
1

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

A Case Study on Integrating Extra-Functional

Properties in Web Service Model-Driven

Development: from Model to Code

Guadalupe Ortiz

Quercus Software Engineering Group

Centro Universitario de Mérida, UEX

Mérida, Spain

gobellot@unex.es

Juan Hernández

Quercus Software Engineering Group

Escuela Politécnica, UEX

Cáceres, Spain

juanher@unex.es

Abstract— Being one of the most promising current technologies,

Web Services are at the crossing of distributed computing and

loosely coupled systems. Although vendors provide multiple

platforms for service implementation, service integrators,

developers and providers demand approaches for managing

service-oriented applications at all stages of development. In this

sense, approaches such as Model-Driven Development (MDD)

and Service Component Architecture (SCA) can be used jointly

for modeling and integrating services regardless of the

underlying platform technology. Besides, WS-Policy provides a

standard description for extra-functional properties, which

remains independent of both the final implementation and the

binding to the service in question. In this paper we show a case

study in which the aforementioned MDD, SCA and WS-Policy

are assembled in order to develop web services and their extra-

functional properties from a platform independent model, which

is later transformed into platform specific ones and then into

code.

Keywords:Extra-functional property, Web service, model-driven

development, aspect-oriented techniques, WS-policy.

I. INTRODUCTION

Web Services provide a successful way to communicate
distributed applications, in a platform independent and loosely
coupled manner, providing the systems with ample flexibility
and more manageable maintenance. Although development
middlewares provide a splendid environment for service
implementation, methodologies for earlier stages of
development, such as the modeling stage, are not provided in a
cross-disciplinary scope, whereby, for instance, the automatic
model-implementation transformation or the addition of extra-
functional elements would be feasible.

Academy and industry are beginning to focus on the
modeling stage, where it is also pursued to keep the loosely
coupled notion and independence from the platform [13]. Some
rising proposals focus on representing the service as a
component and others base the model on WSDL elements;
representative approaches are described below:

To start with, Service Component Architecture (SCA) and
Service Component Description Language (SCDL) provide a

way to define interfaces and references independently of the
final implementation technology, which will be bound
subsequently [3]. According to SCA, services are modeled as
components. These components are linked to a given interface,
which can be later specified in a particular one. Besides, the
components will show the required references for their
behavior to be completed. This proposal provides the following
advantages: first of all, it defines a very high level model,
allowing the developer to bind it to a specific technology at a
later stage. Secondly, the model can be implemented by using
different approaches such as Java, BPEL and States Machine,
therefore permitting adaptability to the client’s specific needs,
or to the most suitable option for its integration in a specific
environment. Thirdly, the model can be converted into XML,
providing an intermediate language to integrate different party
models into a unique system. However, this proposal does not
face how to integrate this definition with other stages of
development, such as implementation.

As a second trend, many proposals are emerging in the
literature where a Model Driven Architecture (MDA) approach
is being applied to web service development. MDA has been
proposed to facilitate the programming task for developers by
dividing system development into three different phases: a
Platform Independent Model (PIM), a Platform Specific Model
(PSM) and, finally, the code. Thus, MDA solves the integration
of the different stages of development, as mechanisms are
provided to model applications in a platform independent
manner which may be later transformed into the specific
required models and eventually into final code, but it does not
provide a specific way to do so for service technology.

Let us consider now that we want to provide our modeled
services with extra-functional properties, that is, with
additional pieces of code which are not part of the main service
functionality. It is suggested by the SCA specification that this
type of property may be modeled at a different level; the way to
do so and to include them in additional stages of development
has not been approached as yet. Alternatively, the named MDA
proposals do not consider how extra-functional properties may
be included in modeled services. On the other hand, WS-
Policies have emerged as a standardized way for describing
extra-functional service capabilities by using the XML standard

2

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

[17]. This allows properties to remain completely decoupled
when described and there is no need to establish dependences
from the service description file (WSDL) to the policy ones;
property description is not linked to a specific implementation,
either, maintaining the platform’s independent environment.
However, WS-Policy does not determine how the properties
are to be modeled or implemented, and an additional
mechanism would be necessary so as to integrate property
modeling and implementation with their description in service-
based systems.

In this paper we show a case study in which a proposed
model-driven methodology is applied in order to deal with
extra-functional property integration in web service
development, extending our previous work on the topic [9].

The rest of the paper is organized as follows: Section 2
gives an overview of the steps followed in this approach.
Section 3 shows how the PIM should be implemented. Then,
Section 4 explains the PSM stage, where Section 4.1 shows the
specific metamodels; Section 4.2 explains the rules used for
PIM to PSM transformation and, finally, Section 4.3 shows the
specific models obtained from the case study PIM. Section 5
explains the rules used to obtain code from PSMs and the final
generated code. Other related approaches are examined in
Section 6, whereas discussion and conclusions are presented in
Section 7.

II. MODEL-DRIVEN TRANSFORMATIONS

In this section we are going to provide a general overview
of the presented approach, describing the order to be followed
to face web services and extra-functional property development
from platform independent model to code, which will be
explained in detail in the next sections.

We will use one UML profile and an additional stereotype
in order to define our case study platform independent model.
Thus, UML will be our PIM metamodel and the developer will
be able to design the system by using common standard
modeling tools at this stage of development. UML is MOF
compliant, and so will the PIM metamodel. The extra-
functional property profile defines the abstract stereotype
extra-functional property, which will extend operation
metaclass or interface metaclass. The extra-functional property
provides five attributes: the first one is actionType, which
indicates whether the property functionality will be performed
before, after or instead of the stereotyped operation’s execution
– or if no additional functionality is needed it will have the
value none, only possible in the client side. Secondly, the
attribute optional will allow us to indicate whether the property
is performed optionally –the client may decide if it is to be
applied or not– or compulsorily –it is applied whenever the
operation is invoked. Then, a third attribute, ack, is included:
when true it means that it is a well-known property and its
functionality code can be generated at a later stage; it will have
the value false when only the skeleton code can be generated.
Finally, PolicyId contains the name of an existing policy or the
name to be assigned to the new one in the service side and
priority allows the developer to establish a priority in the
execution of the functionality of those properties which affect

the same operation. These are the necessary attributes to define
the main characteristics in any property, which may be
complemented with specific property attributes.Once we want
to use the profile in a specific case study, we will extend it with
the specific properties to be used or we can have a pool of
predefined properties.

• Afterwards, the specific models have to be obtained: in
this case we decided our models to be EMF-complaints
(http://www.eclipse.org/emf/), which facilitates a graphical
edition of the element attributes within the Eclipse
environment, allowing easier consultation or modification,
if necessary. Service models will be based on a JAX-RPC
metamodel, and three additional specific metamodels are
provided for properties: an aspect-oriented one, a policy-
based one and a soap tag-based one.

Subsequently, the transformation from PIM to the PSMs
has to be defined. Several tools can be found for model
transformations and code generation. We used ATL (ATLAS
Transformation Language – see
http://www.eclipse.org/gmt/atl/), which provides an Eclipse
plugin and has its own model transformation language, also
MOF-compliant. The ATL transformation file will define the
correspondence between the elements in the source metamodel
(PIM) and the target ones (PSMs) and will be used to generate
the target model based on the defined rules and the input
model. When the transformation rules are applied to the case
study PIM, its platform specific models are obtained.

Finally, code can be generated from the specific models by
applying additional transformation rules. In this case no target
metamodel is needed since these new rules will establish
correspondences from the elements in the specific metamodels
to Strings. On the one hand, JAX-RPC web service code, to be
deployed with the Java Web Service Developer Pack, will be
generated from the service specific model. On the other,
AspectJ will be used for the implementation of the property
functionality, thus maintaining properties well modularized and
decoupled from the implemented services; Java will be used to
implement the code necessary for optional property inclusion.
With regard to description, WS-Policy documents are obtained
for each property [1], which are integrated with the aspect-
oriented implementation.

III. CASE STUDY

The case study presented in this paper consists of a set of
services related to a university administrative service and a web
client, created for their use.

The service side consists of a set of five web services:

• PreregistrationService: using the pre-registration web
service, the user will be able to create a new preregistration
application for any of the courses taught in the University
Centre of Mérida (CUM), to check the preregistration status
and to ask for a new copy of the preregistration application
to be sent to him.

3

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

• RegistrationService: by using the registration service, users
will be able to formalize a registration at the University
Centre of Mérida, by providing their personal details, the
courses to register for and payment information.

• ExamOpportunityService: through the exam opportunity
service the user can obtain a list of the different subjects in a
specific qualification and can bring forward or cancel any
exam opportunity from the registered subjects.

• AcademicResultsService: academic results can be consulted
through this service.

• TeacherService: this service can be used to obtain a list of
all the CUM teaching staff in a particular area and to obtain
additional information on them.

Let us imagine that we want to include some extra-
functional properties to the services’ model. At this stage we
can discern three types of property: properties which are
always applied and do not imply changes or additional
information in the client code; those which are optional, so they
have to be somehow chosen by the client; and those which
imply changes to client code. In this sense three examples are
provided, one for each option:

• First of all, a log property, to be applied to all operations
offered by the registration service to record received
invocations.

• Secondly, a property called detailedInfo, which will be
required discretionarily by the client when invoking
bringForwardExam in ExamOpportunityService: exam
dates and locations can be obtained when changing the
semester in which the student is going to sit the exam; the
change is regularly updated and no additional information is
obtained.

• Additionally, invocations to personalData in
RegistrationService must be encrypted. In order to enable
this functionality the desencyption stereotype has to be
applied to the offered operation.

Regarding the client in the case study, we have created a
web client for students to make use of these services by a user-
friendly interface. The main web page of the web client is
shown in Figure 1, from which the different service clients can
be accessed.

IV. PLATFORM INDEPENDENT MODEL

In order to create the platform-independent model we will
make use of the profile defined in the previous section and
motivated in [10], which allow us to models services and their
extra-functional properties in a platform-independent way.

In order to integrate the properties described in the previous
section in service models we have to extend extra-functional
property stereotype as shown in Figure 2. This figure shows us
the three mentioned property stereotypes:

• DetailedInfo property which provides the attribute
detailedInfoFunction in order to invoke the method which
will provide us with the new functionality.

• Log with two attributes. logFile and myLogFunction, the
first one will be the file in which we will record all the log
information and the second one the will be the method
which may be required for the mentioned log.

• Desencryption shows the attributes keyDoc – its value is
used as the reference of the private key in the parameters
decryption- and desencryptionFunction – it indicates the
method used for the decryption.

Figure 1. PIM with extra-functional properties.

4

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

Then we include the new property stereotypes in the service
models as depicted in Figure 3, which are described in the
following lines:

• In order to provide bringForwardExam in
ExamOpportunityService with detailedInfo in the PIM, we
have to stereotype the named operation with
<<detailedInfo>>. Stereotype attributes are attached to
models as tagged values, but they have also been included as
comments in the illustration to show their values. In it the
attributes for detailedInfo indicate that the property will be
performed optionally instead of the execution of the named
operation; it is not a well-known property; policyID is
DetailedInfo _ao4ws and policyDoc is null.

• To provide personalData in RegistrationService with
decryption in the PIM, we have to stereotype the named
operation with <<desencryption>>. Stereotype attributes
indicate that the property is not optional and it will be
performed instead of the execution of the named operation –
so the decryption will wrap personalData functionality. It is
not a well-known property (ack is true) so that the
functionality code will not be generated; policyID is
Desencryption _ao4ws and policyDoc is
http://ao4wDes.xml. Finally, for this property we can see
that two specific parameters have been added: KeyDoc and
desencryptionFunction, which contain the values
myPrivateKey and myDesencryptionFunction, respectively
and which are used as the key and function to decrypt the
received message.

• Finally, log will be done for all the operations in the
interface offered by RegistrationService. For this purpose,
we have stereotyped the offered interface –
RegistrationServiceIF– with <<log>> in the PIM.
Stereotype attributes indicate that the application of the
property will be mandatory (optional is false) and its
functionality will be performed after the execution of the
interface operations. Since ack has the value true it is a well-
known property and therefore we will generate the complete
functionality code for it. To end with, policyID is
log_ao4ws, policyDoc is null, the method used for the
logging is myLogFunction and the file in which the log will
be recorded myLogFile.

Figure 2. Extension of the extra-functional property profile with

specific properties

Figure 3. PIM with extra-functional properties.

5

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

It is important to remark that various stereotypes may be
applied to the same operation, if necessary, thus different
properties can be applied to the same element. Besides,
different priorities can be assigned to those properties which
are applied to the same element.

V. EXTRA-FUNCTIONAL PROPERTY PSMS

In this section we will show, first of all, the metamodels
proposed for specific models, secondly the main rules used for
transformations as well as the Eclipse environment
configuration will be explained, and the specific models
obtained for the case study will be discussed.

A. Proposed metamodels

We generate a specific model oriented to JAX-RPC
services to be compiled and deployed with Java Web Service
Developer Pack. In this regard the metamodel will be formed
by the service Java interface and its implementation plus the
necessary configuration files: web, config-interface and jaxrpc-
ri; these elements are shown in the left-top part of Figure 4
(properties of every element in the metamodel are not shown in
the figure due to space restrictions). The metamodel, as shown
in the said figure, is EMF-compliant instead of MOF-
compliant, since it allows the developer to edit the generated
EMF specific models to easily check and modify property
attributes when necessary. The different elements shown in this
part of the figure correspond to a simplified Java metamodel
plus the three configuration files, which contain the main
attributes necessary for their description.

As far as extra-functional properties are concerned, our
specific models will be based, first of all, on an aspect-oriented
approach to specify the property functionality, secondly on a
soap tags-based approach, to lay down the necessary elements
to be included or checked in the SOAP message header and,
finally, a policy-based one for property description. EMF-
compliant metamodels are depicted in Figures 5, 6 and 7 and
explained below:

• As shown in Figure 5, every aspectClass will have an
attribute target which indicates the method for the property
to be applied, a second attribute, actionType, which informs

of when it has to be applied; ack indicates whether the
property is well-known and, finally, an action may refer to
the corresponding functionality. Besides, all additional
particular property characteristics will be included as
attributes. The metamodels, though represented in the EMF
format, have been defined by using the KM3 syntax
provided by ATL. For the better comprehension of the
property-related metamodels, we have also included in this
paper the KM3 definition. In this sense, in the following
lines we can see the Aspect metamodel KM3 definition:

package ASPECT{

abstract class AspectElement {

 attribute name : String; }

abstract class ClassMember extends AspectElement{

 reference type : AspectClass oppositeOf

typedElements;

 reference owner : AspectClass oppositeOf

members; }

class Field extends ClassMember {

 attribute value: String; }

class AspectClass extends AspectElement{

 reference typedElements[*] : ClassMember

oppositeOf type;

 reference parameters[*] : FeatureParameter

oppositeOf type;

 reference "package" : Package oppositeOf

classes;

reference members[*] container : ClassMember

oppositeOf owner;

 attribute target : String;

 attribute ack: String;

 attribute actionType: String;

 attribute opt: String;

 attribute priority: String; }

class Method extends ClassMember {

 reference parameters[*] ordered container :

FeatureParameter oppositeOf method;}

class Package extends AspectElement {

 reference classes[*] container : AspectClass

oppositeOf "package"; }

class PrimitiveType extends AspectClass {}

class FeatureParameter extends AspectElement {

Figure 4. JAX-RPC metamodel.

Figure 5. Aspect-based metamodel.

6

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

 reference type : AspectClass oppositeOf

parameters;

 reference method : Method oppositeOf

parameters; }

}

• New tags are included in the SOAP Header to select –in the
client side– or check –service side– relevant properties,
when optional, or to deliver any other necessary
information, as shown in Figure 6. Every SoapTag element
will have an attribute target which instructs the method for
the property to be applied, a second attribute, value, to show
the tag to be included; finally, side indicates whether the tag
is to be included by the client or checked by the service. The
KM3 definition for the soap tag-based metamodel is
included below:

package SOAPTAG {

abstract class SoapTagElement {

attribute name : String; }

class SoapTagClass extends SoapTagElement {

 reference "package" : Package oppositeOf

classes;

 attribute target: String;

 attribute value: String;

 attribute side: String;

 attribute providerName: String; }

class Package extends SoapTagElement {

 reference classes[*] container : SoapTagClass

 oppositeOf "package"; }

class PrimitiveType extends SoapTagClass { }

}

• Figure 7 shows that a policy will be generated for each
property. The policy element will contain the policy name,
whether the property is optional, well-known or domain-
specific (ack); targetType indicates whether the policy is to
be applied to a portType or an operation and targetName

gives the name of the latter. For a further understanding, the
KM3 description is shown in the following lines:

package POLICY {

abstract class PolicyElement {

attribute name : String; }

class PolicyClass extends PolicyElement {

 reference "package" : Package oppositeOf

classes;

 attribute opt: String;

 attribute acronym: String;

 attribute targetType: String;

 attribute targetName: String;

 attribute policyReference: String;

 attribute interface: String;

 attribute service: String; }

class Package extends PolicyElement {

 reference classes[*] container : PolicyClass

oppositeOf "package"; }

class PrimitiveType extends PolicyClass { }

}

B. Transformation Rules

In this section we comment briefly on one of the rules in
the created transformation file in order to show how the syntax
of the ATL declarative language is. As shown in Figure 8 this
rule applies to those properties whose actionType is other than
none and which are applied to an operation. In the following
lines we describe the different output results obtained in the
transformation:

• The first output is an aspectClass; its name is formed by the
UML package name added to the operation name and
property one. Its package will be the one of the source
element. Its target will be defined by the source namespace,
its package name and its own name. The actiontype will be
one in the source stereotype and its ack value will also be
the one in the source stereotype.

• The second output –out2– is used for obtaining additional
fields from the particular property to be included in the
aspect; that is, its name, its owner and its type (the type will
be String by default).

• The third output provides the aspect with the action and its
corresponding parameters (out3).

• Out4 will provide us with the soaptag elements to be
checked to apply the property when optional. This is the
reason why type has always the value service in this rule.

• Finally, policy information is found in out5. This
information is composed of the policy name and package,
the target type and name, the ack value and if the policy is
optional or not.

The following step is to configure the Eclipse environment
in order to fulfil the transformation. To start the process we will
use the platform-independent model created in Section IV as
the source for the PIM-PSM transformation. For this purpose,
we have had to export the model to XMI (case tools have an

Figure 6. Soap tag-based metamodel.

Figure 7. Policy-based metamodel.

7

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

option to export to XMI). Once we have our PIM in XMI
format we generate the specific models. For this purpose, as
previously mentioned, we have used the Eclipse environment,
in which the ATL plugin is installed. In the Eclipse
environment we have created a project in which the XMI file is
included. In this project the UML, JAXRPPC, ASPECT,
POLICY and SOAPTAG metamodels are also present, together
with the predefined set of transformation rules.

In order to execute the transformation we had to configure
the Eclipse running environment: first of all the ATL file
containing transformation rules is selected (see top part of
Figure 9), then the source and target metamodels and source
model has to be indicated, as well as the location where we
desire the target generated model to be stored. An example is
shown in the lower part of Figure 9; in it we can see the
configuration for the UML2JAXRPC transformation, therefore
we only have one target metamodel. When the transformations
from UML to ASPECT, POLICY and SOAPTAG are
configured, the three specific metamodels and output models
have to be specified.

Thus, using Eclipse and the ATL plugin, we can perform
PIM to PSMs transformation from the case study, whose result
is shown in the next subsection.

C. Specific Models in our Case Study

Some of the specific models obtained from the case study
PIM transformation are shown in Figure 10, 11, 12 and 13,
where service and property models can be examined. Only
some branches of structure have been deployed to make the
illustration easier to understand. Specifically, we have chosen,
for instance, the detailedInfo property as a characteristic
example for the remainder of this paper.

Figure 10 shows the created web services with their
corresponding generated elements, namely service Java
interfaces and implementations and configuration files. For
instance, examOpportunity service package is deployed in the
figure, where we can see the Java interface
examOpportunityServiceIF with its corresponding methods and
parameters and its implementation. We can also see the
properties corresponding to the three configuration files.

Figures 11, 12 and 13 show the property models obtained,
detailedInfo property is explained as follows:

• An aspect,
examOpportunity_bringForwardExam_detailedInfo, will be
generated for detailedInfo in the service side. As we can see
in Figure 11 its attributes target will be the method
bringForwardExam, for which we are aware they have two
parameters –data and Email. For inspecting the remaining
attribute values in the EMF environment, we would have to
click on the aspect element so that the remaining values
would be shown in the Eclipse property window. If we did
so we would see that actionType has the value instead, and
ack false.

• Regarding the policy element, as represented in Figure 12,
its name will be detailedInfo_ao4ws. If we inspected the
property window we would see that its optional value is
true, for policyAttachment, targetType is operation and
targetName bringForwardExam.

• Due to its optional nature, we ought to include code whose
function is to check whether detailedInfo has been selected:
the corresponding SOAPTag target will be
bringForwardExam, its value detailedInfo and it will
operate as a side service – depicted in Figure 13.

Figure 8. Transformation rules.

rule TV2AO {

from e: UML!TaggedValue (

 (e.taggedValueType() = 'actionType') and

 (e.taggedValueDataValue()<>'none')and (

 e.modelElement.oclIsTypeOf(UML!Operation)

))

to out: ASPECT!AspectClass(

name<-e.modelElement.owner.namespace.name+'_'

 +e.modelElement.name+'_'+

 e.type.owner.name,

package <-e.modelElement.owner.namespace ,

target <-'public

'+e.modelElement.owner.namespace.name+ ' ' +

 e.modelElement.owner.name+'.'+

e.modelElement.name+'(..)',

actionType <- e.taggedValueDataValue(),

ack<-e.getAck()),

out2 :distinct ASPECT!Field foreach(d in

e.getFields())(

name <- d.type.name,

owner <- out,

type <- String),

out3 : ASPECT!Action (

name <- 'action',

owner <- out,

type<-e.modelElement.parameter-

>select(x|x.kind=#pdk_return)-

>asSequence()first().type,

parameters <- e.modelElement.getP()->

 collect (p |thisModule.P2F(p))),

out4 :distinct SOAPTAGS!SoapTag foreach(d in

e.optional='true')(

name <- d.type.name,

type <- String,

target <-

'public'+e.modelElement.owner.namespace.name+'

'+

 e.modelElement.owner.name +'.'+

e.modelElement.name+ '(..)',

value:<- true

side <-service,

package <-e.modelElement.owner.namespace),

out5: POLICIES!Policy(

name<-e.modelElement.owner.namespace.name+'_'

 +e.modelElement.name+'_'+

 e.type.owner.name,

package <-e.modelElement.owner.namespace,

targetType<-'Operation',

targetName <- 'public '+

e.modelElement.owner.namespace.name + '

'+ e.modelElement.owner.name +'.'+

e.modelElement.name+'(..)',

ack<-e.getAck(),

optional<-e.getOptional()) }

8

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

VI. CODE LAYER: EXTRA-FUNCTIONAL PROPERTY

GENERATED CODE

Once we have our models for the case study we may also
apply additional rules to generate code from them. For this
purpose we will make use of the platform-specific models
obtained in previous section as the source for the PSM-code
transformation. The developer may have modified any attribute
value should they be necessary in the eclipse environment.

In order to generate the code, we again use the Eclipse
environment. We have created a project in which the Ecore
files obtained in previous subsections are included. In this
project the UML, JAXRPPC, ASPECT, POLICY and
SOAPTAG metamodels are also present, together with the set
of transformation rules corresponding to this stage of
development.

In order to execute the transformation we have to configure
the running environment. First of all the ATL file invoking the
transformation rules is selected, then the source metamodels
and models are indicated, as well as the location of the libraries
with the complete set of transformation rules, as shown in
Figure 14. In this figure the ALL2STRING transformation is
chosen, in this sense we have four source metamodels,
JAXRPC, ASPECT, POLICY and SOAPTAG, and their
respective models. We have also included six separate libraries
with transformation rules: one library is included for each type
of metamodel, one more in order to maintain the code
generation for the compilation and deployment files separate
from the implementation and description code, and one more in
order to generate the full code of well-known properties.

From the service specific model, where additional attribute
values can be added or modified (e.g. deployment endpoint),

Figure 9. Eclipse configuration for model transformations.

9

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

the JAX-RPC service skeleton code for JWSDP compilation

and deployment is generated. In this sense, the Java interface
and implementation skeleton will be generated and complete
configuration files created. Figure 15 shows the Java interface
generated for examOpportunityService.

From the property models, transformation rules will
generate skeleton code for the three extra-functional property
model elements: Figure 15 shows code generated for
detailedInfo. However, in the case of well-known or user-
defined properties, a repository with specific code may be
maintained to generate additional code for the three of them. In
these cases, in which ack is true, it is possible to generate the
advice functionality and further policy content.

Regarding property implementation, Java code will be
generated to check if soap tags are included in the SOAP
message and AspectJ has been chosen for the implementation
of the property’s functionality, consequently properties
remaining well modularized and decoupled from implemented
applications, as demonstrated in [11]. An AspectJ aspect will
be generated for each aspect class in our model. AspectJ
pointcuts will be determined by target element’s execution.
Concerning the advice, depending on the actionType attribute
value, before, after or instead, the advice type will be before,
after or around, respectively; its name will be the one in the
action attribute. With regard to property description, it is
proposed to generate the WS-Policy documents for each
property, integrated with the aspect-oriented generated
properties as explained in [12]. In this sense, an xml file based
on the WS-Policy and WS-PolicyAttachment standards is
generated. The policy is attached to the stereotyped element in
the PIM, represented by the attribute targetName in the policy
specific model.

VII. RELATED WORK

As regards Web Service modeling proposals, such as [16]
and [4], it can be noted that most of the literature in this area
tries to find an appropriate way to model service compositions
with UML. The research presented by J. Bezivin et al. [4] is
worth a special mention; in it Web Service modeling is covered
in different levels, using Java and JWSDP implementations in
the end. It is also worth mentioning the paper from M. Smith et
al. [15], where a model-driven development is proposed for
grid applications based on the use of Web Services. Our work
differs from these in the sense that ours provides the possibility
of adding extra-functional properties to the services and is not
oriented to the service modeling itself; therefore it could be
considered as complementary to them. We can mention the
ASG (Adaptive Services Grid) project, which takes into
consideration some specific extra-functional properties in their
WSDL-centric model-driven development [14]; however,
services and properties have to be initially described by a
semantic language, and, being a WSDL-centric approach from
the very beginning, the possibilities of implementation for the
services described are limited.

Concerning proposals which focus on extra-functional
properties, we can especially mention two. To begin with,
WSMF from D. Fensel et al. [6], where extra-functional
properties are modeled as pre and post conditions in an
ontology description. Secondly, L. Baresi et al. extend WS-

Figure 11. Aspect-based PSM model.

Figure 12. Soap tag-based PSM model.

Figure 13. Policy-based PSM model.

Figure 10. Jax-rpc PSM model.

10

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

Policy by using a domain-independent assertion language in
order to embed monitoring directives into policies [2]. Both are
interesting proposals, however they do not follow the UML
standard, which we consider essential for integrating properties
in future service models.

Many policy-related contributions are emerging as policies
are a very popular issue nowadays. Among them we can
especially remark the contribution from T. Gleason et al.,
which provides very interesting discussion on policy
management [7]. On the other hand, plenty of literature can be
found on model-driven development for web service
compositions (for instance [5]); our proposal aims at providing
support for extra-functional properties in isolated or composed
services, and therefore could be complementary to the named
proposals.

VIII. DISCUSSION AND CONCLUSION

This paper has shown a case study in which a model-driven
approach to web service and their extra-functional properties
development has been followed. Several issues arise for
discussion:

• First of all, it is important to remind that the profiles
provided for PIM level are motivated and further discussed
in [10], as previously said. We wish to mention that both
profiles attempt to keep the modularization and
decouplessness of the different level elements in our model
from this initial stage of development.

• Secondly, four different specific metamodels are used at
PSM stage in order to maintain the service development
independent from the property one on the one hand (Jax-rpc
metamodel), and, on the other, in order to keep the
properties decoupled from the implementation (aspect
metamodel) and description (policy metamodel)

perspectives. Besides, more versatile services are provided
when the extra functionality is optional for the client, thus it
ought to be possible for properties to be selected somehow
in a transparent way for the service (soap tag metamodel).
This last case is especially suitable for domain specific
properties.

• Concerning the generated code, AspectJ has been used for
the implementation of the property functionality, thus
maintaining properties well modularized and decoupled
from the services implemented as demonstrated in [14],
where additional elements are also necessary for optional
property inclusion. With regard to description, it is proposed
to generate the WS-Policy [1] documents for each property,
which are integrated with the aspect-oriented generated
properties as explained in [15]. This allows properties to
remain decoupled not only at modeling stage, but also
during implementation. Besides, SOAP Tags will be used to
select optional properties and transfer the additional data
necessary due to the property inclusions in a transparent
way.

• Moreover, having service and property metamodels
separated, model-driven transformations remain simpler, but
still complementary.

• Besides, traceability is maintained from the very
independent model to code, so properties are easily
eliminated or added from any stage of development at any
level of abstraction, without damaging the remainder of the
system.

• Finally, regarding performance, it is important to mention
that no payload is included due to the aspect-oriented
implementation as it is a static approach.

Figure 14. Eclipse configuration for code generation.

11

International Journal On Advances in Internet Technology, vol 1 no 1, year 2008, http://www.iariajournals.org/internet_technology/

In regard with our present and future work, we are extending
our approach in order to cover Quality of Service monitoring.
Further information on this topic can be found in [8].

REFERENCES

[1] Bajaj, S., Box, D., Chappeli, D., et al.. Web Services Policy Framework

(WS-Policy), ftp://www6.software.ibm.com/
software/developer/library/ws-policy.pdf, September 2004

[2] Baresi, L. Guinea, S. Plebani, P. WS-Policy for Service Monitoring.
VLDB Workshop on Technologies for E-Services, Trondheim, Norway,
September 2005

[3] Beisiegel, M., Blohm, H., Booz, D.,et al. Service Component
Architecture. Building Systems using a Service Oriented Architecture.
http://download.boulder.ibm.com/ibmdl/ pub/software/dw/specs/ws-
sca/SCA_White_Paper1_09.pdf, November 2005

[4] Bézivin, J., Hammoudi, S., Lopes, D. et al. An Experiment in Mapping
Web Services to Implementation Platforms. N. R. I. o. Computers: 26,
2004

[5] Castro, V. Marcos, E. Lopez, M. A model driven method for service
composition modelling: a case study, Int. Journal in Web Engineering
and Technology, V. 2, I. 4, 2006.

[6] Fensel, D., Bussler, C. The Web Service Modeling Framework WSMF.
http://informatik.uibk.ac.at/users/c70385/ wese/wsmf.bis2002.pdf

[7] Gleason, T., Minder, K., Pavlik, G. Policy Management and Web
Services, Proc. Policy Management for the Web Workshop at IWWW
Conf., Chiba, Japan, May 2005.

[8] Ortiz G., Bordbar B. Model-driven Quality of Service for Web Services:
an Aspect-Oriented Approach. Proc. Int. Conf. on Web Services,
Beijing, China, September 2008.

[9] Ortiz G., Hernandez J. A Case Study on Integrating Extra-Functional
Properties in Web Service Model-Driven Development. Proceedings
International Conference on Internet and Web Applications and
Services, 2007. Digital Identifier: 10.1109/ICIW.2007.2

[10] Ortiz G., Hernández J., Toward UML Profiles for Web Services and
their Extra-Functional Properties, Proc. Int. Conf. on Web Services,
Chicago, EEUU, September 2006.

[11] Ortiz G., Hernández J., Clemente, P.J. How to Deal with Non-functional
Properties in Web Service Development, Proc. Int. Conf. on Web
Engineering, Sydney, Australia, July 2005

[12] Ortiz, G., Leymann, F. Combining WS-Policy and Aspect-Oriented
Programming. Proc. of the Int. Conference on Internet and Web
Applications and Services, Guadeloupe, French Caribbean, February
2006

[13] Papazoglou, M. Van Den Heuvel, W. Service-oriented design and
development methodology, International Journal in Web Engineering
and Technology, V.2, Issue 4, 2006.

[14] Roman, D et al. Requirements Analysis on the ASG Service
Specification Language. Deliverable D1.1-1, DERI Innsbruck, 2005.

[15] Smith, M., Friese, T. Freisbelen, B. Model Driven Development of
Service-Oriented Grid Applications. Proc. of the Int. Conference on
Internet and Web Applications and Services, Guadeloupe, French
Caribbean, February 2006

[16] Thöne, S. Depke, R, Engels, G.. Process-Oriented, Flexible Composition
of Web Services with UML. Int. Workshop on Conceptual Modeling
Approaches for e-business: A Web Service Perspective, Tampere,
Finland, 2002

[17] Weerawarana, S. Curbera, F. Leymann, F., et al. Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More, Ed. Prentice Hall, ISBN 0-13-
148874-0, March 2005

This work has been developed thanks to the support of MEC under contract TIN2005-09405-C02-02.

***************DETAILED INFO ASPECT**************

public aspect

pportunityExam_bringForwardExam_detailedInfo {
pointcut bringForwardExam_detailedInfoP

 (data: hashMap, Email:String): execution
 (public *.opportunityExam_bringForwardExam

 (HashMap, String)) && args(data, Email);

String around ((data: hashMap, Email:String):
bringForwardExam_detailedInfoP (data, Email){

 if ((((String)opportunityHandlerHandler.

 operDetailedInfo.get("operationName")).compareTo

 ("bringForwardExam") ==0) &&(((String)

 opportunityHandler. operdetailedInfo.get

 ("propertyName")).compareTo("detailedInfo")==0))

 { [...]

[functionality to be completed] [...]}

 else result=proceed(data, Email) […]}

***************** DETAILED INFO POLICY***********
<wsp:PolicyAttachment >

<wsp:AppliesTo>[…]
<wsp:Operation Name= bringForwardExam/>[…]

</wsp:AppliesTo>

<wsp:Policy name=detailedInfo_ao4ws [...] ">

<[to be completed]/>

</wsp:Policy></wsp:PolicyAttachment>

***************SERVICE SIDE SOAP CODE*************

if element.getElementName().getLocalName().

 equals ("operationName")){

 String operationName = element.getValue();

 operdDetailedInfo.put("opName",operationName);

 Iterator iter2= element.getAllAttributes() ;[…]

 if (name.getLocalName().equals("propertyName")){

 String propertyName=

Element.getAttributeValue(name);

 operDetailedInfo.put("propertyName",

propertyName); } }

**********EXAMOPPORTUNITY SERVICE INTERFACE*******

package examOpportunity;

public interface ExamOpportunityServiceIF extends

Remote {

 public ArrayList courseList (String
Qualification) throws RemoteException;

 public String bringForwardExam(HashMap data,
String EMail) throws RemoteException;

 public String cancelExam(HashMap data, String

Email) throws RemoteException;}

Figure 15. Generated Code.

