
Extended Definition of the Proposed Open Standard for
IoT Device IdentificAtion and RecoGnition (IoTAG)

Lukas Hinterberger∗

and Bernhard Weber†
Dept. Electrical Engineering and

Information Technology
Ostbayerische Technische Hochschule

Regensburg, Germany
email:

lukas.hinterberger@st.oth-regensburg.de∗

bernhard1.weber@st.oth-regensburg.de†

Sebastian Fischer

Secure Systems Engineering
Fraunhofer AISEC
Berlin, Germany

email:
sebastian.fischer@aisec.fraunhofer.de

Katrin Neubauer‡

and Rudolf Hackenberg§
Dept. Computer Science and Mathematics

Ostbayerische Technische Hochschule
Regensburg, Germany

email:
katrin1.neubauer@oth-regensburg.de‡

rudolf.hackenberg@oth-regensburg.de§

Abstract—Internet of Things (IoT) devices are critical to oper-
ate and maintain, because of their number and high connectivity.
A lot of security issues concern IoT devices and the networks they
are integrated. To help getting an overview of an IoT network,
the devices and the security, we propose a scoring system to get
a good impression of IT security. This system generates single
scores for each device, using features like encryption, update
behavior, etc. Furthermore, a summarized score for the whole
network is calculated, to show the status of the network security
in an easy way for the administrator. To enable the scoring
system, a precise list of the existing devices and their operating
status is necessary. To achieve this, we present an open standard
for the IoT Device IdentificAtion and RecoGnition (short IoTAG),
which requires that devices report, e.g., their name, an unique ID,
the firmware version and the supported encryption. The proposed
standard is described in detail and an implementation guideline
is given in this paper. Additionally, information about how to
realize the serialization, the integrity and the communication
with IoTAG.

Keywords—Internet of Things; device identification; open stan-
dard; IoTAG; security rating.

I. INTRODUCTION

This paper extends the already published paper “IoTAG: An
Open Standard for IoT Device IdentificAtion and RecoGni-
tion” [1] with more detailed information and definitions of
the proposed open standard IoT Device IdentificAtion and
RecoGnition (IoTAG) and a guideline for the implementation.

Internet of Things (IoT) continues to be an innovation
topic and trend in the industrial sector and smart homes.
The development of new IoT devices, systems and services
are progressing extremely fast. This raises the problem that
the security risks of IoT devices, networks and services are
underestimated or not even taken into account at all. It is
precisely the reason that leads to insecure devices. An example
of this would be the missing encryption or authentication.
Some of these risks and vulnerabilities lead to attacks such
as destroy the device. Serious attacks can lead to hijacking

of complete company networks. In general, a large number of
IoT devices are critical to operate [2] [3].

There are some solutions to these security problems. For
example, with device detection, it should be possible for the
user to detect devices in the IoT network and also check the
software status. At present, there are no existing frameworks,
software or systems for automated device scanning. With
individual steps, it is possible to obtain individual units or parts
of the required information. For example, addressable network
ports can be found with the network scanners Nmap [4] or Fing
[5]. The problem with Nmap or Fing is that the result of the
scan will not be analysed or evaluated. Only a technical user
or expert can perform and understand this technical analysis.
A non-technical user needs a simple scoring system for IoT
devices and networks.

The basic idea of our research project can be summarised as
follows. The IoT devices of a network are identified and get a
security rating during an initial scan. The rating is based on the
provided metadata, information collected by the scanner itself
and a database of known vulnerabilities, which are collected
from multiple publicly available sources. An overall network
rank results from the inheritance of the individual ranks. As
part of the visual presentation for the end user (non-technical
user), the rating should be shown as well as a list of all known
vulnerabilities and general risks of the IoT setup.

The aim of the IoTAG project is to propose an open standard
for IoT devices. This standard is intended to provide the
required metadata for the risk and security rating and to verify
the authenticity of the received information.

This paper begins with our hardware setup to test the idea
of a network security score. Next, we started with the device
scanning process and found out that it is not possible to get
all the requirement information for our security evaluation and
in some cases not even the device name or type at all.

We continue with the security criteria needed to create a
device rating and then created the actual rating from this. As

110

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a result, the entire network can be evaluated based on the
individual scores.

As already discussed, the detection of the devices and
their further details is not possible with available tools, we
present a proposal for a standard which makes this possible.
Since, the standard is still under development, a newer, more
detailed version than in our last paper [1] is presented here.
Furthermore, we have started with a sample implementation
and give guidelines regarding the development.

The paper is structured as follows. Section II describes the
related work. Section III introduces our hardware setup and
device scanning, while Section IV defines the security criteria.
Section V shows the device rating and Section VI the results.
The standard IoTAG is presented in Section VII, followed by
the conclusion in Section VIII.

II. RELATED WORK

A popular solution for the identification of devices is
the utilisation of so-called device fingerprints. Those can
be used for basic categorisation and classification as secure
or insecure. Miettinen et al. [6] show this procedure with
device fingerprints for categorisation and classification. The
development of an anomaly recognition system for smart home
networks is taking place on the basis of a research project
[7]. The subject device identification with device fingerprints
and similar approaches covering by several publications [8]–
[11]. The current working approach in the area of IoT device
detection is shown. Currently, it is not possible to identify
detailed information such as the current firmware version or a
device ID for further recognition.

Khaled et al. [12] and Kaebisch et al. [13] proposing a ma-
chine readable description for IoT devices. These descriptions
are not intended for risk and security device ratings. They
are intended only for the functionality of a device and cover
information like the turn off command. The goal of IoTAG
is to get the security characteristics of an IoT device and no
further information of the functions.

The Thing Description (TD) [14] by the World Wide Web
Consortium (W3C) provides metadata of a device, e.g., stored
setting or sensor data. An optional “Security” information on
the authorization procedures is also available. But this is only
a small part of all information needed for a security evaluation.

IoT Sentinel is a tool which detects and evaluates devices by
creating a fingerprint and comparing it to a database of known
devices. It is also able to isolate devices which are classified as
insecure and filter their network traffic. The tool was developed
by a team of researchers from the Technical University of
Darmstadt, the Aalto University and the University of Helsinki
[6]. In contrast to the commercial solutions discussed later in
this Section, an example implementation is available under
the MIT license, which allows for code reviews and further
development [15].

Another approach is the security and privacy assessment
for IoT devices with different security ratings. To calculate

the device rating, this approach [16] uses the information
protocols, open ports and encryption. This approach is very
similar but it is not very flexible and user-friendly. The reason
for this is the missing weighting of each criteria and the
missing overall score of the network. Park et al. [17] and Ali et
al. [18] show a list of security requirements for IoT services,
which can be used as a basis for a risk assessment. These
security requirements can be used to evaluate the weighting.
A further approach to generate a metric value for the security
of an IoT device is to use vulnerabilities and known exploits
[19].

There are also multiple commercially available IoT security
evaluation tools. One is Norton Core Router, which is devel-
oped by the anti-malware vendor Symantec Corporation [20].
Another one is Avira SafeThings, which is developed by Avira
[21].

The scoring system, Norton Core Security Score, is deficit
based, meaning it starts at 500 and each problem found reduces
the score until it reaches the lowest score of 50. For example,
if the firmware version of the router is outdated the score gets
deducted by 10%. Not installing the client software “Norton
Security” on a compatible device lowers the score. Most of the
examples in the manual are not IoT related which indicates
that the device detection is not detailed enough to provide the
scoring algorithm with the needed information. One of the
examples, which also applies to an IoT device, is ignoring an
vulnerability or intrusion alert [22]. The vulnerability detection
could be based on scanning for open ports and detecting the
version of the software listening on them. This information
could then be used to search for known vulnerabilities in that
specific software, e.g., a web server. The exact way could not
be examined, as the router was discontinued on January 31,
2019 and, according to the manufacturer, will only return as
a software based solution in the future [23].

Avira lists a per-device security score as a feature. This
score seems to be completely intransparent as it is neither
mentioned nor described in the manual or any other resource
about the device. Knowing how Avira classifies the individual
devices, SafeThing should have enough information to give a
helpful score, but as it is not described anywhere and as the
device is currently unavailable for purchase, the scoring part
could not be validated.

III. HARDWARE SETUP AND DEVICE SCANNING

The test environment consists of ten devices, as stated in
Table I, which were selected to reflect a variety of typical IoT
devices found in a home environment. A first basic network
scan with nmap [4] resulted in a list of found devices and
their hostnames. While some of the devices use meaningful
hostnames, the list also contains a lot of generic names like
“ESP” and empty rows. To gain more information, an extended
scan, which includes a scan for open network ports, can be
done as shown in Table II. This scan results in a list of found
open ports and how the open port was found. Additionally,
nmap lists the service which is registered for the found port at

111

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the IANA (Internet Assigned Numbers Authority) [24]. This
provides a first look at which services are used by the devices
and how they communicate. For example, port 80 is specified
to be used for http servers, which utilise unencrypted data
transmission.

TABLE I. HARDWARE OVERVIEW

device hostname
Amazon Echo 2 amazon-183e3c119
Apple iPhone 5 Kluges-iPhone
Floureon M32B
Google Home mini Google-Home-Mini
Grandstream GXP1610
Raspberry Pi 3 Model B raspberrypi
Sonoff Wi-Fi Smart Switch ESP 6A768B
Wi-Fi Smart Bulb ESP 4C3210
Wi-Fi Smart Plug ESP 3D1EB6
Wi-Fi Touch Switch ESP 469ACF

TABLE II. OVERVIEW OF OPEN AND RESTRICTED PORTS

Raspberry Pi 3 Model B
port state service reason
22 TCP open ssh syn-ack
53 TCP open domain syn-ack
Sonoff Wi-Fi Smart Switch
port state service reason

restricted
Wi-Fi Touch Switch
port state service reason
8081 TCP open blackice-

icecap
syn-ack

Wi-Fi Smart Plug
port state service reason
10000 TCP open snet-

sensor-
mgmt

syn-ack

Grandstream GXP1610
port state service reason
22 TCP open ssh syn-ack
80 TCP open http syn-ack

After all, the information provided by these scans is still not
enough to know the exact device model used in the network.
For example, the running services on a device could vary
based on the configuration of a device. The same applies to
hostnames: there are no rules or limitations what devices can
use as their hostname. Many devices, for example the iPhone,
even allow the user to change it to a custom one.

IV. SECURITY CRITERIA

For an automated security evaluation of an IoT network, a
general applicable evaluation scheme is needed. The scheme
has to be modular to allow for different devices being evalu-
ated based on the used technologies. Every module is limited
to a specific part of the device and the regarding security risks.
The individual results can then be weighted against each other
to obtain an overall evaluation of a device.

The scheme described below serves as a first approach for
the evaluation of individual devices. It shall serve as a basis for
the definition of the desired scan results and device properties
and illustrate their later use.

TABLE III. SECURITY CRITERIA

audit criteria score
radio technology

WPA/WEP or no encryption 0
WPA2/WPA3 2
Bluetooth version 0-2
ZigBee version 0-2

manufacturer
unknown manufacturer 0
usual patch time 0-2
experience 0-2
known unpatched devices 0-2
bug bounty program 0/2

services
service default port comment
HTTP 80 unencrypted login details 0
MQTT 1883 unencrypted control data 0
UPnP 49152/1900 firewall manipulation 0
rtsp 554 unencrypted video data 0
SIP 5060 unencrypted 0
service default port comment
HTTPS 443 encrypted 2
MQTTS 8883 encrypted 2
SCP 10001 encrypted 2
SIPS 5061 encrypted 2
SSH 22 encrypted 2

LAN and WAN communication
service default port comment
HTTP 80 unencrypted login details 0
MQTT 1883 unencrypted control data 0
UPnP 49152/1900 firewall manipulation 0
rtsp 554 unencrypted video data 0
SIP 5060 unencrypted 0
service default port comment
HTTPS 443 encrypted 2
MQTTS 8883 encrypted 2
SCP 10001 encrypted 2
SIPS 5061 encrypted 2
SSH 22 encrypted 2

other
vulnerable to replay attacks 0
create own Wi-Fi 0
data retrieval without authentication 0
vulnerable to jamming 0-2
vulnerable to Denial of Service (DoS) 0-2
insecure configuration 0
continuous device number 0-2
known vulnerabilities 0
support lifetime 0-2
insecure / default password 0/2
firmware version 0-2
technical guidelines 0-2
certification 0-2

The aforementioned scheme utilises a three-value score
system reaching from zero to two. If a module detects a critical
security violation it results in a score of zero. A potential, but
non-critical, violation would result in a score of one. If no
problems are found, the score would be two. Similarly to the
overall score calculation, each module runs several individual
evaluations and weights them against each other to calculate
the resulting score. A list of the modules can be found in Table
III and are described in the following Subsections.

A. Physical connection

Although the software properties of a device play the
main role for security risks, the physical connection to a

112

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network could also be a potential attacking point. Therefore,
a distinction is made between wired and wireless connections.
If the connection is wireless, the used encryption technology
is taken into account. A wireless connection results in a score
of one, weighted against the score of the used encryption. A
wired connection on the other hand is scored two, as physical
access would be needed to interfere the connection.

Wireless connections can be unencrypted or use a variety
of different encryption technologies. Obviously, the use of
unencrypted or open Wi-Fi (wireless local area network) is
considered dangerous and scored with zero points. The older
Wi-Fi encryption standards, namely WPA (Wi-Fi Protected
Access) and WEP (Wired Equivalent Privacy), are also scored
zero points, as they use “RC4” (Rivest Cipher 4) for the
encryption which is considered broken [25]. The use of the
newer WPA2 and WPA3 standards results in the highest score
of two.

B. Services

This module looks at the services, which are reachable from
the network for the communication with a device. The rating
of the security level is done for each listed service separately,
but in this case the lowest individual score is used and not
a weighted average. The evaluation is based on the protocol
and encryption used. This is done using black and white
lists. Services on the black lists either use obsolete protocols,
which are considered vulnerable, vulnerable encryption or are
completely unencrypted. A blacklisted service results in zero
points, a whitelisted one in two points and if the service is not
listed it is scored one point.

C. Communication

Besides the communication from the network, devices are
also able to communicate by themselves to other devices. For
example, many IoT devices connect to servers in the cloud or
a local gateway. This communication is also evaluated based
on the encryption used. As this type of connection cannot be
detected by a scan of the network, the actual traffic needs
to be analysed. This analysis also utilises a predefined list of
protocols for the evaluation. Furthermore, the communication
is split into LAN (local area network) and WAN (wide area
network) in order to take the different security requirements
in account. For example, data sent over the WAN leaves the
relatively protected home environment and could therefore be
seen by third parties. As both categories look quite similar,
they are displayed as one in Table III.

In addition to the encryption, it is also possible to check
the number of external resources a device communicates with
and where they are located. An additional point that could
be evaluated in the course of this analysis is whether a device
requires a continuous connection to a cloud service. If no such
service is used, two points could be are awarded. Otherwise,
one point could be deducted.

D. Default passwords

When talking about passwords, a major security concern
is the use of default credentials, which apply to all devices
of the same type and manufacturer. If an attacker knows the
credentials for a device, most of the other security measures
are useless. Therefore, this module checks if a login with
known credentials is possible. If it is the case, the score is
set to zero. If the login was unsuccessful, the score is two, but
is deducted by one if the username cannot be changed by the
user.

E. Firmware version

Outdated firmware or unmaintained firmware increases the
possibility of security vulnerabilities. Most known vulner-
abilities are collected and provided to others in form of
several vulnerability databases. CVE (Common Vulnerabilities
and Exposures), for example, is one of the popular lists of
known vulnerabilities, which is maintained by the MITRE
Corporation and contains nearly 140000 entries [26]. As this
information is also available to potential attackers, it allows
for systematic attacks against outdated or unfixed firmware
versions. Therefore, the module needs to be able to detect
the installed version and check, if new versions are available.
Additionally, it has to search vulnerability databases for known
issues with the installed firmware version. If known vulnera-
bilities are found and no update is available, the lowest score
of zero is given. If an update is available, the score is one and
the user needs to be notified of this problem. If nothing of
the mentioned applies, the device is up to date and is awarded
with the highest score.

V. DEVICE RATING

In this section, we describe the proceeding to receive the
information for all the security criteria and how they are rated
in detail.

A. Physical connection

In our test environment, a Raspberry Pi serves as a router
through which all devices are connected to the network.
For wireless and wired connections, different address spaces
were used, which means that the physical connection of the
individual devices can be determined via these address spaces.

The encryption technology of the wireless network can be
taken from the router configuration. Since the software used
for the access point is “hostapd”, the configuration can be done
in the “/etc/hostapd” file. The entry “wpa=2” indicates the
exclusive use of the WPA2 standard, which in turn results in
a score of two points for each device. If an insecure technology
is used, this also affects the rating of each device, as the entire
network is weakened. In this case, all devices in this category
must be scored zero.

113

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Services

The running services are recorded by scanning the individ-
ual network components. “Nmap” is used for this scanning
process [27], which provides the results shown in Table IV.

TABLE IV. PORT SCAN

port protocol
22 ssh
80 http
5060 sip

Based on these results and the categorization lists already
mentioned, the device can be classified. The example in Table
IV results in a score of 0.66 points, since http and sip are
scored zero and ssh two points.

C. Communication

The communication of the devices with external resources is
evaluated by recording and analyzing the network traffic. The
MAC address of the local resource, source and destination
port and the communication protocol are extracted from the
communication packets by using the “tshark” software [28].
Incoming and outgoing traffic are analyzed independently of
each other and similarly to the evaluation of the services, they
are evaluated on the basis of predefined protocol lists. With
the scan results shown in Table V, the device would be scored
zero points.

TABLE V. COMMUNICATION SCAN

source device destination port protocol
00:11:22:33:44:55 5060 sip

The necessity of a cloud connection could not be checked
automatically at this point, as it is not possible to determine
whether a device is still fully functional after a possible
interruption of such a connection.

D. Default passwords

Checking a device for the use of insecure login credentials
is done using the software “THC-Hydra” [29], which performs
a dictionary attack against the corresponding device. Both,
the user name and the password are checked against known
and frequently used terms. The information about the type of
service for which a login check should be performed is taken
from the previous service scan.

The use of non-standard logon procedures may cause a
problem with this type of password check. For each specific
procedure, a separate check algorithm would have to be
developed, which might have to be adapted again after an
update of the device firmware. An example of a vendor-
specific login procedure is the challenge-response mechanism
that AVM uses for the web interface of its Fritz!Box routers
[30].

E. Firmware

In the absence of a standardized procedure for identifying
the device firmware, it was not possible to check it in an
automated procedure. The use of Nmap [4] allows assumptions
about the operating system and other software components
used on a device. However, due to rough inaccuracies, these
are not sufficient for a valid risk evaluation. In addition, Nmap
is only able to identify an operating system if it has already
been fingerprinted in the past [31].

While it would be possible to create a Nmap fingerprint
for each network device, this method can be considered
irrelevant in practice because of the need to know the software
running on each device. There is also no guarantee that the
identifiers will not change after a software update, which
would require the fingerprint to be recreated. These concerns
can be transferred to procedures developed independently of
Nmap.

F. Overall rating

After all the categories have been evaluated, an overall
rating for a device can be calculated by averaging the ratings.
This rating describes the vulnerability of a device based on
Table VI. A ports score of 0.66 points, a communication score
of 0.00 points, and a password score of 0.00 points results in
an overall rating of 0.22 points, indicating that the device is
highly vulnerable.

The security of the devices is indicated with an average
evaluation instead of the lowest individual evaluation, since
an overall impression of the device security should be given.

TABLE VI. VULNERABILITY CATEGORIES

score category
0.00 to 0.80 high vulnerability
0.81 to 1.80 moderate vulnerability
1.81 to 2.00 small vulnerability

VI. RESULTS

For the verification and validation of the presented evalu-
ation system, the following devices were tested as examples:
Amazon Echo 2 (1), Apple iPhone 5 (2), Floureon M32B (3),
Google Home mini (4), Renkforce RenkCast (5), Sonoff Wi-
Fi Smart Switch (6), Wi-Fi Smart Bulb (7), Wi-Fi Smart Plug
(8) and Wi-Fi Touch Switch (9). The results of the automatic
evaluation related to these example devices can be found
in Table VII. The devices were then checked manually and
the resulting evaluation was compared with the automatically
determined values. The values for “cloud only” and “default
password”, shown in Table VII, where added manually. All
the values are calculated as described in Section V.

In a later step, weightings can be assigned to the previously
mentioned categories in order to make clear their different
influences on device security.

The overall network rating is determined by the value of
the least secure device.

114

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. EXAMPLE RESULTS

parameter 1 2 3 4 5 6 7 8 9
Wi-Fi encryption 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
services 1.00 2.00 0.33 1.00 2.00 2.00 1.00 2.00 2.00
LAN communication 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
WAN communication 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
wired connection 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
cloud only 1.00 1.00 2.00 1.00 2.00 1.00 1.00 1.00 1.00
default password 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00
overall score 1.57 1.71 1.62 1.57 1.86 1.71 1.57 1.71 1.71

While the calculation of the device ratings can be fully auto-
mated, it is not possible, as explained in Section III, to collect
the necessary information automatically. For this reason, in
the following chapters we present a new approach to retrieve
device-specific information from the devices themselves.

VII. IOTAG DEFINITION

The IoT Device IdentificAtion and RecoGnition, short Io-
TAG, should be implemented into IoT devices by the manu-
facturers. It provides static and dynamic information about the
device and its current state.

The focus of the IoTAG definition is on the standardized
provision of critical device data, the integrity maintenance
of the data sets to be transmitted and the relevance of the
information for an individual classification of each device with
regard to the implementation of security specifications and
recommendations [32].

The core component of the IoTAG definition is the dataset
specification. In the first instance, this is a list of attributes
whose content is described. In the course of the technical
specifications for the serialization of data for transmission
over the network, data types and formatting specifications are
assigned to these attributes.

In addition to a unique identifier for identifying individual
devices, the dataset contains general product information such
as a serial number, the device type according to fixed type
definitions, a device category related to the main use scenario
of the device, a product name and the manufacturer. Informa-
tion about the installed hardware, such as the presence of a
secure element or the use of a secure boot procedure, is also
taken into account.

With regard to the connectivity of a device, information on
the availability of LAN, WLAN or Bluetooth connections and
their version is provided.

In addition to these static values, IoTAG also includes
dynamic information about the update behavior of the device
(automatic updates, end of support, etc.) as well as the device
firmware (e.g., the current version). Furthermore, an overview
of communication services such as SSH or HTTP servers, the
associated software and the cryptographic algorithms that are
used is provided.

In order to be able to associate the origin of the transmitted
data with a device, a signature procedure will be presented,

which is intended to ensure the integrity of this dataset. The
signature is applied to the data serialized for communication
as described later.

A. Dataset

The IoTAG Dataset consists of thirteen information about
the IoT device:

1) Manufacturer
2) Name
3) Serial number
4) Type
5) ID
6) Category
7) Secure boot
8) Firmware
9) Client software

10) Updates
11) Cryptography
12) Connectivity
13) Services

1) Manufacturer: The manufacturer information is impor-
tant to identify the device correctly and in case of a secu-
rity issue, to contact the right company. The value of this
information is a string that contains the company name as it
is officially registered. This allows a clear assignment of the
company, which is responsible for the device.

2) Name: The name is also a string, which contains the
name of the device. It should be named as it is listed by
the manufacturer with all the additional revision numbers like
“Test Cam rev 3A”, to ensure an exactly identification in the
case of security issues. Sometimes, not the complete batch of
products is affected, because there could be a software update
in later devices. This difference should be identifiable.

3) Serial Number: The next item, the serial number should
be assigned by the manufacturer as a unique identification.
It can be necessary for a network administrator to know all
the serial numbers of his devices, if some of them are broken
and need support or, if a security issue concerns some devices
with a specific production date (which the manufacturer can
identify by the serial number).

4) Type: To determine the potential damage of an attack,
the device type is necessary. For example, a smart speaker
cannot harm people directly. But if an attacker deactivates the
smoke detector, it is a safety issue. The different types can help
to estimate the damage and therefore, to separate the devices.
We give some first suggestions for the type, but this list needs
to be extended for all the different kind of IoT devices.

Suggestions for device types:

• Alarm system
• Camera
• Smart lock
• Smart speaker
• Smart TV

115

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Smoke detector
• Production machine
• Temperature sensor
• Security camera
• Emergency switch
• ...

5) ID: Besides the serial number, which is on required to be
unique for one product, the identifier (ID) should be unique for
every device worldwide. To achieve this requirement, the ID is
created by concatenating the manufacturer name, the product
name and the serial number. This string is hashed, using the
SHA-256 algorithm [33] and encoded as base16 string [34],
to ensure the right format. As for the use in IoT devices, the
faster algorithm SHA2, prior to SHA3, is used [35] [36] [37].
The composition of the ID is shown below:
ID = BASE16 (SHA-256 (MANUFACTURER & PRODUCT NAME &

SERIAL NUMBER))

6) Category: Similar to the type, the product category
should help to determine the risk of an attack. But the category
is not as accurate as the product type, because it should be
used to categorise the different kind of products. Additionally,
this can be used to separate the networks for the different
device categories. Some examples are given in the following
list:

• Assisted living
• Entertainment
• Household
• Industry
• Infrastructure
• Lighting
• Personal assistance
• Security
• ...

7) Secure Boot: The boolean value (true or false) for the
secure boot indicates, if the device has a secure boot mecha-
nism and therefore can ensure the integrity of its firmware at
system startup.

8) Firmware: The firmware version is needed to check
if there are new updates available. Additionally, an internet
address must be given to download the newest version of a
devices firmware. This is important, if the automatic update
process is not working. Technically, the firmware is not one
value, but two separate strings: the firmware version and a
Uniform Resource Locator (URL) [38] to get the firmware.
The version should consist of lexicographically ascending
terms (higher number or character).

9) ClientSoftware: The client software is structured exactly
like the firmware: version number and download URL. If a
device does not use software for third-party devices, an empty
string is returned.

10) Update: The update consists of multiple values. First, if
the device updates itself automatically. This includes the whole
process: check for new version, download and installation. It
is an boolean value and named “Automatic updates”.

The next value indicates, if the automatic update process
is technically possible. If a connection to the update server
can be established and the check and installation of updates is
possible, it is set to “true”. This value is also an boolean and
named “Automatic updates possible”.

The third value contains the date of the last update (“Last
update on”) and the fourth value the date of the end of support
(“end of life”) according to ISO 8601 [39].

11) Cryptography: To be able to make statements about
the cryptographic capabilities of a device, it is necessary
to know the algorithms used by the device. In addition, it
must also be possible to make a statement as to whether
these are implemented in hardware or software. It should also
be specified whether secret keys are managed exclusively in
secure hardware or in the main memory of the device.

The private key required for the signature of IoTAG as
described in subsection C, is treated as a separate variable,
as it is essential for the reliability of IoTAG.

Under the generic term cryptography, two identical struc-
tures are classified. Each of these subsections contains an
attribute “IoTAG key”, which is represented as a boolean
value. If the key used for signature is managed exclusively in
a secure hardware environment, the value “true” is assigned
in the hardware structure and the value “false” in the software
structure. If the key is accessible via software, the values are
reversed.

Whether secret cryptographic keys are stored in any of the
above-mentioned areas, is indicated by the boolean variable
“key store”. This variable can have the value “true” in both
structures. The variable “algorithms” gives an overview of
the cryptographic algorithms used in a device. This is a
collection of character strings, which in turn represent a
cryptographic algorithm according to its standardized name
(example: “ecdsa-sha2-nistp256”, defined in RFC 5656 [40]).

12) Connectivity: The physical possibilities of a device
to connect to other devices, are subsumed under the term
“connectivity”. In the case of IoT devices, the connection is
achieved using several different communication standards, like
Ethernet (IEEE 802.3) and Wi-Fi (IEEE 802.11) [41], which
are developed by the Institute of Electrical and Electronics
Engineers (IEEE). Additionally industrial standards, like Blue-
tooth [42] and ZigBee [43], are also common in IoT envi-
ronments. As connectivity standards evolve over time, which
often includes security improvements, they are versioned. To
improve user experience and compatibility, older versions are
often still supported by the devices. This can decrease security,
as older versions are more likely to contain security issues [44]
[45].

IoTAG utilises a multi-part data structure to list the sup-
ported communication standards. The attributes of this struc-
ture are named like the standards, e.g., “IEEE802 11”, “Blue-
tooth” and “ZigBee”. Each attribute contains an collection
of strings, which contain the supported versions and some
times the encryption used, for example, in the case of IEEE

116

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

802.11. The version string can only contain alphanumeric
versions. Bluetooth and ZigBee, for example, have numeric
versions and Wi-Fi versions are named after their IEEE 802.11
suffix. As mentioned earlier, the collection can contain the
supported encryption standards like “WEP”, “WPA”, “WPA2”
and “WPS”.

13) Services: Services describe the ways other clients can
communicate with the device. This communication also needs
to be encrypted. Additionally, the software running on the
device, which exposes the server to the network could have
security flaws, hence the currently running version should also
be included.

The services of a device are listed under a separate data
structure as a collection of several services, which contain
the following attributes: The name of the service, the port
that is utilised by it, the protocol used for communication
and the name and version of the software. The name and
version of the software are combined into one string in the
format <designation>-<version>. The port is a string which
is the combination of the port and either TCP or UDP and is
separated by a slash: <Port>/<UDP|TCP>.

B. Serialization

Now, as the data contained in IoTAG has been defined, there
is a need for a uniform format to transport and process this
data. The goal is to avoid incompatibilities due to misinter-
pretations.

For serialization, the Javascript Object Notation (JSON),
according to the specification in ECMA-404 [46] and RFC
8259 [47] with UTF-8 encoding is chosen.

Because of its lower memory consumption and better
computing performance, JSON is preferred to the Extensible
Markup Language (XML) [48].

Below is a fully serialized IoTAG data set whose attribute
names have been transferred into a uniform format. The value
of the attribute ’ID’ had to be wrapped into several lines to
be displayed completely.
{
"Manufacturer": "Beispiel GmbH",
"Name": "Example-Device",
"SerialNumber": "D1.0",
"Type": "example device",
"ID": "2071c7736acd16f6cea3727d

3b7ecde53f4c2e97b421f355
0248e19d7309c636",

"Category": "infrastructure",
"SecureBoot": false,
"Firmware": {

"Version": "1.0",
"URL": "https://192.168.102.94:10000/FirmwareInfo"

},
"ClientSoftware": {

"Version": "",
"URL": ""

},
"Updates": {

"AutomaticUpdates": false,
"AutomaticUpdatesPossible": false,
"LastUpdateOn": "2020-08-01T00:00:00"
"EndOfLife": "2021-01-01T00:00:00"

},
"Cryptography": {

"Software": {
"IoTAGKey": true,
"KeyStore": true,
"Algorithms": [

"RSASSA-PSS",
"SHA-256",
"TLS_AES_128_GCM_SHA256",
"TLS_AES_256_GCM_SHA384",
"TLS_CHACHA20_POLY1305_SHA256",
"aes128-ctr",
"aes192-ctr",
"aes256-ctr",
"ecdsa-sha2-nistp256",
"ecdsa-sha2-nistp384",
"ecdsa-sha2-nistp521",
"ssh-rsa",
"ssh-dss",
"ecdh-sha2-nistp256",
"ecdh-sha2-nistp384",
"ecdh-sha2-nistp521",
"diffie-hellman-group-exchange-sha256",
"hmac-sha2-256,hmac-sha2-512"

]
},
"Hardware": {

"IoTAGKey": false,
"KeyStore": false,
"Algorithms": []

}
},
"Connectivity": {

"IEEE802_11": [
"WPA2",
"b",
"g",
"n",
"ac"

],
"Bluetooth": [

"4.2"
],
"ZigBee": []

},
"Services": [

{
"Name": "IoTAG",
"Port": "27795/TCP",
"Protocol": "HTTP/2",
"Software": "IoTAG-Server-1.0"

},
{

"Name": "SSH",
"Port": "22/TCP",
"Protocol": "SSH-2",
"Software": "OpenSSH-8.1"

}
]
}

C. Integrity

The definitions presented so far do not yet include a
procedure for verifying the provided data. It is not possible
to verify whether a received data set was actually provided
by the device it describes. In the course of this chapter, the
signature mechanism for IoTAG will be introduced. First, the
signature procedure is presented, then, the generation of the
data to be signed is explained and finally the complete signing
process and the subsequent validation of the signature based
on examples is illustrated.

1) Signature algorithm and authentication: The RSA pro-
cedure serves as the basis for the signature mechanism of
IoTAG. This is an asymmetric encryption method in which a
message is encrypted with the recipient’s public key, whereby
the plaintext can only be restored with the corresponding
private key. By reversing this procedure and encrypting a
message with the sender’s private key, the source text can be
calculated using its public key. This ensures that the message
is only created and sent by an instance that has the private
key [49]. The keys themselves are random bit sequences for
which a minimum length of 2048 bits is recommended [50].

117

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Since the RSA algorithm would always generate the same
encryption text for identical messages, methods were devel-
oped that combine the plaintext with a random value, the
padding, before each encryption process. The Public-Key
Cryptography Standards (PKCS) define two signing proce-
dures for RSA in PKCS #1 that take such padding into
account. These procedures, called signature schemes with
appendix (SSA), are RSASSA-PKCS1-v1 5 and RSASSA-
PSS. The latter is preferred for new developments, which is
why it is used for IoTAG signatures using the standard options
defined in PKCS #1 [51].

To verify the signature, the message recipient must know
the sender’s public key. However, this must also ensure that
an attacker has not published his key to the recipient and
is therefore able to generate misleading messages whose
signature is considered valid by the recipient. To counteract
this, the signer’s public key is published in conjunction with
a certificate, which in turn is signed by a trustworthy third
party and provides certainty about the origin of the verification
key [49]. In IoTAG certificates are used according to the
specification in ITU-T X.509 [52] and RFC 2459 [53], as they
are also used in the Transport Layer Security (TLS) protocol
[54].

Such a certificate can be issued directly by the manufacturer
of a device and stored on the device, or it can be created when
the device is set up and then signed by a local or external
certification authority. In all cases it must be ensured that each
device receives an individual certificate. It is the responsibility
of the message recipient to check the validity of the certificate.

2) Signed dataset: After a suitable signature procedure has
been selected, it is now necessary to determine which data is
to be signed. Basically, the target of the signature is always
the IoTAG data record in serialized form and thus a UTF-
8 encoded character string. However, not this entire string is
used for the signature, but instead a hash sum is calculated
from it, which is then signed. The SHA-256 algorithm is used
to generate this sum, as recommended by NIST (National
Institute of Standards and Technology) [35].

Before the hash algorithm can be applied, the IoTAG string
is converted into a byte array. Only from this array, the hash
sum is calculated, to which the signature algorithm is then
applied. If the array contains a terminating null byte, this is
ignored in the hash calculation.

3) The signing process based on examples: This example
is intended to illustrate the following sequences of the signing
process: The creation of the hash sum, the signing of the
hash sum and the validation of the signature. To do this, an
RSA key pair and an IoTAG must first be defined. A size of
2048 bits is chosen for the key pair. For reasons of clarity,
the IoTAG is not serialised in its entirety, but only using
the fields “Manufacturer”, “Name”, “SerialNumber” and “ID”.
Also, no certificates, but only the required keys are used. The
implementation of the program code required for the example
is done in the programming language Go [55].

Before the actual signing process can be started, an RSA
key pair with a size of 2048 bits and an IoTAG object with
exemplary attribute values must be created:
privkey, _ := rsa.GenerateKey(rand.Reader, 2048)
pubkey := privkey.Public().(*rsa.PublicKey)

iotag := struct {
Manufacturer string
Name string
SerialNumber string
ID string

}{
"Example Company",
"smoke detector",
"R1.234",
"db0fb9870ffc08ccc" +
"b59b9d65a0ceb0cd0" +
"108265471a89e3c35" +
"e21edfe7c00d3",

}

The IoTAG object can now be converted into a JSON object:
serialized, _ := json.Marshal(iotag)

In case of Go, the serialization process returns a non zero
terminated byte array, which can be directly used for the
calculation of the hash sum. The byte chain, generated by the
serialization, can now be transferred to the hash algorithm:
hashed := sha256.Sum256(serialized)

By which the following Hashsumme in hexadecimal repre-
sentation results:
f278178e0a885a074f7bf8e06968f11b
53931a00108dd46eb4b1a238dd312959

This can now be used to create the signature using the
RSASSA-PSS procedure, which additionally requires the pri-
vate RSA key:
signature, _ := rsa.SignPSS(rand.Reader, privkey,

crypto.SHA256, hashed[:], nil)

The signature is now ready to be transmitted.
To be able to check whether the signature generated in

the previous step is valid, the receiver needs the following
additional information:

• The serialized IoTAG object
• The public key

In this example, it is assumed that this information has
already been transmitted to the verifier of the signature and
the hash operation has been performed, so that the signature
verification can be executed with the corresponding parame-
ters:
result := rsa.VerifyPSS(pubkey, crypto.SHA256, hashed

[:], signature, nil)
if result == nil {

fmt.Println("Signature valid!")
} else {

fmt.Println("Signature invalid!")
}

D. Communication

The last open point to be defined, is the IoTAG related
communication behaviour. This includes the retrieval of Io-
TAG data from a device, as well as the retrieval of software
resources via a URL, which must be provided by the device

118

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

firmware via IoTAG. The same technologies are used for
both procedures, which is why a general description of the
communication endpoint, the transmission protocol and the
data format is given, before the two procedures are explained
in more detail.

1) General description: HTTP Version 2 with Transport
Layer Security (TLS) is selected as the transmission protocol
[56] (Hypertext Transfer Protocol Secure, HTTPS for short).
For querying information, an HTTPS-capable server applica-
tion must be provided as the communication endpoint, which
has a trustworthy certificate for encrypted communication.
This application does not have to support the full scope of
the operations defined in RFC 2616 [57], but only has to be
able to respond to an individual GET request by providing the
respective data record. The addressed resource is determined
by the respective URL.

The JSON format is used to format the data for transmission
within HTTP packets.

2) Retrieving Software Resources: It was determined that
the IoTAG data set provided by a device should contain a
URL to obtain the latest available device firmware and, if
necessary, software for client systems. It is not possible to
download the software directly via this URL. Instead, it is used
to perform the HTTP request described before. The response
to this request contains a JSON object, which in turn has
the string attributes “URL” and “Version”. This URL can
now be used directly to download the firmware. The second
specification informs about the version of the software.

3) Retrieving IoTAG: Every IoTAG compatible device must
provide a communication interface to retrieve the IoTAG
dataset. In order to make this procedure uniform, a unique
HTTP URL must be defined, which is used to access a
corresponding resource. This requires a uniform port number
and a predefined path for the request to the HTTP server.
27795 is specified as the network port. The path consists of a
single segment called “iotag”. This results in the following
URL scheme, where the “<host>” specification is to be
interpreted according to the definition in RFC 3986 paragraph
3.2.2:
https://<host>:27795/iotag

The example created in the course of the description of the
signature process shows that in addition to the actual IoTAG
data record, additional information is required to verify its
correctness. This is a certificate that contains the key needed
to verify the signature, as well as the signature itself. A
separate JSON object is also defined for this purpose, which
contains this information in the form of the attributes “IoTAG”,
“Certificates” and “Signature”.

Since, the signature is present as a byte sequence, it will
first be encoded to base64, which allows it to be integrated
into the JSON object as a string. The format in which the
certificate is stored on the respective devices depends on
the implementation by the manufacturer. It must therefore
be converted into a uniform format for transmission. For the

transmission of ITU-T X.509 certificates in non-binary form,
the encoding according to RFC 7468 [58] is suitable. Basically,
the certificate is first converted into a binary structure, taking
into account the encoding rules specified in ITU-T X.690
[59], and then encoded to base64, which means it can also
be embedded as a string in the JSON object.

If additional certificates are required to verify the certificate,
all certificates are first encoded and the resulting character
strings are then concatenated. The order according to the
specification in RFC 5246 chapter 7.4.2 [54] must be taken
into account.

The IoTAG data record could be entered directly as an
object, since it is JSON-serialized for transmission anyway.
In order to check the signature, the recipient must extract the
IoTAG object from the parent object. This can be done in
two ways: the recipient can continue to treat the transmitted
data as a character string and try to extract the IoTAG object
by manipulating it. However, this procedure is unusual and
involves additional development effort, since the correspond-
ing extraction routine must be implemented. Alternatively, the
received JSON object can be deserialized to an object of the
respective programming language used and then be processed
further.

Although, the latter approach is preferable, it also makes
signature verification more problematic. To perform this step,
the IoTAG object must be serialized back to a string after
extraction to calculate the hash sum. This serialization pro-
duces different results depending on the software used, which
ultimately results in different hash values. The problem of
the different serializations can be illustrated with an example.
First, an object is created in the programming language Python
[60], which is identical to the object before. This object is then
serialized and hashed:
iotag = {

"Manufacturer": "Beispiel GmbH",
"Name": "Rauchmelder",
"SerialNumber": "R1.234",
"ID": "db0fb9870ffc08cccb59b9d"

"65a0ceb0cd0108265471a89"
"e3c35e21edfe7c00d3"

}
serialized = json.dumps(iotag).encode(’utf-8’)
hash = hashlib.sha256(serialized).hexdigest()
print(hash)

This process results in the following hash value:
5063aec9e300b6d4a61ce3dd6f7b0b42
98ddc230914ca3b5676df694fbe632e7

By comparing this result with the one before, it can be seen
that the values are different. A signature verification based on
the respective hashes would thus fail, although the information
would remain unchanged.

To counter this problem, the IoTAG data set must be
transferred within a JSON object in such a way that it can be
extracted by deserialization without affecting the formatting.
This can be achieved by treating the serialized IoTAG data for
transfer as a string rather than an object. However, all JSON
control characters within this string must be replaced with
appropriate escape sequences before transmission to allow for

119

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

error-free interpretation. These must also be removed by the
receiver before the hash calculation.

In order to avoid the resulting programming effort, a further
approach is preferred. The transmission of the IoTAG data as
a string is retained, but the character string resulting from its
serialization is first base64 encoded. The result of this process
is then set as the value of the IoTAG attribute. This enables
the recipient of the data to parse the received JSON object and
decode the information inside. This information will then be
available in the same format as it was processed by the sender.

VIII. CONCLUSION

The scoring of the network is in the early stages of research
and continuously being developed. There are still some points
which are unclear and the individual weightings have to
be adjusted in detail. Nevertheless, we show an advanced
approach which can already be tested in practice.

As mentioned in our previous publication [1], we want
to improve our scoring system by scanning vulnerability
databases to change the scoring and warn the user, if a new
vulnerability emerges.

To get the best results and an accurate overview of the de-
vices, we proposed our standard IoTAG. It solves the problems
with device detection and provides reliable information about
the current security status of the individual devices.

The definition of the individual points of IoTAG is already
far-reaching, but can be flexibly extended by further param-
eters. This should keep open the possibility to add further
features (e.g., the functions of a device) or, to merge with
other existing approaches.

In this paper, we have additionally shown that it is possible
to implement IoTAG in Go with little effort. The same is true
for the C programming language, which attests to a broad
application, especially in the field of IoT. So far there are still
missing further implementations and public code repositories,
which we plan to submit in the near future.

In addition to the advantages of IoTAG, the view of an
attacker should be briefly considered. IoTAG enables the
possibility for an attacker to get all the device data from a
network without much effort. This can help to identify the
most vulnerable device within the network. To avoid those
attacks, devices can release the IoTAG data to client systems
only if their TLS certificate is signed by a trusted certification
authority. Another possibility would be to store the device that
is authorized to retrieve IoTAG data in the configuration.

But there is still an unsolved problem. Manufacturers must
integrate IoTAG into their devices to enable the comprehensive
device detection and the associated network scoring.

REFERENCES

[1] S. Fischer, K. Neubauer, L. Hinterberger, B. Weber, and R. Hackenberg,
“IoTAG: An Open Standard for IoT Device IdentificAtion and RecoG-
nition,” in SECURWARE 2019, Thirteenth International Conference on
Emerging Security Information, Systems and Technologies, 2019, pp.
107-113.

[2] “Rash of in-the-wild attacks permanently destroys poorly secured
IoT devices,” 2017, URL: https://arstechnica.com/information-
technology/2017/04/rash-of-in-the-wild-attacks-permanently-destroys-
poorly-secured-iot-devices/ [accessed: 2020-08-18].

[3] “Five nightmarish attacks that show the risks of IoT security,”
2017, URL: https://www.zdnet.com/article/5-nightmarish-attacks-that-
show-the-risks-of-iot-security/ [accessed: 2020-08-18].

[4] “Nmap: the Network Mapper - Free Security Scanner,” URL:
https://nmap.org [accessed: 2020-08-18].

[5] “Fing - IoT device intelligence for the connected world,” URL:
https://www.fing.com [accessed: 2020-08-18].

[6] M. Miettinen et al., “IOT SENTINEL Demo: Automated Device-
Type Identification for Security Enforcement in IoT,” in IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 2511-2514.

[7] T. D. Nguyen et al., “DÏOT: A Federated Self-learning Anomaly
Detection System for IoT,” in IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), 2019, pp. 756-767.

[8] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” in IEEE Trans. Dependable Secure Comput., vol. 2, no.
2, April 2005, pp. 93–108.

[9] J. Cache, “Fingerprinting 802.11 implementations via statistical analysis
of the duration field,” Uninformed, org 5, 2006.

[10] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. Van Randwyk, and D.
Sicker, “Passive data link layer 802.11 wireless device driver fingerprint-
ing,” in USENIX Security Symposium, USENIX, 2006, pp. 167-178.

[11] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device iden-
tification with radiometric signatures,” in International Conference on
Mobile Computing and Networking, ACM, 2008, pp. 116–127.

[12] A. E. Khaled, H. Abdelsalam, L. Wyatt, and L. Choonhwa, “IoT-DDL
device description language for the T in IoT,” in IEEE Access 6, 2018,
pp. 24048-24063.

[13] S. Kaebisch and A. Darko, “Thing description as enabler of semantic
interoperability on the Web of Things,” in IoT Semantic Interoperability
Workshop, 2016, pp. 1-3.

[14] “Web of Things (WoT) Thing Description,” Apr. 2018, URL:
https://www.w3.org/TR/wot-thing-description/ [accessed: 2020-08-18].

[15] “andypitcher/IoT Sentinel: IoT SENTINEL : Automated Device-Type
Identification for Security Enforcement in IoT,” December 9, 2018,
URL: https://github.com/andypitcher/IoT Sentinel [accessed: 2020-08-
18].

[16] F. Loiy, A. Sivanathany, H. H. Gharakheiliy, A. Radford, and V. Sivara-
man, “Systematically Evaluating Security and Privacy for Consumer IoT
Devices,” in IoT S&P 2017, 2017, pp. 1-6.

[17] K. C. Park and D. Shin, “Security assessment framework for IoT
service,” in Telecommun Syst, 2017, pp. 193–209.

[18] B. Ali and A. I. Awad, “Cyber and Physical Security Vulnerability
Assessment for IoT-Based Smart Homes,” in sensors journal, vol 18(3),
2018, pp. 817.

[19] R. I. Bonilla, J. Crow, L. Basantes, and L. Cruz, “A Metric for Measuring
IoT Devices Security Levels,” in IEEE 15th Intl Conf on Dependable,
Autonomic and Secure Computing, 2017, pp. 704-709.

[20] “Norton Core Router — Secure WiFi Router,” URL:
https://us.norton.com/core [accessed: 2020-08-18].

[21] “Avira SafeThings™ - IoT Security for the Connected Home,” URL:
https://safethings.avira.com/for-partners [accessed: 2020-08-18].

[22] “Norton Core Security Score,” Mar. 30, 2020,
URL: https://support.norton.com/sp/en/za/norton-core-
security/current/solutions/v118380521 [accessed: 2020-08-18].

[23] “How do I purchase Norton Core?,” Apr. 23, 2020,
URL: https://support.norton.com/sp/en/us/norton-core-
security/current/solutions/v131932667 [accessed: 2020-08-18].

[24] “Service Name and Transport Protocol Port Number Registry,” Aug.
12, 2020, URL: https://www.iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.txt [accessed: 2020-08-18].

[25] ”Cryptography in IT - recommendations on encryption and
procedures, Kryptographie in der IT - Empfehlungen zu
Verschluesselung und Verfahren,“ June 17, 2016, URL:
https://www.heise.de/security/artikel/Kryptographie-in-der-IT-
Empfehlungen-zu-Verschluesselung-und-Verfahren-3221002.html
[accessed: 2020-08-18].

[26] “CVE - Common Vulnerabilities and Exposures (CVE),” URL:
https://cve.mitre.org/ [accessed: 2020-08-18].

120

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[27] “Dienst- und Versionserkennung,” URL: https://nmap.org/man/de/man-
version-detection.html [accessed: 2020-08-18].

[28] “tshark - Dump and analyze network traffic,” URL:
https://www.wireshark.org/docs/man-pages/tshark.html [accessed:
2020-08-18].

[29] “GitHub - vanhauser-thc/thc-hydra: hydra,” URL:
https://github.com/vanhauser-thc/thc-hydra [accessed: 2020-08-18].

[30] “Login to the FRITZ!Box Web Interface,” 2018, URL:
https://avm.de/fileadmin/user upload/Global/Service/Schnittstellen
/Session-ID english 13Nov18.pdf [accessed: 2020-08-18].

[31] “OS Detection - Nmap Network Scanning,” URL:
https://nmap.org/book/man-os-detection.html [accessed: 2020-08-18].

[32] L. Hinterberger, S. Fischer, B. Weber, K. Neubauer, and R. Hackenberg,
“IoT Device IdentificAtion and RecoGnition (IoTAG),” in CLOUD
COMPUTING 2020, The Eleventh International Conference on Cloud
Computing, GRIDs, and Virtualization, Accepted, 2020.

[33] U.S. Department of Commerce and National Institute of Standards and
Technology, “Secure Hash Standard (SHS),” 2015.

[34] “RFC 4648 - The Base16, Base32, and Base64 Data Encodings,” Oct.
2006, URL: https://tools.ietf.org/html/rfc4648 [accessed: 2020-08-18].

[35] “NIST Policy on Hash Functions,” June 22, 2020, URL:
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-
Functions [accessed: 2020-08-18].

[36] R. K. Dahal, J. Bhatta, and T. N. Dhamala, “Performance Analysis of
SHA-2 and SHA-3 finalists,” in International Journal on Cryptography
and Information Security (IJCIS), Sept. 2013, pp. 720-730.

[37] U.S. Department of Commerce and National Institute of Standards
and Technology, “SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions,” 2015.

[38] “RFC 3986 - Uniform Resource Identifier (URI): Generic Syntax,” Jan.
2005, URL: https://tools.ietf.org/html/rfc3986 [accessed: 2020-08-18].

[39] International Organization for Standardization, “Data elements and inter-
change formats — Information interchange — Representation of dates
and times,” 2004.

[40] “RFC 5656 - Elliptic Curve Algorithm Integration in the Secure Shell
Transport Layer,” Dec. 2009, URL: https://tools.ietf.org/html/rfc5656
[accessed: 2020-08-18].

[41] “Institute of Electrical and Electronics Engineers,”
URL: https://ieeexplore.ieee.org/browse/standards/get-
program/page/series?id=68 [accessed: 2020-08-18].

[42] Bluetooth SIG, Inc., “Bluetooth Core Specification, Revision 5.2,” 2019.

[43] ZigBee Alliance, “ZigBee Specification,” 2015.
[44] P. Kraft and A. Weyert, “Network Hacking,” Franzis Verlag GmbH,

2015, pp. 345-360.
[45] J. Erickson, “Hacking,” dpunkt.verlag GmbH, 2009, pp. 472-488.
[46] ECMA International, “The JSON Data Interchange Syntax,” 2017.
[47] “RFC 8259 - The JavaScript Object Notation (JSON) Data Interchange

Format,” Dec. 2017, URL: https://tools.ietf.org/html/rfc8259 [accessed:
2020-08-18].

[48] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of
JSON and XML data interchange formats: A case study,” in International
Conference on Computer Applications in Industry and Engineering,
CAINE, 2009, pp. 157-162.

[49] A. S. Tanenbaum, “Moderne Betriebssysteme,” Pearson Deutschland
GmbH, 2009, pp. 717-721.

[50] U.S. Department of Commerce and National Institute of Standards and
Technology, “Recommendation for Key Management,” 2015.

[51] “RFC 8017 - PKCS #1: RSA Cryptography Specifications Version 2.2,”
Nov. 2016, URL: https://tools.ietf.org/html/rfc8017 [accessed: 2020-08-
18].

[52] International Telecommunication Union, “Recommendation ITU-T
X.509,” 2016.

[53] “RFC 2459 - Internet X.509 Public Key Infrastructure Certificate and
CRL Profile,” Jan. 1999, URL: https://tools.ietf.org/html/rfc2459 [ac-
cessed: 2020-08-18].

[54] “RFC 5246 - The Transport Layer Security (TLS) Protocol Version 1.2,”
Aug. 2008, URL: https://tools.ietf.org/html/rfc5246 [accessed: 2020-08-
18].

[55] “The Go Programming Language,” URL: https://golang.org/ [accessed:
2020-08-18].

[56] “RFC 7540 - Hypertext Transfer Protocol Version 2 (HTTP/2),” May
2015, URL: https://tools.ietf.org/html/rfc7540 [accessed: 2020-08-18].

[57] “RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1,” June 1999, URL:
https://tools.ietf.org/html/rfc2616 [accessed: 2020-08-18].

[58] “RFC 7468 - Textual Encodings of PKIX, PKCS, and CMS Structures,”
Apr. 2015, URL: https://tools.ietf.org/html/rfc7468 [accessed: 2020-08-
18].

[59] International Telecommunication Union, “Recommendation ITU-T
X.690,” 2015.

[60] “Welcome to Python.org,” URL: https://www.python.org/ [accessed:
2020-08-18].

121

International Journal on Advances in Internet Technology, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/internet_technology/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

