
A Privacy-Maintaining Framework for Context-Sensitive
Service Discovery Services

Colin Atkinson, Philipp Bostan, Thomas Butter, Wolfgang Effelsberg
Institute of Computer Science

University of Mannheim
Mannheim, Germany

{atkinson, bostan, butter}@uni-mannheim.de, effelsberg@pi4.informatik.uni-mannheim.de

Abstract—Despite the rapid growth in the number of mobile
devices connected to the internet via UMTS or wireless 802.11
hotspots the market for location-based services has yet to take
off as expected. Moreover, other kinds of context information
are still not routinely supported by mobile services and even
when they are, users are not aware of the services that are
available to them at a particular time and place. We believe
that the adoption of mobile services will be significantly
increased by context-sensitive service discovery services that
use context information to deliver precise, personalized search
results in a changing environment and reduce human-device
interaction. However, developing such applications is still a
major challenge for software developers. In this paper we
therefore present a framework for building context-sensitive
service discovery services for mobile clients that ensures the
privacy of the users’ context while offering valuable search
results.

Keywords: context-aware systems, service discovery, mobile
applications.

I. INTRODUCTION
Although an increasing number of mobile devices are

equipped with the ability to automatically sense and identify
their location, the use of location based services has so far
failed to reach the levels expected. To date, only a few
mobile services are receiving widespread use, such as push-
E-Mailing services and navigation services, and a so called
“killer application” has yet to emerge. Moreover, other
sensor technologies have rapidly evolved over the last few
years and now support the automatic sensing of other kinds
of context information on mobile devices. Together these
provide the basis for the next generation of services for
mobile devices and users – context-sensitive services that
deliver value tailored to a user’s context. However,
supporting commercial context-sensitive services that are
usable by a broad range of mobile users as well as services
that offer high revenue for service and telecommunication
providers is still a major challenge for developers.

In contrast to desktop applications, mobile applications
must cope with additional problems arising from the
influence of their environment. Key challenges include
mobility, resource limitations, heterogeneity, personalization
and stricter requirements on usability. In view of these
constraints, it is even more important to provide mobile users

with enhanced support to find suitable services effectively.
Humans should not have to engage in long-winded
interaction patterns in order to find services since mobile
devices provide only limited input capabilities. Users are
also usually unwilling to enter large search requests typical
of browser-oriented search engines on desktop computers.
Context-sensitive service discovery has the potential to
deliver significant added value since it considerably reduces
the level of interaction required from the user. Furthermore it
delivers personalized, precise search results that are tailored
to the user’s current situation.

To provide better support for context-sensitive service
discovery, the SALSA (Software Architectures for location-
specific Transactions in Mobile Commerce) project of the
Mobile Business Research Group at the University of
Mannheim has developed a generic service discovery
platform for service brokers and service providers. This
platform also offers a client framework that supports the
development of generic mobile client applications for use
with context-sensitive service discovery as well as the
dynamic integration and execution of discovered services.
An important strength of the SALSA approach is that it
considers the user’s privacy in the process of context-
sensitive service discovery. Especially when sensitive
context information like a device’s current location is
involved, many mobile users fear that context information
about them will be misused. As will be presented in this
paper, this issue is handled in the overall SALSA
architecture by a mechanism that ensures privacy during
service discovery.

The main goal of the SALSA project was to develop a
generic framework and a reference architecture to support
service discovery based on context information. The
implementation of our prototype was therefore inspired by
the following scenario. A mobile user is moving around in a
possibly unknown area (e.g. a foreign city), and would like
to use some of the real-world services that are available in
that vicinity. The user might also be interested in various
electronic services (e.g. a tourist guide) that are specialized
for a certain domain and fit his current situation. This is
mainly described by his context attributes that may include
such things as his current location, the current time, the
current weather, and his profile.

Since the number of potentially available services could
be very large in this scenario, the system should use this

15

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

context information to drive the discovery of suitable
services. Key-word based searches of the kind applied in
desktop browser-oriented search applications are not useful
in such a scenario because browsing a large result set is not
appropriate for users of small, tiny mobile devices with
limited input capabilities. Thus, the approach to context-
sensitive service discovery that we present in this paper
enhances a mobile user’s search request with a set of context
attributes that drive the service discovery process. The search
results that are returned upon a search request are tailored to
the user’s current situation, containing a choice of the most
relevant services in a personalized, ranked order. This
tremendously reduces the human-device interaction involved
in searching for suitable services and thus the user’s overall
level of effort.

The remainder of this paper is structured as follows.
Section II starts with a discussion of previous definitions of
the term of “context”. We analyze these definitions in detail
and afterwards introduce our view of context. Then, we
introduce a simple context model and the approach used to
represent context in our framework. This is followed by a
classification of services and our schema for service
descriptions required for the matching of context and
services. In Section III, the overall SALSA architecture is
discussed in more detail. We first introduce the basic
principles of a Service Discovery Service (SDS) that uses
context for the process of service discovery. Following that,
the server and the client framework are presented which both
offer systematic support for the development of applications
and services that support context-sensitive service discovery.
In Section IV, we describe the underlying context framework
that supports the handling of context on different layers.
These layers include context sensing, context resolution and
context aggregation and inference. A detailed consideration
of our approach for context-sensitive service discovery,
based on the matching of context and service descriptions, is
presented in Section V. We also introduce our approach for
transforming service descriptions as well as our approach for
context matching. In Section VI, we present past research
work that is related to context-sensitive service discovery
and frameworks. Finally, Section VII closes the paper with a
summary of our presented approach and technology.

II. CONTEXT AND SERVICE REPRESENTATION
In this section we introduce and discuss previous

definitions of context and present the definition that we use
in our approach. We then present a simple context model and
a representation format suitable for context processing and
matching within our framework. This is followed by the
presentation of various definitions related to services and a
schema that supports the matching of services against
context for the purpose of service discovery.

A. The Definition of Context
In past research, many definitions of the term “context”

for context-aware computing have been introduced. In [2],
Baldauf et al. present a survey on context-aware systems that
contains various definitions of the term “context”. Many of
the definitions published in early research work have been

redefined and extended over time. As the authors in [3] point
out, most of the past definitions are based on concrete
examples and categories, while other definitions use
paraphrases or synonyms. This also indicates the problems
involved in coming up with a clear definition of the notion of
context.

From a natural langrage point of view, the term is defined
in the Merriam Webster dictionary [4] as follows: “the parts
of a discourse that surround a word or passage and can
throw light on its meaning” and “the interrelated conditions
in which something exists or occurs: the Environment, the
Setting”. The first part of this definition can be interpreted to
mean that context is something implicit that can be used as
additional information to give something an enhanced
meaning. The second part of the definition has a more
general nature and defines synonyms for context. In the free
online dictionary of computing [5] context is defined as:
“That which surrounds, and gives meaning to, something
else”. Both of these definitions leave a great deal of room
for interpretation and cannot be transferred directly into a
form that allows context-aware systems to determine
whether or not different kinds of information can be regarded
as context.

 One of the first definitions was given by Schilit and
Theimer (initiators of context-aware computing with the
PARCTab project) in 1994 in [6]. They define software as
context-aware if it uses “location information to adapt
according to its location of use, the collection of nearby
people and objects, as well as changes to those objects over
time”. In later work Schilit et al. define the three important
aspects of context as: “Where you are, who you are with and
what resources are nearby”. They also enumerate a few
examples, like lightning, noise level and others.

In 1996, Brown defines context within the stick-e-
document project as: “Context can be a combination of
elements of the environment that the user’s computer knows
about” in [7] and also enumerates a few examples. This
definition leads especially to the question – how does the
computer know about the user’s environment? This is also
raised by Brown in [8] where he discusses the question of
whether context is automatically detected or user-delivered
information (implicit vs. explicit). In 1997, Ryan, Pascoe and
Morse introduced their definition of context in a mix of
paraphrases and examples as: “Context-awareness describes
the ability of the computer to sense and act upon information
about its environment, such as location, time, temperature
and user identity” [9]. This definition has been refined by
Pascoe into: “Context-awareness is the ability of a program
or device to sense various states of its environment and
itself”. It highlights the implicitness of context. In a later
definition he adds that context is: “the subset of physical and
conceptual states of interest to a particular entity”.

This concept of defining context in relation to some
entity was later elaborated by Dey et al in [10] leading to one
of the most widely used and often cited definitions: “Context
is any information that can be used to characterize the
situation of an entity. An entity is a person, place or object
that is considered relevant to the interaction between a user
and an application, including the user and applications

16

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

themselves”. Many recently introduced definitions are based
on the definition of Dey or extended versions of this
definition. Other recently introduced definitions try to offer a
more sophisticated view of context [3]. However, not only
do they introduce additional complexity, most of these
definitions fail to clarify exactly what kinds of information
are to be regarded as context.

In summary, we can observe that defining context by
enumerating examples is static and places limitations on
what can be regarded as context. This can be improved by
defining a taxonomy of context categories. However, none of
the enumeration-based approaches provide a deterministic
way of establishing whether or not a particular piece of
information is context. All definitions based on synonyms
are also vague since they leave a great deal of room for
interpretation. Furthermore, they shift the problem to the
detailed definition of the chosen synonym, most of which are
too generic. Too much freedom for interpreting the notion of
context essentially removes any semantics from the term
since everything can then be regarded as context. Using
more complex and formal definitions of context that
subdivide context into different categories do not solve the
basic problem either.

The basic problem with most of the definitions is that it is
very difficult, and sometimes impossible, to determine
whether or not a particular piece of information can be
regarded as context. In order to avoid this, in our project we
have develop a refined definition of context that conveys
useful semantics (i.e. that distinguishes between information
that is context and information that is not context). We think
that the most important distinction between context and
“pure” information is related to the question of whether
context is implicit or explicit information. In [11] Pascoe,
gives a definition of context that includes the notion that
context is “sensed” information which does not have to be
explicitly provided by the human. Lieberman et al. also
identify the distinction between implicit and explicit context
in [12] and Dey states that context may either be determined
implicitly (e.g. from a personalized device) or explicitly by
user-delivered data in a login dialogue. It is assumed that in
both cases the identity of the user is the same and thus both
should be regarded as context.

Considering the example of a weather service, a user
could explicitly enter the name of the city for which he wants
weather information or the city name could be implicitly
determined by sensors that detect the mobile device’s current
location. In the second case, it is clear that the implicitly
determined information (i.e. the city name) should be viewed
as context, but what about the first case where the name of a
city is explicitly input by the user? What if the city name
entered by the user does not correspond to his current
location? How can the weather service determine if the
entered city really belongs to the current context of the user
or not? In general, how can a system determine whether it
should treat a particular piece of information as context or
not? It is clear that the boundary between implicit and
explicit information is somehow fuzzy, but in fact implicitly
delivered information, and information derived from it, is
less prone to errors and thus more reliable and valuable for

applications and services. Furthermore, the decision about
whether information should be treated as context within the
boundaries of a certain system or application must be made
at design-time, since context is relative to the system. For the
SALSA project and the work presented in this paper we use
the following definition: “Context is any relevant
information that can be gathered implicitly or derived based
on implicitly gathered information within the boundaries of a
system or application and is used to determine the behavior
of a system or service”.

B. Context Representation in SALSA
The overall SALSA framework consists of a client and a

server framework, which both provide general support for
the development of context-sensitive mobile applications.
Both parts of the framework need to collect and process
context, but most of the context is collected on the mobile
client and enhanced through additional context processing in
the server framework.

For these purposes a common representation of context is
needed that is shared between the involved participants.
While many complex models for representing context have
been proposed [13,14], we have chosen a simple, flexible
representation that is easy for service providers to apply and
manage. In SALSA, a context set is represented by an XML
document that contains multiple context attributes. Each of
the contained context attributes is in principle an instance of
a certain context data type. To support run-time validation of
the context set and to provide a template for the definition of
context attributes, we have defined a few standard context
data types as an XML schema. Context data types are similar
to data types of typical programming languages (e.g. String,
Integer, etc.), but they are extended by a few specific data
types (e.g. PositionCircle represents geographical areas). An
example context set is shown below.

<Context>

 <PositionCircle name="SALSA.Position.GeoPosition">
 <Center>
 <Latitude>49.48739</Latitude>

 <Longitude>8.4705</Longitude>
 <Altitude>88</Altitude>
 <Center>
 </PositionCircle>

 <Time name="SALSA.Time.CurrentTime”>
 <Hours>12</Hours>
 <Minutes>32</Minutes>
 <Seconds>21</Seconds>
 </Time>

 <String name="SALSA.Time.Weekday">
 <Value>Saturday</Value>
 </String>

 <Integer name="SALSA.Time.FreeTime">
 <Value>30</Value>
 </Integer>

</Context>

This example represents a context set that contains four
different context attributes using different context data types
using our XML representation schema. It contains the
geographical position of a mobile user in GPS coordinates,
the time and weekday on which the search request was

17

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

issued, and the user’s available free time inferred from
personal data in the mobile client’s calendar.

A context attribute is characterized by a specification of
its data type, its name and its respective values. The name is
constructed using namespaces to provide a globally unique
identifier which is important for the context matching
process as will be explained in Section V. If an application or
service needs data types that are not supported in the
standard XML schema, the SALSA framework allows
arbitrary new context data types to be added in a simple way.
This can be achieved by the extension of the XML schema to
include new context data types as needed.

C. Service Types and Descriptions
The approach for context-sensitive service discovery

presented in this paper allows various different kinds of
services to be discovered. In general, we define a service as
anything that delivers some kind of value to someone or
something. The main distinction we make is between
electronic services and non-electronic services. We define
electronic services as services that deliver value to the
mobile user by electronic means in the form of information.
In the scenario introduced in Section I, examples of
electronic services are an electronic gastronomy guide, an
event-guide, a bargain hunter or a tourist guide. Electronic
services can be offered in various different forms, for
example as traditional web sites or as Web services using
SOAP and WSDL.

A non-electronic real-world (business) service is defined
as a service that does something to improve the state of a
user in a certain way. Examples related to our scenario are a
restaurant, a bar, a tourist site or a shop. The Venn diagram
in Figure 1 presents the relationship between these service
categories. It basically shows that Web services are
electronic services and electronic services are services in
general.

Figure 1. Service Taxonomy.

The following four types of services can be described and
discovered using our approach for context-sensitive service
discovery:

• real-world (business) services (non-electronic),
• Web services (electronic),
• web sites (electronic),
• SALSA services (electronic).
Real-world (business) services are represented as

services in our Venn diagram. The fourth kind of service –
the SALSA service – is specific to SALSA and consists of a
Web service (representing the service interface) and
optionally downloadable software components for dynamic

installation and execution in the SALSA client framework.
These may be graphical user interface components for
interaction with the service, business logic components or
security components for example.

To describe these different service types we have
developed a generic XML schema that consists of two
separate parts: a core part and a domain-specific part. Like
OWL-S [15], the core description part, as depicted in Figure
2, is divided into three categories - ServiceProfile,
ServiceProperties and the ServiceGrounding. We have
extended and tailored the profiles of OWL-S for the purpose
of context-sensitive service discovery. The domain-specific
part is used to extend service descriptions in cases where
additional attributes are needed to describe services of a
domain whose properties are not covered by the generic
schema. The description of gastronomy places, for example,
requires additional attributes to describe their special
characteristics. The separation of the core description of the
common properties from the domain-specific extensions
adds more flexibility and allows service providers to tailor
service descriptions to the service’s domain.

The ServiceProfile mainly contains general information
about the service and its provider. First there is a textual
description of the service along with its classification
according to one of the following schemas: UNSPSC
(United Nations Standard Products and Service Codes) [16],
the NAICS (North American Industry Classification System)
[17] or an arbitrary, self-defined categorization schema.
Furthermore, contact information about various key
individuals that have some responsibility related to the
service is included. The domain-specific part of service
descriptions can optionally be added to the ServiceProfile.
For example, a context-sensitive event guide service that
needs to add specific properties to event description can
include its own schema in the ServiceProfile.

The ServiceProperties section of our service description
schema introduces the properties of a service, including the
spatial and temporal availability of the service as well as
aspects like payment and security restrictions. While a real-
world (business) service clearly has spatial and temporal
restrictions, at first sight it is not so obvious that electronic
services may have such properties as well. However consider
an electronic context-sensitive shopping guide for the city of
Berlin. By providing temporal availability information about
the general opening times of stores and malls, the system is
able to avoid returning services that are only available during
the day in response to service requests issued at night when
stores are closed. Also spatially restricting this specialized
shopping guide to the Berlin area allows the system to avoid
returning this service in response to search requests issued in
a different city. While the value of temporal availability
attributes for non-electronic (business) services is self-
explanatory, spatial restriction information can be used for
example to define an area of service delivery. For example, a
pizza service might only deliver its service in a circular area
with a radius of 10 miles. Finally payment and security
restrictions are described in the ServiceProperties category.
These are mainly used to filter out services during the service
discovery process which do not fulfill requirements

18

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

concerned with payment methods and security restrictions
defined by the user or the service itself.

Finally, the ServiceGrounding, the last category of our
service description approach, delivers access information for
the different services depending on their type. A non-
electronic service, for example requires the description of its
physical location while an electronic service requires access
information like web or server addresses. The difference
between the four different types of services – Web Services,
Business Services, Websites and SALSA services – is
mainly reflected in their different groundings as indicated in
Figure 2. Each type of service requires its own description
schema for the service grounding. A Web service defines its
WSDL grounding, a web site defines its internet address and
a real-world (business) service defines its physical and
geographical location. While the first three types obviously
provide the necessary access information, the latter one,
SALSA Service, needs to be considered in more detail. This
type defines Web service port types for its service interface
and optionally multiple internet addresses for downloadable
software components to support dynamic reconfiguration of
the mobile client.

III. THE SALSA ARCHITECTURE
In this section, we introduce the architecture that was

developed within the SALSA project to support context-
sensitive service discovery. We first introduce the basic ideas
behind our Service Discovery Service (SDS) based on the
principles of service-oriented architectures. We then present
the architecture of the prototype we implemented to verify
the scenario introduced in Section I. This is followed by a
description of the SALSA server framework that supports
the implementation of context-sensitive SDSs. Finally, we
consider the SALSA client framework that offers a
simplified way to implement arbitrary context-sensitive
mobile client applications as well as client applications that
interact with Service Discovery Services.

A. Service Discovery Services
At the heart of our overall context-sensitive service

discovery approach is the concept of a Service Discovery
Service (SDS) that acts as a service broker in the SALSA
architecture. Following the principles of the famous SOA
triangle shown in Figure 3 an SDS has the role of the service
broker (registry). The SDS allows service providers to
register their services using a service description that follows
the schema introduced in Section II. A mobile client

corresponds to the service requestor and uses the SDS as a
service broker to find suitable services. The mobile user
finally uses or consumes a service, which is either an
electronic service or a real-world (business) service.

Figure 3. The SOA triangle.

In another paper [18], we have identified and analyzed
several configurations that could theoretically be applied for
the scenario that we introduced in Section I. For various
reasons (evaluated also in [18]) we adopted the User-
Managed Linear Configuration depicted in Figure 4 for our
prototype.

This configuration is characterized as “user-managed”
and “linear” because the user is involved in the selection of
lower-level service brokers that are also SDSs. The main
advantages of this configuration are enhanced privacy,
transparency in pricing of SDSs and much lower bandwidth
requirements since communication between the mobile client
and the SDSs is minimized. Also, the client application
consists of less complex software. The user-managed, linear
configuration presented in Figure 4 involves the User, a
Mobile Client, the Universal SDS (USDS), multiple lower-
levels SDSs and multiple real-world (business) service
providers.

According to the scenario introduced in Section I, the
mobile user is interested in immediately getting value from
real-world (business) services that are relevant to his current
context. Thus, the mobile client first sends an initial search
request to the Universal SDS (USDS) that acts as a first-level
service broker. This initial search request consists of implicit
context collected on the mobile client. The USDS uses our
context-sensitive service discovery technology to return a list
of service descriptions of lower-level SDSs. These are
specialized service brokers that have registered themselves
as service providers at the USDS. Examples of lower-level
SDSs are tourist guides, event guides and gastronomy

Figure 2. Service Description Core.

19

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

guides. The mobile user selects one of these specialized
service brokers from the returned list of suitable services
(e.g. based on costs or user rating, etc.) and the mobile client
then connects to the service broker. A new search request,
enhanced by new explicit parameters (e.g. domain-specific
parameters input via the service’s graphical user interface)
and the determined context set is then sent to the chosen
lower-level service broker (SDS) which returns a list of
suitable service providers. These service providers (e.g. a
restaurant, a bar, a café, etc.) in turn have registered their
services with the specialized second-level or lower-level
SDSs.

Figure 4. User-Managed Linear Configuration.

In the case where the lower-level broker is a gastronomy
guide, for example, the returned list consists of an ordered
set of service descriptions representing gastronomy places.
On the other hand, in the case of a bargain hunter service, a
list of descriptions of shops with special offers (e.g. coupons,
etc.) is returned. In all cases, the returned services are
ordered by the degree to which their properties matches the
context of the request, as will be explained in Section V.
Finally, the mobile user can choose a service provider from
the list and consume the service (e.g. by going to eat in a
restaurant, visiting a tourist site, using coupons in a shop,
etc.). In the case where the lower-level broker has registered
electronic services that are even lower-level brokers, this
interaction can be performed over multiple levels.

In Figure 5, we present an alternative configuration
which is called the Server-Managed Hierarchical
Configuration. Using this configuration, each SDS
aggregates search results from specialized lower-level SDSs
in a hierarchical way. This minimizes communication
between the mobile clients and SDSs, but it reduces the
flexibility in user-managed service selection and especially
leads to problems when payment is involved. In this
configuration the user has no control over which SDS is
contacted. Furthermore, as we have already discussed in
[18], multiple alternative configurations are possible. For
example, SDSs can be federated by location or category.
Moreover, mobile clients can aggregate search results from
lower-level specialized SDSs returned by the USDS, similar
to the presented configuration in Figure 5.

Figure 5. Server-Managed Hierarchical Configuration.

B. Server Framework
Our SDS technology takes the form of a generic server

framework that implements all the functionality needed to
realize services offering context-sensitive service discovery.
In this subsection we introduce the basic components of the
SALSA server framework. Since our architecture follows a
component-based design, all of the system components can
be exchanged with other supporting technologies as long as
the interfaces remain the same. For example, our service
registry realized using an XML database could be replaced
by a relational database. Figure 6, presents an overview of
the server framework and its various components.

In principle, each SDS consists of a Service Registry, a
Service Search Engine and multiple components that are
responsible for context processing. Service registration can
be supported in various ways. The service broker may
provide web-based forms on a web site portal to support
domain-specific service registration and the management of
the registered service description. Another possibility is the
automated transformation of existing service descriptions or
database schemas to the XML document representation and
automated registration via the API of the Service Registry. In
our prototype the registry is realized using the Natix XML
database [19] developed at the University of Mannheim.
Natix stores the XML-based service descriptions directly and
uses an optimized query mechanism based on the XPath
query language [20] to retrieve XML documents. Every
incoming search request, enhanced by a context set, is
handled first by the Service Search Engine component which
coordinates the following processing steps:

• pre-processing of the received context set,
• querying the registry for service descriptions with

explicitly defined query parameters,
• transformation of the service descriptions into a

contextual representation for matching,
• matching the context set against the transformed

service descriptions.

The pre-processing of the received context set is handled

by the Context Manager. It invokes the Context Resolution
Engine (CRE) to enhance context using external Context
Provisioning Services (CPS) and the Context Aggregation
component to infer new context attributes. The Service

20

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

Search Engine is responsible for querying the registry for
service descriptions using XPath queries based on the
explicitly defined search parameters. The explicitly defined
search parameters in a search request mostly relate to the
domain-specific extensions of service descriptions (e.g. a
user might specify “Italian” kitchen within a gastronomy
guide service).

The Service Transformation component is used to
transform pre-filtered service descriptions into a contextual
representation for context matching. Finally the Context
Matcher is used to match the pre-processed context set
against the transformed list of service descriptions so that the
Service Search Engine can return a list of suitable services to
the mobile client. In Section V we will consider this process
in more detail when we refer to context-sensitive service
discovery.

C. Client Framework
This subsection introduces the SALSA client framework

that provides the basic support for the development of
mobile client applications that are able to interact with SDSs
for context-sensitive service discovery. The client framework
has been developed in a generic and component-oriented
way in order to support the implementation of independent,
self-contained context-sensitive applications for other
purposes as well. An overview of the client framework and
its components (described in another paper in more detail
[21]) is presented in Figure 7. In the following paragraphs
we will briefly explain each of the framework’s components.

The Context Manager component is responsible for the
management of context sources and the updating and
delivery of context attributes. The Context Manager can be
subscribed to Context Sources that use either a “pull” or
“push” mechanism to obtain current context information. A
further responsibility of the Context Manager is the
administration of context attributes that can be declared by
the user as “public”, “private” or “blurred” as will be
explained in more detail in Section V. If search requests are
initiated by the mobile user, the Context Manager is
responsible for creating a context set that contains all
available context attributes and their respective values. This
context set is serialized in an XML representation and
embedded in every search request that is sent to a service

provider as an implicit parameter. Finally, the Context
Manager is used for local context matching when search
results are received by the client and need to be matched
with “private” context attributes as will be elaborated in
Section V.

The Component Manager of the client framework is
responsible for the life-cycle management of components
used to reconfigure the mobile client application. An
important capability of the SALSA framework is that service
providers can provide downloadable components to enhance
the client-side graphical user interfaces, business logic or
security services. Furthermore context sensors and sources
can also be added to a client application by the Component
Manager.

The generic Communication Framework implemented in
SALSA offers support for well-established Enterprise
Computing communication protocols such as SOAP or IIOP
from the Common Object Request Broker Architecture
(CORBA) [22]. It therefore offers an API on top of the
communication layer so that different communication
protocols can be supported. The current version implements
the SOAP protocol [23].

The Security Manager is responsible for ensuring secure
communication. It is therefore connected to the previously
introduced Communication Framework. Furthermore it
optionally offers anonymous communication using a TOR
(The Onion Router) anonymity network approach.

The GUI framework [24] implemented in the SALSA
framework is based on the XML User Interface Language
(XUL) and offers support for the implementation of
adaptable user interfaces to cope with several issues. The
XUL approach separates the presentation and application
logic whilst offering portability for different Java ME
platform configurations. This furthermore eases the porting
of graphical user interfaces to different client devices with
different configurations. The reconfiguration and adaptation
of user interfaces is especially useful if the current context
changes (e.g. the mobile user is driving at high speed in a car
and the content presentation is adapted accordingly). The
implemented GUI framework avoids extensive programming
effort for developers of mobile applications.

Figure 6. The SALSA Server-Framework.

21

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

Figure 7. The SALSA Client-Framework.

IV. CONTEXT HANDLING IN SALSA
Before we introduce our approach for context-sensitive

service discovery in Section V, in this section we describe
how context is handled in the SALSA framework. This
essentially involves different context and service description
post-processing steps which are needed to match the context
to transformed service descriptions. To this end, we first
introduce a layered model of context processing followed by
a detailed consideration of each layer.

A. Context Processing Layers
The basic goal of context processing is to enhance the

client-delivered context information to the highest possible
level to support higher precision service retrieval in the
process of context-sensitive service discovery. Figure 8
introduces the different context processing layers which are
in general supported by the framework. Each of these layers
is realized through different components and mechanisms.
We will first discuss the layers in an abstract way, and then
introduce details of the mechanisms and examples for each
layer in the following subsections.

In the first layer, which is called context sensing, raw
sensor data received from context sensors is delivered to the
context sources. These convert raw data into SALSA context
attributes using the specified context data types. Context
sources are the primary providers of context attributes for the
upper context layers. In the second layer, named context
resolution, a mechanism is applied which enhances the low-
level context into new, higher-level context attributes. These
new context attributes either represent a low-level context
attribute with another meaning or a new, independent context
attribute which has been derived from low-level context
attributes. The delivery of new context attributes in this layer
is realized by so called Context Provisioning Services (CPS)
which will be explained in part C of this section in more

detail. Finally, the third layer, called the context aggregation
and inference layer, introduces another kind of high-level
context that is generated from multiple context attributes
based on pre-defined rules.

Figure 8. Context Processing Layers

All context attributes together build the context set that is
used in the process of context-sensitive service discovery. As
indicated in Figure 8, context attributes need not necessarily
be processed to higher-level context and can be placed
directly from the first or second layer into the final context
set used for subsequent context matching. In SALSA, both
the client and the server framework support context
processing. While the server framework supports all layers
presented in Figure 8, only the first two layers are supported
in the client framework due to the restricted resources
available. The second layer, context resolution, is only
supported in a limited way in the client framework for the
same reason.

B. Context Sensing
The essential ingredients for high precision service

retrieval, based on context-sensitive service discovery, are
context sensors and context sources which deliver the initial
context attributes. Context processing in general starts on the
mobile client with the delivery of data detected by context
sensors in the form of raw sensor data (e.g. the current
location in GPS coordinates) or components on the mobile
client that act as context sources and deliver implicit context
attributes like the current time or the user’s free time.
Theoretically, different context sensors and sources can be
integrated into the Context Manager in the client as well as
in the server framework, but in practice they mostly reside

22

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

on the mobile client. Context sources and sensors work
together either in a push or pull model. Context sources are
registered at the local Context Manager which automatically
pulls context attributes from registered context sources when
a search request is issued by the mobile user. Alternatively,
the context sources push the context attributes based on a
local event or at regular time intervals.

To verify our approach and build our first prototype, we
implemented a few context sensors and context sources
which deliver different kinds of context attributes collected
on mobile clients. The main focus was on the development
of high-precision positioning technologies. This was realized
using a sensor fusion approach that supports algorithms for
indoor and outdoor positioning based on GPS, wireless
network and Bluetooth technologies. As well as the
positioning of mobile users, we have developed algorithms
that use a digital compass to determine a mobile device’s
alignment [25]. Using the context sensors for positioning we
have implemented several context sources that offer context
attributes like the geographical position, alignment or speed,
which is estimated using collected positioning data over
time. Other context sources implemented for our prototype
deliver context attributes like the mobile devices screen
resolution, color depth, network speed, connection type,
current time, personal free time and other information
derived from user profiles.

C. Context Resolution
Moving to the next layer in our context processing

architecture, the low-level context delivered by primary
context sources is resolved to create additional context
attributes for the final context set. As explained previously
and shown in Figure 9, Context Provisioning Services (CPS)
are the services that deliver this additional capability. In
principle, there are two different kinds of CPSs available.
The simple form of CPS acts only locally and is mostly
based on simple resolution algorithms that, for example,
resolve the current date into a week day or the current time to
the time of day. The other kind is more complex and uses
external services to resolve context attributes - for example,
turning the current location from GPS coordinates into a city
name (e.g. using an external GeoService) or resolving a city
name into the weather information for that city. Both of these
examples use external services to obtain the required context
attributes. Due to their complexity and the fact that they use
external services that require network and power resources
which are expensive in mobile networks, complex CPSs are
generally only used within the SALSA server framework. In
contrast, simple CPSs may be used in mobile clients as well.

Once the context manager of a mobile client has pulled
all context attributes from the registered context sources
when a search request is initiated, the resulting context set is
processed in the context resolution layer by the Context
Resolution Engine. This processing step is executed on the
client framework with a simplified engine and on the server
framework with full functionality using the implicit context
set in an incoming search request. The architecture of the
Context Resolution Engine is based on SOA principles as
presented in Figure 9.

CPSs are registered at the CPS registry that stores all
descriptions. The Context Resolution Engine (CRE) receives
a context set and uses the CPS registry to search for suitable
CPSs. It then invokes these directly to resolve the context
attributes that are contained in the context set. The
description of a CPS contains a unique service ID, a name
and a link to a WSDL description. All CPSs on the server
framework are implemented as Web services while those on
the client framework are implemented as simple classes. The
most important part of the description provides information
about the context data type and attributes that the service is
able to resolve and the data type and attributes it finally
delivers as a result.

Figure 9. Context Resolution

The API of the CRE in general offers three possible
usage modes. In the first mode, a request for context
resolution specifies the context attribute of the context set
that should be resolved and the CRE tries to find a suitable
CPS in the registry that is able to do this resolution. In the
second mode, a request specifies the context attribute that
should be delivered to the CRE. The CRE then looks in the
CPS registry for CPSs that can resolve to this context
attribute. With the required input specified in the CPS
description, the CRE checks if the provided context set
contains the required context input. In the third mode, which
is the most prevalent mode, the resolution request specifies
the context set as a parameter. The CRE then takes the
context set and goes through each context attribute, checking
whether there is a CPS in the registry that can resolve a
context attribute to new context. If this is the case the CRE
sends a call to the CPS, receives the resolved context and
adds it to the beginning of the context set description. When
all context attributes that are contained in the context set
have been processed, the described procedure starts again
going through all context attributes of the list since it could
be possible to further resolve one of the newly added context
attributes. This recursive process continues until the CRE
finds no more context attributes to add. Finally all possible
resolutions of the client-delivered context set have been
applied and the CRE finally returns the enhanced context set
to the Context Manager for further processing within the
SALSA framework.

23

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

D. Context Aggregation and Inference
The last step in context processing takes place in the third

layer named context aggregation and inference. This is
appropriate for applications that need enhanced context
attributes. These mechanisms mostly map the meaning of
multiple context attributes describing a situation into a new
context attribute based on certain assumptions and
conditions. We use a simple but practical approach for
formalizing these in our framework based on a rule engine.
The advantages of a rule engine are efficient evaluation of
rules and support for the dynamic definition, refinement and
extension of rules without the need to re-compile or re-install
the service implementation. Since the implementation is still
in a rudimentary form we will give only a simple example in
this paper.

 if (temperature > 25.9 AND skyconditions == sunny){

weatherConditions=goodWeather
 } else {

weatherConditions=badWeather
 }

The above rule is represented in a common programming
language style and needs to be adapted to the rule engine’s
language. It takes two weather attributes and aggregates
them to infer a new context attribute representing the
weather condition at a higher-level.

V. CONTEXT MATCHING
The final step in our approach for context-sensitive

service discovery is the matching of the pre-processed
context set against services represented by their service
descriptions. In this section we first present the basic ideas
behind our context matching approach, and then we provide
a description of the service transformation mechanism and
the intrinsic step of context matching.

A. Service Discovery
After the mobile client has issued a search request and

the pre-processing of the initial context set has been finished,
the next step in our context-sensitive service discovery
process is the matching of context information with potential
service descriptions. This is handled by a two-step matching
process. As previously mentioned in this paper, a search
request in SALSA always consists of explicit and implicit
parameters. In the first step of the matching process, the
explicit parameters are used in an XPath query to pre-filter
service descriptions that contain the specified properties. The
second step uses the implicitly delivered context set and the
pre-filtered service descriptions in a process that we refer to
as context matching in the SALSA framework.

Our analysis of user requirements indicated that one of
the main concerns of users related to mobile applications is
privacy [26]. Therefore, we developed a context matching
approach that provides an option to maintain the privacy of
the user’s context. As introduced in Section III, in the
SALSA framework the mobile user is able to label context
attributes as “private“, so that they will not be sent to the
server in search requests. The user can also set certain
context attributes to be “blurred”. For example, the

geographical position may be set to be artificially blurred to
make it less accurate. Not all context attributes can be
blurred, such as the languages spoken by a mobile user as
inferred from the user profile. The standard option for
context attributes is “public” where the context attribute is
submitted in a search request with exactly the value that has
been determined.

Figure 10. Service Transformation

Our approach to context matching is based on a
transformation mechanism as illustrated in Figure 10. It uses
rules to transform each service description that matched in
the first step into a contextual representation. This context set
represents the optimal context that is most suitable for the
service under consideration. After the transformation, the
context set is embedded within the service description.

Given the requirements for privacy, the main advantage
of this approach is that context attributes that have been
configured as private can still be used locally with the same
context matching approach on the mobile client. This
filtering and personalization is performed using the list of
service descriptions returned by the SDS. Since each
description contains its own transformed context set, the
Context Manager in the client framework is able to apply
context matching locally. Another major advantage of this
approach is its flexibility with respect to rule definition,
where rules for transformation can be added, changed and
deleted dynamically at anytime and in an easy manner.
Using this mechanism, the privacy of context attributes can
be preserved since the service provider who receives the
search request is not aware of the exact context of the mobile
user, but is still able to deliver valuable search results [26].

B. Transformation of Service Descriptios
In this subsection we present our approach to service

transformation. Before going into detail, we start by
illustrating our approach using the previously introduced
context-sensitive gastronomy guide as an example service.
The gastronomy guide is a specialized service that allows
gastronomy places to register their real-world (business)
service with information that is mapped to a description
defined and supplied by the gastronomy guide service
provider. This description schema is based on the core
service schema presented previously in Section II and a
domain-specific extension to describe the special properties
of gastronomy places.

For example, in a service description, the domain specific
fact “outdoorSeating” indicates that a gastronomy place

24

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

offers seating outdoors. This fact may be captured by the
following rule (presented in a simplified notation).

 if (outdoorSeating) {

weatherconditions=goodWeather
 }

The above rule is applied for each service description that

is returned after matching the explicitly defined properties of
the mobile user’s search request with the service descriptions
in the gastronomy guide SDS registry. If the fact
“outdoorSeating” is contained in the service description, the
rule is applied and a context attribute “weatherConditions” is
set to the defined value.

As a second example, we may define a rule based on the
type of gastronomy place.

if (FastFoodRestaurant) {

freeTimeMin=20
 }
else if (Restaurant) {
 freeTimeMin=60
}
else if (Café) {
 freeTimeMin=30 {
}

Depending on the type, we set the context attribute

“freetime” to a certain value depending on the previous rule
specification (e.g. a fast food restaurant or a café requires
less free time than a regular restaurant). Applying all
specified rules to the service descriptions, the transformed
facts which are represented as context attributes are added to
the context set that is embedded into the service description
and used for later context matching.

In the server framework we realized this approach using
Drools [27] which is a Java-based rule engine that supports
the description of rules using XML. Following the principles
of Drools, or of rule engines in general, each rule contains a
condition (left hand side) and a conclusion (right hand side).
When a certain condition is true (e.g. a certain fact has been
discovered in the service description), the rule is triggered
and the associated action is applied. Drools allows the
conditions and conclusions within the left and right hand
parts of a rule to be defined in two ways, either using Java
statements or XSL style sheets.

We have identified two different kinds of rules, static
rules and dynamic rules, which can be applied in our
transformation approach. The static rules are triggered by
facts that are elements of the core service description. We
have therefore defined a set of standard rules and routines for
the transformation process using the Drools Java style, which
could also be replaced at any time by the XSLT templates
style. Dynamic rules, on the other hand, are triggered by
facts contained in the domain-specific extensions of service
descriptions as introduced in the examples of this section.
For this kind of rule we have defined standard
transformations to pre-defined context data types. Thus,
service providers who want to implement context-sensitive
services using the SALSA framework only needs to map
facts to a standard transformation with a condition and a
conclusion. These rules are called dynamic rules, since they
can be changed, refined and deleted anytime.

The presented transformation approach applies the same
context representation used in context processing using the
same data types and namespaces. This is a prerequisite for
the context matching approach that will be presented in the
next subsection.

C. Context Matching
The final task in our context-sensitive service discovery

approach is the matching of the client-delivered and pre-
processed context set to the server-side transformed service
descriptions, each containing its optimal context set. The
process of context matching iterates over all pre-filtered
service descriptions, extracts their optimal context set and
iterates over each contained context attribute. For each
context attribute, the data type and the namespace are
extracted and the context matcher iterates over the client-
delivered context set and searches for context attributes from
both descriptions that have the same data type and
namespace. For each equal context attribute the context
matcher applies a predefined matching routine that is defined
for each context data type.

The result of this context matching process is a list of
services ordered and ranked based on the degree to which
context attributes match. To transform service descriptions
into the contextual representation, the service provider may
choose which context attributes should be mandatory and
which should be optional for matching. If a context attribute
is marked as optional, then the matching degree is calculated
based on the matching of optional attributes. If a context
attribute is marked as mandatory, then one non-matching
mandatory context attribute may lead to a matching degree
of zero. Note that context attributes are only matched if they
appear in both kinds of descriptions. If a mandatory context
attribute does not appear in the client-delivered context set it
is not evaluated in the matching process, since it might
appear locally as a context attribute to be matched locally on
the client. Further mechanisms can be applied at the client
side using personalization based on preferences and
previously analyzed user behavior to further refine the choice
of services [26].

In Section II, we mentioned that our context model and
schema may be extended with new context data types if
context attributes are required that cannot be represented by
an already available context data type. If a new context data
type is added to the schema, a new context matching routine
needs to be implemented to support context matching for the
respective type.

VI. RELATED WORK
Since Schilit et al. initiated research on context-aware

computing in 1993 starting with their PARCTab project [28]
various other researchers have also focused on the subject of
context-sensitive service discovery. However, in the early
days, many research projects focused exclusively on context-
sensitive service discovery related to hardware, like near-by
printers or other low-level services. In the following we give
a general overview of work related to service discovery
using context and to work that relates to context frameworks.

25

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

The CB-Sec project [29] introduces an architecture that
focuses on the discovery of Web services using context. To
this end, a service description schema was developed that
includes constraints, requirements and context functions that
are used by a brokering agent to evaluate, filter and rank
services that best fit the conditions represented by a specific
context. Context is collected by the context gatherer that
receives contextual information from software and hardware
sensors and is stored over time in the context data base that is
available to the whole system. In the CB-Sec project, the
context matching process evaluates for each specified
context functions if a service is suitable for the requestor at
the time of the request. Our approach allows a similar
specification of the service’s optimal context, but with the
advantage of additional context matching on the mobile
client under consideration of context privacy.

In [30], Kuck and Reichartz present an approach for the
context-sensitive discovery of Web services based on the
matching of the user’s context and enhanced service
descriptions that are stored in a UDDI repository with
additional information. Their service descriptions contain
information inferred from the syntactical and textual contents
of WSDL descriptions as well as feedback information, e.g.
the context at the time of service recommendation. Unlike
our work, however, this work is restricted to the context-
sensitive service discovery of Web services.

In the COSS approach [31], ontologies are used for the
description of context attributes and services. Service
advertisements and requests are represented as documents,
and service requests include attributes defined by the user.
An attribute like “nearby” is enhanced by rules that are
evaluated during the matching process, for example the
user’s location is within a certain distance to the service’s
location. In other work of this research group, the WASP
project, a service platform for mobile context-aware
applications [32] was developed. In both approaches the
rules are defined as actions that are executed if the criterion
for a certain context attribute becomes true. The framework
is intended more to support context-sensitive applications in
general, while our approach directly targets context-sensitive
service discovery.

In [33], Korpipää presents the Context Management
Framework (CMF) that was created especially for context-
sensitive mobile applications. The context manager is the
main component of the CMF’s. Applications can use the
context manager to register for context sources to be able to
receive and update their values. The context recognition
services can infer new context values from low-level
context-sources, similar to our approach of context
resolution. The context model applied in CMF is based on
RDF. Unlike our approach, however, the CMF offers no
mechanisms to ensure the privacy of context information.

Other work, like the NEXUS project [34], the SOCAM
architecture [35] or the DAIDALOS project [36] also present
and implement architectures for a context framework. Each
of these introduces a different model and representation
format for context as well as different components and
processing. Compared to the architecture in this paper, they
offer a more generic approach for the development of

context-sensitive applications, while our approach focuses on
the context-sensitive discovery of services. Apart from the
DAIDALOS project, none of these consider the privacy of
context information as we do.

VII. CONCLUSIONS
In this paper we have introduced a generic, component-

based framework that enables the development of (a)
services that support context-sensitive service discovery, and
(b) context-aware mobile applications that make use of these
services. To build the SALSA framework, we introduced a
simple model and representation format for context as well
as an extensible and flexible description schema for services
that have various advantages. Through the clear separation of
context processing layers, we have defined a context
processing architecture that can be embedded within mobile
clients and within services as needed. The client framework
supports the handling of context sources and the
management of context attributes using a user-friendly
mechanism to configure context attributes with different
permissions as introduced in Section III. The client
framework also introduces a flexible architecture that offers
the dynamic reconfiguration and integration of the provider’s
service components for execution at run-time.

Within the server framework we have introduced several
mechanisms for context handling. The step of context
resolution allows service providers to obtain as much context
information as possible without the need for complex
implementation work. Our novel approach for context
matching, based on the transformation of service descriptions
into a contextual representation, is a key advantage of our
approach. It (a) offers the possibility of dynamic rule
declaration for service providers, and (b) allows context
matching on the mobile client using “private” context
attributes and the embedded context representation within
service descriptions. Using this approach the privacy of the
user’s context can be retained.

By implementing the presented prototype scenario with
example services (context-sensitive gastronomy guide, event
guide, tourist guide and a bargain hunter), we have shown
that the approach can be applied and extended in a simple
way. Arbitrary context data types can be defined as needed,
the service description schema can be extended within the
domain-specific part and different kinds of applications that
apply context-sensitive service discovery can be created.
Furthermore, our prototype implementation for mobile
commerce applications shows that services can easily be
made context-sensitive to provide high precision and
personalized service retrieval. This also minimizes the
mobile user’s effort in service discovery and opens new
revenue chains for service as well as for the context
providers.

In future work, we are planning to extend the SALSA
framework to support a more complex model of context that
better supports the inference and aggregation layer in context
handling. We also plan to implement example applications
for mobile business to show that our approach can be applied
in other application fields in a similar way.

26

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

ACKNOWLEDGMENT
This work was supported by a grant from the

Landesstiftung Baden-Wuerttemberg.

REFERENCES
[1] C. Atkinson, P. Bostan, and T. Butter, “Context-Sensitive Service

Discovery for Mobile Commerce Applications,” in Proc. of the 4th
International Conference on Wireless and Mobile Communications
(ICWMC 08), IEEE Computer Society, Washington, DC, 2008, pp.
352-357, doi= 10.1109/ICWMC.2008.33.

[2] M. Baldauf, S. Dustdar and F. Rosenberg, “A survey on context-
aware systems,” Int. Journal of Ad Hoc and Ubiquitous Computing,
vol. 2 (4), 2007, pp.263–277, doi=10.1504/IJAHUC.2007.014070.

[3] A. Zimmermann, A. Lorenz, and R. Oppermann, “An Operational
Definition of Context,” in Proc. of the conference CONTEXT 2007,
LNAI4635, Springer-Verlag Berlin Heidelberg, August 2007, pp.
558-571, doi=10.1007/978-3-540-74255-5_42.

[4] The Merriam-Webster Free Online Dictionary, http://www.merriam-
webster.com/dictionary/context

[5] The Free On-line Dictionary of Computing, http://foldoc.org/context
[6] B. Schilit, N. Adams, and R. Want, "Context-aware computing

applications," in Proc. of the Workshop on Mobile Computing
Systems and Applications, 1994, pp. 85-90, doi=10.1.1.37.9380.

[7] P. J. Brown, "The Stick-e Document: a Framework for Creating
Context-aware Applications," in Special Issue: Proc. of the Sixth
International Conference on Electronic Publishing, Document
Manipulation and Typography, Palo Alto, A. Brown, A.
Brüggemenn-Klein, and A. Feng, Eds., vol. 8, no. 2&3, John Wiley
and Sons, June 1996, pp. 259-272.

[8] P. J. Brown, J. D. Bovey, and X. Chen, "Context-aware Applications:
from the Laboratory to the Marketplace," Personal Communications,
IEEE [see also IEEE Wireless Communications], vol. 4, no. 5, 1997,
pp. 58-64.

[9] N. Ryan, J. Pascoe, and D. Morse, “Enhanced Reality Fieldwork: The
Context-aware Archaeological Assistant,” Computer Applications in
Archaeology. Oxford, 1997.

[10] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P.
Steggles, "Towards a Better Understanding of Context and Context-
awareness," in Proc. of the 1st International symposium on Handheld
and Ubiquitous Computing (HUC 99), London, UK: Springer-Verlag,
1999, pp. 304-307.

[11] J. Pascoe, “Adding Generic Contextual Capabilities to Wearable
Computers,” in Proc. of 2nd International Symposium on Wearable
Computers, October 1998, pp. 92-99.

[12] H. Lieberman and T. Selker, "Out of context: Computer systems that
adapt to, and learn from, context," IBM Systems Journal, vol. 39,
2000, pp. 617-632.

[13] T. Strang and C. L. Popien, "A Context Modeling Survey," in
Workshop on Advanced Context Modelling, Reasoning and
Management, UbiComp 2004 - The Sixth International Conference
on Ubiquitous Computing, September 2004, doi=10.1.1.2.2060.

[14] P. Dockhorn Costa, G. Guizzardi, J.P.A. Almeida, L. Ferreira Pires,
M. van Sinderen, “Situations in Conceptual Modeling of Context,” in
Proc. of the 2nd International Workshop on Vocabularies, Ontologies
and Rules for The Enterprise (VORTE’06), Hong Kong, 2006,
doi=10.1109/EDOCW.2006.62.

[15] The OWL Service Coalition, “OWL-S: Semantic Markup for Web
Services,” http://www.daml.org/services/owl-s/1.1/overview, 2004.

[16] UNSPSC – United Nations Standard Products and Service Codes,
http://www.unspsc.org/download.aspx.

[17] NAICS – North American Industry Classification Standard,
http://www.census.gov/epcd/www/naics.html.

[18] M. Aleksy, C. Atkinson, P. Bostan, T. Butter and M. Schader,
“Interaction Styles for Service Discovery in Mobile Business
Applications,” in Proc. of the 17th International Workshop on
Database and Expert Systems Applications (DEXA), IEEE Computer
Society, 2006, pp. 60–65. doi= 10.1109/DEXA.2006.75.

[19] Natix – A native database system for XML, http://pi3.informatik.uni-
mannheim.de/~moer/natix.html.

[20] M. Brantner, S. Helmer, C. Kanne, G. Moerkotte, “Full-Fledged
Algebraic XPath Processing in Natix,” in Proc. of the 21st
International Conference on Data Engineering (ICDE), IEEE
Computer Society, Washington, DC, 2005, pp. 705-716,
doi=10.1109/ICDE.2005.69.

[21] M. Aleksy, T. Butter, and M. Schader, “Architecture for the
development of context-sensitive mobile applications” in Int. Journal
of Mobile Information Systems, vol. 4,no.2 , April 2008, pp. 105-117.

[22] Object Management Group, “The Common Object Request Broker:
Architecture and Specification. Version 3.0.3,” OMG Technical
Document Number formal/04-03-01, 2004, ftp://ftp.omg.org/pub/
docs/formal/04-03-01.pdf.

[23] M. Gudgin, M. Hadley, N. Mendelsohn, J.J. Moreau, H.F. Nielsen, A.
Karmarkar and Y. Lafon, “W3C SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition),” W3C Recommendation,
April 2007, http://www.w3.org/TR/soap12-part1/.

[24] T. Butter, M. Aleksy, P. Bostan, M. Schader, “Context-aware User
Interface Framework for Mobile Applications,” in Proc. of the 27th
international Conference on Distributed Computing Systems
Workshops (ICDCSW), IEEE Computer Society, Washington, DC, p.
39, 2007, doi=10.1109/ICDCSW.2007.31.

[25] T. King, S. Kopf, T. Haenselmann, C. Lubberger, and W. Effelsberg,
"Compass: A Probabilistic Indoor Positioning System Based on
802.11 and Digital Compasses," in Proceedings of the First ACM
International Workshop on Wireless Network Testbeds, Experimental
evaluation and Characterization (WiNTECH), Los Angeles, CA,
USA, September 2006.

[26] T. Butter, S. Deibert, and F. Rothlauf, "Using Private and Public
Context - An Approach for Mobile Discovery and Search Services,"
In: T. Kirste, B. König-Ries, K. Pousttchi, and K. Turowski (eds):
Mobile Informationssysteme - Potentiale, Hindernisse, Einsatz, pp.
144-155, Bonner Köllen Verlag, Bonn, 2006.

[27] Drools – Rete OO, Java Rule Engine,
http://jboss.org/drools/documentation.html.

[28] B.N. Schilit, M.M. Theimer, and B.B. Welch, “Customizing Mobile
Applications,” in Proceedings of USENIX Symposium on Mobile &
Location-Independent Computing, USENIX Association, August
1993, pp 129–138.

[29] S. K. Mostefaoui and B. Hirsbrunner, “Context Aware Service
Provisioning,” in Proc. of the IEEE/ACS International Conference on
Pervasive Services (ICPS), IEEE Computer Society, Washington,
DC, 2004, pp. 71-80, doi=10.1109/ICPS.2004.13.

[30] J. Kuck and F. Reichartz, “A collaborative and feature-based
approach to Context-Sensitive Service Discovery,” in Proc. of 5th
WWW Workshop on Emerging Applications for Wireless and Mobile
Access (MobEA), 2007.

[31] T.H.F Broens, S.V Pokraev, S.V. M. van Sinderen, J. Koolwaaij, and
P. Dockhorn Costa, “Context-aware, Ontology-based, Service
Discovery,” in: European Symposium on Ambient Intelligence
(EUSAI), Lecture Notes in Computer Science 3295, Springer, 2004,
pp. 72-83.

[32] S. Pokraev et al., “Service Platform for Rapid Development and
Deployment of Context-Aware, Mobile Applications,” in Proc. of the
IEEE International Conference on Web Services (ICWS), IEEE
Computer Society, Washington, DC, 2005, pp. 639-646,
doi=10.1109/ICWS.2005.106.

[33] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E. Malm,
“Managing Context Information in Mobile Devices,” in IEEE
Pervasive Computing, vol. 2, no. 3, 2003, pp. 42-51.

27

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

[34] F. Dürr, N. Hönle, D. Nicklas, C. Becker, K. Rothermel, "Nexus - A
Platform for Context-aware Applications,” in Proc of the GI-
Fachgespräch "Ortsbezogene Dienste", 2004.

[35] T. Gu, H.Wang, H. K. Pung, and D. Q. Zhang, “An Ontology-based
Context Model in Intelligent Environments,” in Proc. of
Communication Networks and Distributed Systems Modeling and
Simulation Conference, 2004, pp. 270-275.

[36] M. Strimpakou, I. Roussaki, and M. E. Anagnostou, “A Context
Ontology for Pervasive Service Provision,” in Proc. of International
Conference on Advanced Information Networking and Applications
(AINA), 2006, pp. 775–779, doi=10.1109/AINA.2006.15.

28

International Journal On Advances in Internet Technology, vol 2 no 1, year 2009, http://www.iariajournals.org/internet_technology/

