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Abstract— This paper aims to introduce the hard opti-
mization problem of determining tree-based explicit multicast
routes with minimum cost. Explicit multicast routing has been
proposed as a technique to solve the problem of multicast
scalability in IP-based networks. Tree-based explicit routing
is a special routing technique, in which the multicast tree is
computed at the source and encoded explicitly in the datagram
headers. These enlarged headers may result in significant
overhead traffic, so the cost minimization of this kind of
routing is a relevant topic. In this particular multicast routing,
the well known minimum cost spanning trees (Steiner trees)
do not corresponds to the optimal solution: the overhead
induced by the large header corresponding to a Steiner tree
can be excessive. This paper proposes the optimization of the
routing minimizing the communication cost per bit in tree-
based explicit multicasting. If the multicast group is large and
the header size is limited, several trees are needed to provide
routing for the entire group. In this case, the optimization
can be seen as a particular constrained partial spanning
problem. It is demonstrated that the computation of the
minimum cost tree and the set of trees with minimum cost
are NP-difficult problems. The presented theoretical analysis
is indispensable to find cost efficient routes for these kinds
of multicast routing protocol. Some algorithmic issues of the
tree set construction are also discussed in the paper: exact and
heuristic algorithms are presented. In real routing protocols,
expensive exact algorithms cannot be applied. So, the paper
also aims with the presentation of some tree-based explicit
multicast routing algorithms using polynomial execution time.

Keywords-Communication theory; multicast routing; combi-
natorial optimization; minimum cost routing; Steiner problem;
hierarchy; QoS-based routing;

I. I NTRODUCTION

Multicasting was proposed to minimize bandwidth and
network resource usage (for instance in IP based networks)
by Deering in [2]. This kind of communication allows
messages to be sent to a set of destinations in a special way:
at most one copy of each message is forwarded on each link
of a multicast tree. There is a large variety of distributed ap-
plications including television, video on demand, games and
video-conferences, which benefit from multicast communi-
cation. In IP based networks the deployment of multicasting
has been delayed by the well known problem of scalability.
Because IP multicast addresses do not contain any specific

information (for example: localization of the destination),
address based aggregation of multicast communications is
not possible and thus multicasting does not scale with the
number of multicast groups. Indeed, IP routers store an entry
for each multicast group using the given router. The large
number of multicast entries in the forwarding tables retard
the forwarding process. Another problem for the deployment
of multicasting is that currently not all routers in the Internet
are multicast capable. To introduce multicast communication
progressively, it is important to design protocols, which al-
low multicast via unicast forwarding in certain domains. For
this reason, protocols such as REUNITE (cf. [3]) and HBH
(cf. [4]) have been proposed. In these protocols forwarding
is done in the traditional unicast way and the branching
node routers store information on next destinations in special
tables. Trivially, this kind of protocol does not resolve the
scalability problem.

Explicit multicast routing protocols have been proposed
that scale better with the number of multicast groups. When
explicit routing is used the group forwarding information
is stored in the header of the datagrams. The group infor-
mation is generally collected by a particular router and this
information should be available at the source to send the
datagrams. So, this type of multicasting can be regarded
as a source-based routing technique. Simple flat explicit
multicast routing only encodes the set of destinations in the
datagram headers. In the subsequently encountered routers,
datagrams are forwarded using the header information by
applying the locally available forwarding mechanism (often
a unicast forwarding). Accordingly, there is no forwarding
state information for the given groups in the forwarding
tables.

The flat explicit routing protocols suffer from an important
drawback: each intermediate router on the multicast route
has to inspect the datagram header. The router should
duplicate the datagram if there are several next hops to
forward it toward the encoded destinations. This handling
is obligatory even when the router is not a branching node
of the multicast tree.

To avoid obligatory processing of the datagram headers in
the intermediate routers, tree-based explicit multicast routing
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protocols have been proposed [5] [6]. In these protocols,
the source (or an appropriate route computation element)
computes the tree spanning the destinations and stores the
tree structure in the datagram headers. Note that the tree
can be encoded entirely by its significant nodes (destinations
and branching nodes), and the data forwarding between two
successive significant nodes can be performed using unicast
routing. This allows tree-based explicit protocols to forward
datagrams faster than flat explicit protocols.

An indisputable drawback of explicit multicast routing
resides in the traffic overhead due to the enlarged header
size. Moreover the header size may differ between one route
and another, and this is particularly true for encoded trees.
The more significant intermediate (and so encoded) nodes
a spanning tree contains, the longer the datagram header
becomes. The generated header related traffic must be taken
into account, even for route computation and optimization.
So, the optimization of the communication cost needs a new
formulation of the explicit multicast routing problem, which
is significantly different from the classic Steiner problem
[7].

When IP protocols are used, explicit multicast routing
must cope with datagram fragmentation. Because the amount
of encoded routing information in the headers can be signif-
icant it is possible that these datagrams will be fragmented
and data and header will be unfortunately separated. To
avoid bad IP fragmentation, the segmentation of the desti-
nation set into several sub-sets has been proposed for flat
explicit routing protocols [8]. Using this technique each
sub-set of destinations can be encoded separately by a
”small” datagram, which may be sent without fragmentation.
However, the segmentation of multicast delivery trees for
tree-based explicit protocols has not yet been investigated.

Because multicast datagrams can be fragmented and the
multicast structure segmented, we analyze the optimality of
routes with and without fragmentation. More precisely, we
describe the optimal multicast structure, which generatesthe
minimum communication cost per bit including the variable
cost of the header transmission. Generally, by taking into
account the header size limitation, this cost minimization
corresponds to a constrained partial minimum spanning
problem, which is NP-difficult even if the solution is a single
tree.

Tree-based explicit multicast routing protocols can be
solicited for different reasons and not only to tackle the
scalability problem. Multicast communication may be con-
strained by a given policy of the source or of the appli-
cation. The quality of service (QoS) requirement is one
of the most frequently imposed constraints. Often the QoS
is formulated on the basis of multiple criterion and the
computation of feasible or optimal routes corresponds to a

multi-constrained optimization. Finding the multicast graph
respecting the defined QoS requirements and minimizing
network resources is an NP-complete optimization task [9].
For example, Multicast Adaptive Multiple Constraints rout-
ing Algorithm (MAMCRA) [10] proposes the computation
of routing structures constrained by multiple QoS criterion
from the source to the destinations. In certain cases the
result does not correspond to a tree but to a set of trees
and paths rooted at the source and containing some cycles.
Traditional IP multicast routing using a single IP address
for the group cannot be used. Explicit routing is a good
candidate to resolve the conflicts induced by the cycles.
More generally, constrained multicast routing structuresare
tree-like structures calledhierarchies. The use of this kind
of structure for multicast routing in IP domain necessitates
routing protocols that allow the crossing of branches (routes)
in the same multicast route structure. The technique of tree-
based explicit multicast routing also permits the encodingof
hierarchical routing structures.

Another candidate for tree-based explicit multicasting is
application level multicasting. Delivery trees can be com-
puted at the application level and overlay links can be used
among end systems handling the multicast packets. These
solutions support naturally traffic engineering, can improve
the reliability of multicast delivery, and facilitate secure
group communications [11]. Generally, in traffic engineering
solutions and QoS aware environments tree-based explicit
multicasting may offer an interesting tunable multicast data
delivery technique.

The present work focuses on the cost-optimal tree-based
explicit multicast solutions taking into account the increased
bandwidth usage due to the largest datagram headers. It is
an extended version of [1], and it provides more detailed
information about the problem formulation, the properties
of the optimal solution and some algorithmic issues of the
possible route computations.

The next section gives a rapid overview of the related
work. The formulation of the tree-based multicast routing
problem with minimum communication cost can be found
in Section III. We demonstrate that the cost optimization of
tree-based explicit routing is an NP-difficult computational
problem. Some exact algorithms are presented in Section IV
but these algorithm are very expensive. More practicable
heuristic algorithms are also proposed for routing protocols.
Our conclusions and perspectives close this initiative study.

II. RELATED WORK

Initially, explicit multicast routing was proposed for small
multicast groups (cf. Small Group Multicast in [12]) to
decrease the number of multicast entries in routing tables.
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Combined with the traditional IP multicast routing for large
groups, scalability for all type of multicast can be achieved.

A simple approach to implementing explicit multicast
routing is to simply store the set of destination addresses in
each datagram. The basic protocol of this kind of flat explicit
protocol is the Xcast protocol proposed in [13]. When an
Xcast router receives an Xcast datagram, it performs a look-
up for each valid destination in the header to determine the
required next hop. Then it copies the incoming datagram to
each required outgoing link. An improved version of this
protocol is the protocol Xcast+, described in [14], which
uses dedicated routers to reduce the header size. Simple
explicit multicast routing eliminates tree construction and
maintenance costs in the network and decreases the network
control load. For these reasons it was also proposed for
mobile ad hoc networks [15].

To resolve the main drawback of flat explicit routing
protocols (which is the check of the destination list in
each router) precomputed tree based explicit routing was
proposed. The first tree-based explicit protocol was the ERM
protocol proposed in [5]. In the ERM protocol the source
encodes the IP addresses of the branching nodes and the
destinations of the multicast tree in the datagram headers.
Inside the routing domain, this header is analyzed and
datagrams are routed using unicast forwarding mechanism.
The protocol Linkcast, described in [6] improves ERM by
proposing a new header encoding. Since the tree is encoded
in the datagram header, a node can easily decide whether it is
a branching node or not. Similarly, it is easy for a branching
node to find its children. In [16] the trade-offs of the tree-
based explicit routing protocol design are discussed and a
performance analysis is presented. The analyzed metrics are
the header size and the processing overheads. More detailed
and appropriate tree information may reduce the processing
overhead in return for larger header size and traffic overhead.
The authors propose a modification to ERM called Bcast,
which reduces the overhead of the protocol. In Bcast, a
proactive bypassing mechanism helps to adjust the code size
in response to inconvenient distribution of the receivers.

Using IP protocols, explicit multicast routing will in-
evitably experience datagram fragmentation. Because the
amount of encoded routing information in the headers can be
significant, it is possible that these datagrams will be frag-
mented and data and header will be unfortunately separated.
The problem of IP fragmentation of multicast datagrams
using flat explicit routing has been analyzed in [8]. The
segmentation of the destination set into several sub-sets has
been proposed to avoid cutting the headers in two. The
optimal segmentation has also been analyzed and the authors
have demonstrated that quasi-optimal communication cost
can be obtained when header length is less than half the

datagram size.

III. C OMMUNICATION COST OPTIMIZATION FOR

TREE-BASED EXPLICIT MULTICASTING

In this section, we formulate the optimal tree based ex-
plicit multicast routing, which minimizes the communication
cost (and not the cost of the used trees). We will show that
communication cost minimization is a very hard problem
when the traffic overhead due to explicit routing headers
and segmentation must be taken into account. This problem
corresponds to a special constrained Steiner problem with
nonlinear cost function even if the maximal header size does
not limit the tree. In the general case, when the limitation
on the maximal header size should be taking into account,
the problem becomes a special constrained partial spanning
problem. In this case, the optimum corresponds to a special
hierarchy: to a set of spanning trees.

Let G = (V,E) be the undirected and connected graph
corresponding to the network topology andD ⊂ V the set of
destinations of the multicast group originated at the source
s. Let us suppose that the network topology is known at the
source. Moreover, the size of the datagrams is limited by a
valueLmax.

We suppose that a homogeneous unicast routing mecha-
nism exists in the routing domain and that this mechanism
is known at the source. So, the source node can compare
any spanning tree with the possible unicast routes in order
to decide, which nodes of the tree should be encoded
explicitly. Explicit multicast routing can then use the unicast
routing mechanism between any two successive encoded
nodes of the multicast tree. Evidently, the encoded tree must
contain all nodes such that the set of unicast routes between
them corresponds to the original tree. In the following,
we call these nodes of the treesignificant nodes. Figure 1
illustrates the encoding of the tree in a simple example. The
source nodes would send messages for the destination set
D = {d1, d2, d3, d4, d5} using tree-based explicit multicast
routing. Let us suppose that the unicast routing uses the
shortest paths between any node pairs and the multicast
tree is a partial spanning treeT as indicated in the figure.
In this case the significant nodes are the nodes, which are
indicated with a double line and correspond to the following
parenthesized list:

a(c(d1, d2, g(d3, d4, d5)))

The nodea is significant, because the shortest path froms
to c does not pass througha. So, to follow the route from
s to c via a, a must be explicitly encoded.

To simplify, in the following the set of significant nodes
ST of a spanning treeT denotes the union of the branching
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Figure 1. Significant nodes of a tree for unicast routing

nodesBT of T and the destinations:ST = BT

⋃

D (i.e.,
the paths between these nodes are shortest paths).

We consider the minimization of thetotal communication
cost as the objective of the tree-based explicit multicast
optimization under the constraint on the maximal length of
datagrams. We will show that this cost does not correspond
to the sum of link costs as it is the case in simple multicast
route computations. We distinguish two components of the
communication cost: the cost of the transmitted payload and
the cost of the overhead generated by the headers. The latter
cost is proportional to the explicit routing header size. This
header size depends on the number of encoded addresses
and so on the structure proposed for the routing. We will
show that the minimal cost routing structure is always a set
of trees. Figure 2 illustrates the difficulty of the optimization.
Generally, the optimal solution comprises several destination
sub-sets (which should be spanned separately because of
the constraints). Thus, the first question is related to the
partitioning of the destination set (Figure 2/a). Then, for
each sub-set of destinations a special minimum cost partial
spanning tree should be built. This latter problem itself is
NP-difficult (and can be seen as a special case of the Steiner
problem, cf. in the next sub-section). The optimal routing
problem is the superposition of these difficult optimization
problems, since the cost of the partitioning and the spanning
trees are inseparably related. If the trees resulting from
the segmentation are large (in term of number of encoded
nodes), then the payload in the datagrams is small and
several datagrams should be sent to transmit the desired
message. If the trees are small, then several trees are needed
to cover the entire multicast group.

In this section, we first present the objective function of
the minimal cost tree construction even if segmentation is
not needed (one tree can cover the entire multicast group
and can be encoded in the header without segmentation and
it corresponds to the minimal cost solution). Then, we show
that this optimization problem is NP-difficult. Secondly, we
present the explicit multicast routing structure optimization

ss

DD

D1

D2 D3

T1

T2

T3

a) b)

Figure 2. The optimization is a superposition of a) a partitioning and b)
a minimum cost weighted spanning tree problem

in the case where header segmentation is required. We will
show that the optimal routing structure corresponds to a set
of trees and the problem remains NP-difficult.

A. Minimum cost tree considering the header length

In order to determine the objective function of the explicit
routing optimization progressively, we first focus on the
simple case where only one encoded spanning tree is needed
to cover the destinations.

More precisely, this case is produced when
• the source has only one sub-tree for spanning all of the

destinations
• there is sufficient space in the packet header to store

the encoded version of this unique spanning tree.
So, first we consider a unique spanning tree that covers the
entire set of destinations where the tree is encoded and stored
entirely in the corresponding datagram headers. If a spanning
tree has several sub-trees at the source, then the datagrams
sent on each sub-tree have distinct multicast tree encoding.
Such a spanning tree can be considered as a set of its sub-
trees rooted at the source. For instance, if a treeT can be
decomposed at its source into two (disjoint) sub-treesTa

and Tb, then we say that, from the point of view of tree
encoding, a set of trees{Ta, Tb} covers the destinations. The
trees of this set are encoded separately in different packet
headers. Figure 3/a and Figure 3/b illustrate respectivelythe
cases when the source has only one sub-tree, and where two
disjoint sub-trees cover the destination set.

Lemma 1. If the segmentation of the destination set is not
needed and all of the destination are accessible via the
same neighbor node of the source, the optimal structure is
a partial spanning tree.

Proof: Without segmentation, the optimal solution is a
connected sub-graph. The datagrams are sent on each link
in this structure. Since the edges are positively evaluated, an
eventual cycle increases the cost. So, the solution is a partial
spanning tree.
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Figure 3. One or several sub-trees may be at the source

To cover the given set of destinations and the source with
a single tree, different partial spanning trees can be found
and enumerated (for example by a Steiner Tree Enumeration
Algorithm, cf. [17]). Each tree contains a different set of
significant nodes, corresponds to a specific header length and
so involves a specific overhead and payload. The optimal so-
lution is the tree, which minimizes the total communication
cost. In the following, we talk about the partial minimum
spanning tree for encoding (which is generally different from
the Steiner tree of the given group).

To formulate the overhead generated by the explicit mul-
ticast headers, let us suppose that the significant nodes are
encoded by their network addresses usingla bytes, there are
k(T ) significant nodes and the maximal size of messages
is equal to Lmax bytes. The encoding technique of the
datagram header is out of scope of the paper. Only the impact
of the encoded tree is analyzed, the rest of the header is
considered to have a constant length. In this way, the sizelh
of a header can be expressed bylh = k(T )·la+c, wherec is
the constant length of the rest of the header. Using datagrams
with the maximum length, the maximum payload in a data-
gram corresponds tolp = Lmax−k(T )·la−c and to transmit

a message ofL bytes,np =
⌈

L
Lmax−k(T )·la−c

⌉

datagrams
must be used. So, the traffic generated by the transmission
of the headers can be expressed byLh = np · (k(T ) · la +c).
The traffic corresponding to the transmission of the message
of lengthL is

Lk = L +

⌈

L

Lmax − k(T ) · la − c

⌉

(

k(T ) · la + c
)

(1)

Let us suppose that the communication uses a treeT of
costd(T ). Thus the total communication cost is

CL(T ) = Lk · d(T ) =
(

L +

⌈

L

Lmax − k(T ) · la − c

⌉

(

k(T ) · la + c
)

)

· d(T )

(2)

The optimization of the communication support should
be independent from the message lengthL. The cost per bit
better characterizes the cost of the communication and this
cost should be minimized. The cost per bit can be obtained
asymptotically as

C(T ) = lim
L→+∞

CL(T )

L
=

lim
L→+∞

(

1 +

⌈

L
Lmax−k(T )·la−c

⌉

L

(

k(T ) · la + c
)

)

· d(T )

(3)

Finally, the communication cost per bit using the treeT
corresponds to

C(T ) = (1 +
k(T ) · la + c

Lmax − k(T ) · la − c
)d(T ) =

Lmax

Lmax − k(T ) · la − c
d(T ) (4)

The optimal encoded partial spanning treeT ∗
M is the tree,

which minimizes this communication cost (Problem 1):

T ∗
M : arg min

T∈ST

Lmax

Lmax − k(T ) · la − c
d(T ) (5)

Theorem 1. The optimization given by (5) is NP-difficult.

Proof: Trivially, if a particular case of the problem
given by (5) is NP-difficult, then the problem is NP-difficult.
In the expression (5) the lengthd(T ) of the tree T is
multiplied by a factor

f(T ) =
Lmax

Lmax − k(T ) · la − c
, (6)

that characterizes the tree (it depends on the number of
significant nodes in the tree). Generally, this factor is dif-
ferent from one tree to another. Letla be chosen so that
the factorsf(T ) do not influence the choice of the optimal
solution compared with the tree lengths. Concretely, for
every pair (Ti, Tj) of possible spanning trees, such that
d(Ti) < d(Tj), let a valuelma be chosen, which guarantees
that C(Ti) < C(Tj). Taking into account the cost function,
the condition for this can be expressed as

d(Ti)

d(Tj)
<

Lmax − k(Tj) · l
m
a − c

Lmax − k(Ti) · lma − c
(7)

Since d(Ti)
d(Tj)

< 1 such a value exists. With this value oflma ,
the corresponding factorsf(T ) do not influence the relation
between the spanning trees: ifd(Ti) < d(Tj) then
f(Ti)·d(Ti) < f(Tj)·d(Tj). In this case, the shortest partial
spanning tree from the set of all partial spanning trees is the
solution of our problem. The selection of the minimum cost
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Figure 4. The impact of the header size on the optimal cost

partial spanning tree corresponds to the NP-difficult Steiner
problem.

The simple example of Figure 4 illustrates the impact of
the header size on the optimal cost solution. Let us suppose
that the maximal datagram lengthLmax is equal to 20 bytes,
that there is no additional constant information in the header
(c = 0) and the addresses are encoded onla = 2 bytes. The
node s is the source of the communication andc, d, e are
the destinations. The minimal cost Steiner treeT1 covering
the source and the destinations is marked with dotted line
on the figure and has a lengthd(T1) = 15. As there are
two branching nodes on the tree, the number of significant
nodes isk(T1) = 5. So the factor corresponding to this tree
is f(T1) = 2. The total communication cost implicated by
the treef(T1) · d(T1) is 30. When taking the header size
into account, we obtain the treeT2 represented by a bold
line on the figure. This tree is longer (d(T2) = 16) but
there are less branching nodes,k(T2) = 4 and the factor
f(T2) = 1, 67. The total communication cost of this tree
f(T2) · d(T2) = 26, 67 is less then the cost per bit using the
encoded Steiner tree.

B. Minimum cost solution with header segmentation

When the multicast group is large and the number of
significant nodes in the multicast tree is high, a single
encoded tree cannot ensure the coverage of the destination
set. The group should be segmented in the optimal solution.
Let us notice that in some cases some segmentation may
be naturally given by the sub-trees at the source (cf. Fig-
ure 3/b)). These sub-trees are edge disjoint. In other casesthe
solution may contain non-disjoint trees. An example can be
found in Figure 5, where the number of encoded significant
nodes is supposed to be limited to4. In the given graph, the
five destinations cannot be spanned by a unique spanning
tree from the sources. Segmentation is necessary. The figure
illustrates a segmentation where two non-disjoint trees span
the destination set. The nodesc andd3 belong to both trees.
T1 should be encoded asT1 = (d3(f(d5, d4))) and T2

corresponds toT2 = (d3(c(d1, d2))) for routing. Note that
the noded3, which belongs to both trees is a destination

node. That does not mean thatd3 should consume any
message twice. On the contrary, this node must receive the
message for local consumption only once and the second
message must be transmitted to the next node without local
consumption. In other worlds: the noded3 is a destination
in only one tree and serves as relay node in the other. So,
anexclusively served destination node setis associated with
each spanning tree of a segmented solution. This exclusively
served destination node set contains the real destinationsin
the tree (and not the relays even if they are destinations in
the original problem).

s a

b c
e

f g

h

d1

d2
d3

d4
d5

T1

T2

Figure 5. Two spanning trees with intersection

Lemma 2. 1) If the segmentation of the destination set is
needed, the optimal explicit multicast routing structure is a
set of partial spanning trees. 2) Each tree of this optimal
set is rooted at the source and corresponds to a partial
spanning tree minimizing the total communication cost for
its exclusively served destinations.

Proof: 1) The optimal solutionΘ connects the des-
tinations to the source. Since the maximum length of the
datagrams limits the number of the significant nodes en-
coded in the headers, a single datagram header cannot be
used for all destinations. A partitioning of the destination
set is required. To connect a sub-set of the destinations to
the source with a unique sub-graph in the optimal solution
only a spanning tree can be used (cf. Lemma 1). So, the
optimal solution Θ is a set of trees. 2) Each spanning
tree in Θ should be a partial spanning tree minimizing the
total communication cost relative to its exclusively served
destinations. Let us suppose that a treeT ′ ∈ Θ does not
minimize the communication cost relative to its exclusively
served destination setDT ′ . In this case, there is an other
tree T ′′ minimizing the communication cost for the same
destinations. So the overall solution containingT ′ cannot
reach minimum cost.

After segmentation, each header contains a tree spanning
a sub-set of the multicast group. Let us suppose that the
segmentation results a set of treesF = {Ti, i = 1, ..k(F )}
spanning{s} ∪ D with not necessary disjoint treesTi.
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Here k(F ) indicates the number of trees in the segmented
solution.

Trivially, to reach the destinations, each tree of the solu-
tion should be rooted at the source node. So, the minimum
cost multicast route forms a set of trees routed at the source.
This kind of set of trees is often called a ”forest” in the
literature. Recently, a new spanning structure was introduced
in [18] to describe hierarchical structures which are, con-
trarily to trees, not obligatory exempt of redundancies. A
hierarchy in a graph is a connected structure of consecutive
nodes and edges that allows the some nodes and edges to
be repeated such that for each node occurrence there is at
most one predecessor node occurrence in the structure. In
other worlds, a hierarchy is a tree-like structure permitting
the repetition of the graph elements. A non-elementary path
may contain a node several times. An elementary path is a
path without repetition of the graph elements. The hierarchy
is a more general concept than the tree concept and it may
contain a node several times. Hierarchies without repetition
are trees. Evidently, a set of trees routed at the same source
node is a hierarchy since nodes and edges may be repeated in
the set of the trees but each node occurrence has only one
predecessor in the set. The source node can have several
sub-hierarchies which are, in this particular case, spanning
trees.

Generally, the different trees (sub-hierarchies) do not
contain the same number of significant nodes. On the tree
Ti, which hask(Ti) significant nodes, the maximal payload
per datagram isp(Ti) = Lmax−k(Ti) · la−c. It was shown
in the last section that a treeTi is optimal for the sub-set of
destinations, if the total cost

C(Ti) = (1 +
k(Ti) · la

Lmax − k(Ti) · la − c
)d(Ti) (8)

is minimal. Using the previously mentioned set of trees (or
hierarchy)F , the total transmission cost of a message ofL
bytes corresponds to

CL(F ) =

k(F )
∑

i=1

(

L +

⌈

L

Lmax − k(Ti) · la − c

⌉

·

(

k(Ti) · la + c
)

)

d(Ti) (9)

The optimal solution (which results in the minimum cost
per bit whenL tends to infinite) is a hierarchy (set of trees)
F ∗

M spannings ∪ D (Problem 2) such as:

F ∗
M : arg min

F∈SF

k(F )
∑

i=1

Lmax

Lmax − k(Ti) · la − c
d(Ti) (10)

whereSF denotes the set of hierarchies spannings ∪ D,
each hierarchy is composed of partial spanning trees. The
complexity of this new problem is discussed later, at the end
of the next sub-section. Here we propose first a simplifica-
tion of the data fragmentation.

In the optimal solution presented above it is possible that
the header length and the payload are different from one
tree to another. The differing fragmentation of the same
message depending on the different trees may significantly
complicate the data transmission procedure at the source.
Organizing multicast communication around a set of trees
that use the same data transmission procedure facilitates the
explicit routing protocol.

C. Minimum cost solution with homogeneous fragmentation

Generally, the different trees in the segmented solution do
not contain the same number of significant nodes. On the
tree Ti, which hask(Ti) significant nodes, the maximum
payload per datagram isp(Ti) = Lmax − k(Ti) · la − c. The
fragmentation of the message ofL bytes is optimal inTi, if
this maximum payload is applied in the tree. To obtain the
maximum payload a customized fragmentation is needed on
each tree. In each tree, the data should be sent using different
fragments, which results in a very complicated transmission
procedure at the source.

Homogeneous fragmentation constraint.To simplify
the fragmentation task at the source, let us suppose that the
source implements a common fragmentation algorithm and
always sends the same content (payload or fragment) on the
trees covering the multicast group.

To satisfy the Homogeneous fragmentation constraint the
maximum number of significant nodes per tree is trivially:

kmax(F ) = max
Ti∈F

k(Ti) (11)

Consequently in a simple data transmission procedure, each
header contains at mostkmax(F ) encoded significant nodes
and the payload is the same in simultaneously sent data-
grams. To transmit a message of lengthL, the source should
use

np = k(F )

⌈

L

Lmax − kmax(F ) · la − c

⌉

(12)

datagrams. Using the aforementioned hierarchy correspond-
ing to a set of treesF the total cost of the communication
is equal to

CL(F ) =

k(F )
∑

i=1

(

L +

⌈

L

Lmax − kmax(F ) · la − c

⌉

·

(

kmax(F ) · la + c
)

)

d(Ti) (13)
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The optimal hierarchy (which induces the minimum cost
per bit) corresponds to the set of trees spannings ∪ D
(Problem 3) such that:

F ∗
M : arg min

F∈SF

k(F )
∑

i=1

Lmax

Lmax − kmax(F ) · la − c
d(Ti) (14)

whereSF denotes the set of hierarchies spannings ∪ D
composed only from trees under the mentioned constraint.

The difference between the optimization problems 10 and
14 resides in the factorf(T ), which weights the different
trees in the sums. These weights are typical of each tree in
Problem 10 but they have the same value within a partition in
Problem 14. So, optimization 14 with homogeneous weights
is more simple but the complexity of both problems is high.

Theorem 2. The optimization (10) and (14) are NP-difficult.

Proof: In both problems, the optimal solution corre-
sponds to a setF of trees. The destination sub-sets spanned
exclusively by the different trees inF correspond to a
partition P = {Di, i = 1, . . . , k(F )} of D. Each sub-set
of destinationsDi in this partition is covered by a partial
spanning treeTi ∈ F . Trivially, the treeTi is of the mini-
mum cost per bit regardingDi, and the result corresponds to
the partition minimizing the total cost (the sum of the sub-set
costs). So, the solution corresponds to the selection of the
minimum cost partition and this problem corresponds to the
well known set cover problem, which is NP-difficult [19].
Trivially, each partial spanning treeTi in the solution should
be a partial spanning tree of{s}∪Di inducing the minimum
cost per bit while respecting the constraints (otherwise there
is a solution with less cost when using the minimum cost
spanning tree instead ofTi). For example, to find the optimal
cost partial spanning tree of{s}∪Di in a given partition, the
Homogeneous fragmentation constraint should be respected.
A tree with minimum cost per bit must be computed while
respecting the maximum homogeneous header size and thus
while respecting the maximum number of significant nodes.
This latter computation itself is a NP-difficult problem (itcan
be considered as a particular case of Theorem 1). Combined
with the optimal partitioning Problems (10) and (14) are NP-
difficult.

IV. A LGORITHMS TO FIND COST-AWARE EXPLICIT

MULTICAST ROUTES

Without completeness, some basic ideas to find minimum
cost and cost aware solutions for the tree-based explicit
multicast routing can be found in this section. Since the
problem is NP-difficult, exact algorithms are expensive.
Cost-aware but non-optimal solutions can be obtained by
heuristics taking reasonable (polynomial) execution time.

A. Exact and heuristic solutions of Problem (5)

In Problem (5) we suppose that a single spanning tree is
sufficient to solve the problem.

1) Exact algorithms:Modified Spanning Tree Enumer-
ation Algorithms and Topology Enumeration Algorithms
(cf. [17]) can be used to find the optimal tree. In the
original algorithms, the possible partial spanning trees are
enumerated and the tree with minimal cost is selected as
the solution. The cost of each tree is computed as the sum
of the costs of its edges. In our case, as Formula 5 indicates,
this cost is weighted by the factorf(T ), which can be unique
for each tree. In order to solve our problem, the enumeration
algorithms can be applied but the tree with the minimal
weighted cost should be selected. Let us notice that, in some
cases, this factorf(T ) can also be used to eliminate excess
trees in the enumeration algorithms. Since the functionf(T )
is concave and increases rapidly depending on the number
k(T ) of significant nodes, the optimal solution is probably
among the spanning trees having few branching nodes. The
complexity of the exact enumeration algorithms is always
exponential and inO(n22n−d−1) (where n denotes the
number of nodes andd is the number of destinations) [20].

2) Heuristic algorithms: Contrarily, shortest path based
heuristics originally proposed to find a 2-approximation for
the Steiner problem cannot guarantee the same approxi-
mation ratio for the optimization problem (5). Indeed, the
”penalty” factor f(T ) (which is a function of the number
of significant nodes) cannot be included in the shortest path
based heuristics.

The following simple example illustrates that a shortest
path based Steiner heuristic finds an arbitrarily bad solution
for Problem (5). Let there be a topology, a sources and a set
of destinationsD given as shown in Figure 6. Let us suppose
that all the edges have a unit cost andd = |D|. In this partic-
ular topology, the optimal treeT ∗ (represented by a dotted
line) uses a unique branching node. Shortest paths between
the multicast group members do not traverse this node. A
shortest path based heuristic (e.g.,the Takahashi-Matsuyama
heuristic [21]) constructs the treeTh (the continuous line in
the figure).

The costs ared(T ∗) = 2(d + 1) and d(Th) = 2d
respectively. Since there are2d significant nodes inTh and
d + 1 in T ∗, the approximation ratio in this case can be
expressed as

A =
C(Th)

C(T ∗)
=

Lmax − (d + 1) · la − c

Lmax − 2 · d · la − c
·

d

d + 1
(15)

Increasing the group sized causes this ratio to increase
rapidly and an upper-bound cannot be given.

To find trees with low communication cost, we propose
a modified version of the Takahashi-Matsuyama algorithm.
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s

D

T ∗
Th

Figure 6. Shortest path based heuristics give an arbitrary solution

A simple objective function can be formulated if the costs
(the cost of the usage of the edges and the overhead due to
the headers) are expressed by additive metrics. Edge costs
are basically additive. Moreover, the use of new branching
nodes in the multicast tree can be penalized by additional
cost factors. LetBT be the set of branching nodes of the tree
T and let us suppose that the inclusion of a new branching
nodev ∈ BT , which is not a destination, corresponds to an
additional costb(v). So, a partial spanning tree resulting in
a low communication cost can be obtained by minimizing
the sum of edge and node costs :

T ∗
D : arg min

T∈T
(d(T ) +

∑

v∈BT \D

b(v)) (16)

This expression can be considered as an approximation of
the communication cost. Trivially, similarly to the Steiner
tree problem, this problem is also NP-difficult. The advan-
tage of the formulation (16) is that simple and efficient
Steiner heuristics can be adapted to resolve it. Starting from
this modified problem formulation we propose a heuristic
to compute advantageous partial spanning trees for explicit
tree based multicast routing.

Avoidance of Branching node Creation (ABC) algo-
rithm

Following the objective function given by (16), a simple
algorithm can be designed by modifying the well-known
Steiner heuristic proposed by Takahashi and Matsuyama
[21]. In each step of the original algorithm, the nearest
destination node is added to the tree using the shortest path
from node to tree.

In the modified ABC algorithm, the creation of a new
branching node in the tree is penalized. For this reason, the
”distance” d̄(n, T ) between the treeT and the noden is
defined as

d̄(n, T ) = d(n,m) +

{

0 if m ∈ D ∪ BT

c otherwise
(17)

wherem ∈ T is the node connectingn to T , d(n,m) is the
distance fromm to n and c is the penalty associated with

creating a new branching node in the tree. This modification
does not affect the favorable complexity of the algorithm.
Figure 7 illustrates one step of the algorithm. Let us suppose
that each edge has unit cost. The cost of the nodes in the tree
T are indicated in the figure. To connect the noden to the
tree, the algorithm does not use the shortest path(n, b) but
an alternative (the path(n,m)), which connectsn to the leaf
nodem. This connection results in a lower communication
cost because new branching nodes are not created.

0

00

3

0

s

a

b

c

m

n
T

Figure 7. Add a new destination to the tree using the ABC algorithm.

To illustrate the performance of the ABC algorithm,
simulation has been performed in the Eurorings topology,
which has 43 nodes and 55 edges (cf. an example in [22]).
In this topology, the Shortest Path Tree (SPT) algorithm,
the Takahashi-Matsuyama (TM) heuristic and the ABC
algorithm have been executed for different multicast requests
the group size of which varied between 10 and 35. For each
group size, 100 groups were generated randomly. Figure 8
shows the number of significant nodes in the computed
multicast trees. Supposing a maximal packet size equal to
lmax = 1600, addresses encoded in 128 bits and a constant
part in the headers occupying 200 bytes, the communication
cost corresponding to the three different trees is illustrated
in Figure 9. In this network, the ABC algorithm reduces the
communication cost by 10 - 20 % compared to the shortest
path tree and the approximated Steiner tree using explicit
routing.

B. Exact and heuristic solutions of Problems (10) and (14)

To the best of our knowledge, exact algorithms are not
known that solve the recently formulated size-constrained
minimum-cost partial spanning problem. Since a single tree
is not always sufficient, Steiner Tree Enumeration Algo-
rithms do not work. A trivial exact solution can be proposed
as follows.

1) Exact algorithm: As demonstrated in Section III and
illustrated with Figure 2, the optimal solution corresponds
to an optimal partition of the destination set. So, exact
algorithms solving the Set Cover Problem (cf. [19]) can be
applied with the following adaptation: the cost associatedto
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Figure 8. The number of significant nodes in the multicast tree.
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Figure 9. The communication cost associated with the multicasttree.

a sub-set of destinations in the partition is the communica-
tion cost of the partial spanning tree minimizing this cost.

Most of the exact algorithms to solve the Set Cover
Problem are brute force and dynamic programming based
algorithms [23]. In both cases, the associated optimal com-
munication cost per bit must be computed for each sub-set of
destination nodes in the partition. For this, a simple modified
Steiner Tree Enumeration Algorithm (cf. [17]) can be used
as indicated in the previous sub-section.

Let kmax be the maximal number of significant nodes
in our size-limited spanning problem. The maximal number
k of destinations in a spanning tree respecting the size
constraint is given byk(k − 1) = kmax. If P k

D denotes the
number ofk-limited partitions ofD, then the exact algorithm
complexity is bounded withO(P k

D2k+1n2).
2) Some heuristic algorithms:Since the exact computa-

tion is very expensive, only heuristic algorithms can compete
for potential use in networks. Heuristic solutions can be
obtained in two different manners.

• The heuristics in the first group aim todirectly build a
set of trees with respect to the size constraint (moreover,

the algorithms can eventually balance the size of the
trees).

• The second type of algorithms works in three phases
to compute the final solution:

1) at first a low cost partial spanning tree is computed
(regarding the overhead generated by the headers)

2) then this unique spanning tree is segmented into
several trees when the size constraint is exceeded

3) the size of the trees may also be balanced.

A simple algorithm in the first category can be obtained
by modifying the ABC algorithm proposed in the last sub-
section.

ABC algorithm with respect to the size constraint
The modification of the ABC algorithm presented in

the previous section consists of the insertion of the size
constraint. Letkmax be the maximum number of significant
nodes. In the modified version, the destination associated
with the lowest additive cost (in term of edge cost and new
significant node creation cost) is added to the tree if and
only if the number of significant nodes in the tree under
construction is less thankmax. Otherwise, a new tree is
created by connecting the nearest unspanned destination to
the source node.

The second class of heuristics can be designed as follows.
Spanning tree segmentation

• At first, a partial spanning tree computation algorithm
is used to compute a tree spanning the destination set
(for example the original algorithm of Takahashi and
Matsuyama or the original ABC algorithm can be used
for this purpose). This unique tree does not necessarily
respect the size constraint.

• In the second phase (which is the segmentation of the
unique spanning tree), this low cost tree is segmented
by distributing the destinations between several sub-
trees taking the size constraint into account.

• If the tree set contains unbalanced numbers of signifi-
cant nodes in the different trees, then a final balancing
algorithm can be applied to obtain a balanced tree set.

In the following, we present our proposals for tree seg-
mentation and charge balancing. In the segmentation prob-
lem, a tree spanning the entire destination set is given but the
number of significant nodes exceeds the size upper bound
kmax. The result of the segmentation is a set of trees; each
tree in the set corresponds to a sub-tree of the delivery tree
and the number of significant nodes in each tree is less than
the size constraint. The segmentation can also be considered
as a particular case of the Set Cover Problem. A heuristic
segmentation approach has two potential objectives:

• minimize the number ofkmax-limited trees
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• minimize the overall cost of the set ofkmax-limited
trees covering the original tree.

The solutions obtained by the two different objectives can
be different as illustrated in Figure 10, where the first figure
shows the original delivery tree. Let us suppose thatkmax =
5. Figure 10/b) presents the result when the number of trees
is minimized. There are two trees to span the8 destination
nodes and the total length of this solution is equal to18.
Figure 10/c) illustrates the minimal cost solution under the
constraintkmax. In this case, there are three trees and the
cost is equal to15.

a) b) c)
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d1

s

d1

s

d1

T3

T2

T2T1

d2

d3

d4

d6

d7 d8

d2
d3

d4

d2
d3

d4

d6

d5d5d5

d6

d7 d7d8 d8

Figure 10. Segmentation with two different objectives

In the following, we propose a heuristic solution for this
particular Set Cover Problem.

Maximal Common Path First algorithm
The Maximal Common Path First (MCPF) algorithm

proposes a new alignment of the destinations in the spanning
treeT . To achieve this it uses a new metricκ(di, dj) between
two destinationsdi anddj corresponding to the number of
common edges of the paths froms to di and froms to dj

in T .
κ(di, dj) = |path(s, di) ∩ path(s, dj)|.

Using this metric, a complete graph (a special metrical
closure) can be computed for the destinations. Figure 11/b)
illustrates the metrical closure of the tree presented in
Figure 11/a).
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Figure 11. The metrical closure of the destinations with the new metric

The MCPF algorithm computes akmax-limited spanning
forest in the metrical closure. It is based on the well-known
Prim’s algorithm and consists of extending a treeTi started
at the source until no new destinations can be added. At each
step, the destination with the maximal number of common
edges is added toTi, If a tree is saturated according to the
size constraint, a new tree is initiated from the source to
the next destination. The pseudo-code of MCPF is given by
Algorithm 1.

Algorithm 1 MCPF algorithm using the Prim approach

Require: a treeT spanning the multicast group(s,D), the
maximum numberkmax of significant nodes

Ensure: a setF = {Ti, i = 1, . . . , p} such that each tree
Ti has no more thankmax significant nodes
Initialization
Build the metrical closureḠ of the set of membersD,
using the ”distance”κ
F ← ∅
i ← 1
Ti ← a new tree initialized with the sources
repeat

(d,m) is an edge ofḠ of maximum value, such asd
is in D andm is in Ti

if Ti ∪ path(d,m) has no more thankmax branching
nodesthen

connectd to Ti

D ← M\{d}
recompute the cost of the edges in̄G

else
F ← F ∪ Ti

i ← i + 1
Ti ←a new tree initialized with the sources

end if
until D = ∅
F ← F ∪ Ti

Let d denote the number of destinations andt the number
of trees after segmentation. Let us suppose that the des-
tinations are distributed uniformly in the trees and there
are ⌈d/t⌉ destinations per tree. In the worst case, there
are ⌈d/t⌉ − 1 branching nodes per tree to cover⌈d/t⌉
destinations. So

2

⌈

d

t

⌉

− 1 ≤ kmax (18)

This relation gives the following approximated upper-bound
of the number of trees after segmentation :

2d

kmax + 1
≤ t (19)
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To examine the real number of trees after segmentation with
the MCPF algorithm, simulations in the Eurorings topology
have been executed. For each group size 100 groups have
been generated randomly and a multicast tree has been
computed using the Takahashi-Matsuyama algorithm. The
size limit kmax on the headers has been set to 20. Figure 12
shows the observed number of trees per group after the
segmentation.
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Figure 12. The number of trees after the segmentation by the MCPF
algorithm.

The set of trees should be balanced if necessary. For
example, using the MCPF algorithm, the resulting trees
contain a number of significant nodes near to the given
limit kmax except the last tree, which may contain only a
few members. The equilibrium of the number of significant
nodes in the different trees decreases the maximal length of
the explicit routing header information and so increases the
payload. So, the balancing operation can decrease the total
cost of multicast communication.

Member Switching Algorithm
To balance the trees, the Member Switching algorithm

considers the tree having the largest encoding. It removes
a destination from it, then adds this destination to the tree
having the smallest encoding. This process is repeated until
the encoding of the largest tree is close to the encoding of
the smallest tree.

The worst-case time complexity of the algorithm is
O(|D| · |N |), where|D| is the number of destinations and
|N | is the number of nodes of the graph.

V. CONCLUSIONS ANDFUTURE WORK

Explicit multicast routing is an alternative solution to
resolve the scalability of multicast routing in IP. Flat explicit
routing protocols generate significant overhead in routers
due to the intensive processing of the datagram headers.
Tree-based explicit routing could simplify the task of the
routers by encoding the multicast tree in the datagrams

Algorithm 2 Member Switching Algorithm

Require: a set of treesF = {Ti, i = 1, . . . , p}
Ensure: the balanced setF

repeat
Ts ←the tree ofF of smallest encoding
Tl ←the tree ofF of largest encoding
if encoding(Tl) > encoding(Ts) + 2 then

remove the destinationd from Tl such as the signif-
icant father ofd in Tl has the lowest degree
add the memberd to Ts

end if
until encoding(Tl) ≤ encoding(Ts) + 2

and by using conventional unicast data forwarding between
the significant nodes of the tree. The computation of the
multicast route corresponding to the minimum communi-
cation cost per bit is a hard optimization problem. We
formulated and illustrated this optimization in several cases:
when the multicast group can be spanned with only one
tree but also when several trees are needed for the group
due to limitations on header size. In this latter case, we
introduced the important homogeneous message fragmen-
tation constraint to avoid complicated data transmission
procedures at the source. The optimization problems are
NP-difficult in these aforementioned cases and well known
Steiner heuristics cannot guarantee limited cost solutions. To
illustrate the introduced problems, some exact algorithms
were presented but they are very expensive. For explicit
multicast routing, we also proposed heuristics providing low
cost, explicitly encoded multicast routes. These algorithms
find approximate solutions in polynomial execution time. In
particular, the ABC algorithm permits the construction of
multicast trees with low communication cost when the tree
should be encoded in the packet headers. If the number of
significant nodes is high, tree segmentation and balancing
can be performed with good performance using the presented
MCPF and Member Switching algorithms.
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