware
configurations in form of a ”performance catalog” that is useful
for estimating delivery times and potential expenses for each
task.

For more meaningful results, the sketched experiments
have to be extended for more languages. In the context of
this article German and English documents were used as an
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example but processing documents in other languages will
provide more clear information about the effect of specific
languages (or dialects) on resulting response times.

Naturally, providing and maintaining such resources and
tools lead to actual financial costs. In commercial platforms,
like Amazon Comprehend [27] or Google Cloud NLP [28]
these costs are covered by contracts with costumers based on
defined parameters (kind of service, required availability, costs
of data storage, CPU cycles, etc.). The selected configuration
and execution time can be used as a basis for an accounting
system which, relies on well-founded expenses for every
individual NLP job.

The presented run-times in this abstract can only be a part
of a qualified assessment of NLP tasks. Performance profiles
require a variety of training cycles to be meaningful and to
cover all kinds of input material and their effects on the
assessed tool. Furthermore, measuring actual response times
for larger toolchains in text-oriented research infrastructures is
more complex and needs to take more parameters into account.
This is especially relevant for toolchains where multiple ser-
vice providers are used. Other relevant parameters, like data
transfer times between user and service provider or between
different services, required format conversions, or similar tasks
were not considered here.
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