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Abstract— In 1995, DARPA initiated a work on a 

programmable concept of computer networking that would 

overcome shortcomings of the Internet Protocol. In this 

concept, each packet is associated with a program code that 

defines packet’s behavior. The code defines available network 

services and protocols. The concept has been called Active 

Networks. The research of Active Networks nearly stopped as 

DARPA ceased funding of research projects. Because we are 

interested in research of possible successors to the Internet 

Protocol, we continued the research. In this paper, we present 

an active network node called Smart Active Node. Particularly, 

this paper focuses on its ability to translate data flow 

transparently between IP network and active network to 

further improve performance of IP applications. We describe 

the translation mechanism, its possible use and discuss 

particular implementation aspects. 

Keywords- Active Networks, Smart Active Node, IP 

tunneling, routing 

I.  INTRODUCTION 

This paper extends the original paper [1] (Sections 1 – 6, 
sub-sections A and B of Section 10 and a portion of Section 
11), as it captures recent advances on the project since 
Section 5, sub-section D. 

Today, IP networks suffer from low scalability and 
deployment of new networking services is a subject to a long 
standardization process. A particular problem that lies within 
the scope of this paper is content delivery over IP, with 
respect to time-sensitive traffic – e.g video. Simply said, an 
effective solution is possible with a programmable network 
and for that task we need Active Networks [2, 3]. 

For example, a number of multi-cast schemes and 
protocols were developed. They try to do their best in 
optimizing a multi-cast tree to satisfy and guarantee a proper 
quality of service. These protocols cover multi-cast tree 
creation, optimization and client group membership 
management. This requires special hardware and software 
support from both network and clients. In fact, there is a 
complex overlay network built on a top of the IP network. 
While it addresses needs of today, there is still a room for an 
improvement [4]. We desire to be ready even for needs of 
tomorrow. 

We do not aim at solving a particular problem. We try to 
build a general solution, which could be used to solve a 
variety of tasks and issues in a simple manner. To solve this 

general problem, we did not decide to use a traditional 
network. Instead, we decided to use the concept that is 
known as Active Networks. 

Active Networks is such concept, where every network 
node is active, when compared to passive elements used 
today. The activity is meant as the ability of a network node 
to process data in a context of application that created them. 
To make this possible, a packet has been superseded with a 
capsule. Along data, each capsule is associated with a 
reference to a program code. The code is downloaded 
through the network as needed and executed, as a capsule is 
run at a node. As the code executes, the node is able to 
handle the capsule’s data in an application specific context. 
Thus, it is possible to teach the network new things on the 
fly. Note that capsule can route itself. 

Active application is such networking application that 
injects capsules, which replace packets, into the network. In 
turn, a capsule may inject another capsule or an active 
application into the network. Both, application and capsule 
have an access to a server-offered API to use its 
functionality. Any custom code runs in a sand-box that is 
called Execution Environment. 

As it is not realistic to assume that Active Networks 
would suddenly replace IP networks, these two networks 
would have to co-exist for a certain period. Thus, instead of 
awaiting a revolution in networking, we focus on adding 
more functionality to existing IP solutions via tunneling them 
into the world of Active Networks. 

A preceding work is presented in Section 2. Section 3 
explains our motivation. Fourth section describes proposed 
solution, while the next section is focused on 
implementation. Sections 6 and 7 focus on policy-based 
routing and worth-path routing. We discuss results in Section 
8. The following section gives additional details on the most 
needed improvement – code execution. Related work is 
given in Section 10. Section 11 finishes with conclusion. 

II. PRECEDING WORK 

The PANDA [5] project was the proof of the concept of 
tunneling the IP protocol over an existing active network. 
The PANDA software ran on a top of ANTS [6] active-
network server. It was a demonstration of active network's 
capability to transfer UDP datagrams transparently and to 
possibly recode contained video stream in order to satisfy 
bandwidth limits. The project, namely its PIC component, 
was implemented as a kernel module that communicated 
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through a BSD socket with the active network node. The 
node performed recoding and distribution of the stream. The 
demonstration showed that there is no need to modify neither 
source stream server nor the client software. By using active 
network as the underlying network, there was a significant 
spare of bandwidth and better QoS, was presented; QoS 
stands for Quality of Service. 

III. MOTIVATION 

In our research, we focused on problems, which showed 
up in the preceding work. They include IP tunneling, 
security, resource allocation and performance. We develop 
our own, general-purpose active network server. Its design 
addresses many shortcomings of the previous active network 
implementations. Preceding projects were generally aimed at 
particular problems, but without researching consequences 
among those. Capsule and application programming 
interfaces, performance and security have to be addressed 
altogether, not as standalone issues. 

An important issue of active networking is performance. 
This is given by a number of possibly flowing capsules, and 
the need to execute their code in a sand-boxed environment 
to guarantee a required security.  This is very challenging 
goal and no satisfying solution was present. Perhaps, this 
was the main reason, why DARPA ceased research funding 
on Active Networks. 

However, thanks to our research ideas and comparison 
with other projects, we consider this issue as solvable. 
Therefore, we did not decide to favor performance over 
security and server’s design. 

Thus, not taking the performance as a limiting factor, we 
have a general-purpose active server that anyone can deploy, 
write an application and investigate its behavior without 
studying server’s source code. 

The research project is called Smart Active Node, SAN 
in short [7]. 

IV. PROPOSED SOLUTION 

Our efforts on building an active network started with an 
idea of a general-purpose server and IP-tunneling.  

A. Generality, Usability and Security 

The server does not make any assumption about 
applications, which will run in the network. However, 
programmer of an active application should aim for low 
resources consumption. Otherwise, security monitor may 
consider increased demands for resources as a possible 
attempt of a denial of service attack, or a malfunctioning 
application. The resource is anything that can be allocated to 
the application, or a capsule – i.e. memory, processor time, 
network bandwidth, etc. 

Developing an active application should be as 
comfortable as developing a traditional application. Usage of 
a common IDE to develop active application is desired. 

Any active code runs in a sand-boxed environment to 
meet security measures. No instance of any program code 
can affect another instance by mistake. For an inter-process 
communication, it is necessary to use server-offered API. 

In the present implementation, programmer supplies Java 
byte-code that is executed in an execution environment, the 
sand box, and controlled by the security monitor. 

B. IP Tunneling 

The goal is to let the Smart Active Node to provide a 
seamless IP tunneling through the active network. Fig. 1 
depicts an illustrative network scenario. Consider two IP 
networks interconnected with an active network, where a 
source node sends IP packets to a destination node. The 
active nodes, which are connected to the IP networks, act as 
hybrid devices with both, IP stack and active networking 
functionality. As the IP packet gets to the hybrid node, it is 
intercepted at the third ISO/OSI layer. A component named 
Interceptor is responsible for this. 

Then, the packet is encapsulated into a capsule and 
routed through the active network to the hybrid border node 
that is connected to the destination IP network. It is the 
capsule’s program code, what makes the difference in 
performance. Note that as SAN runs on a standard operating 
system, both networks can overlay each other as well. 

The destination-border hybrid node unpacks capsule’s 
payload and injects the extracted packet into the IP network. 
The responsible component is called Injector. 

Finally, IP network routes the packet to its IP destination. 
The principle is the same for both directions so that 

Interceptor-Injector pair is present on each border node to 
satisfy two-way communication. 

Fig. 2 depicts a view on assignment of responsibilities. 
Active network server and IP stack of underlying operating 
system cooperate. Oriented lines show the data flow. Starting 
with data coming through the IP stack, the interceptor 
component, called saninterceptor, receives the data as a 

Figure 2.  Linux IP Tunneling Components. 

Figure 1.  IP Tunneling Network Scenario. 
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packet. Subsequently, it is passed to the ii component; ii 
stands for interceptor-injector. This component is responsible 
for encapsulating it into a capsule. 

When receiving data as a capsule from an active network, 
the ii component delivers the data to the injector component. 
Then, the data are injected at the ISO/OSI network layer into 
the IP stack. 

V. IMPLEMENTATION 

Having the design, we continued with implementation. 
Initially, we assumed that Java and JVM will be fast enough, 
to get acceptable values of throughput and latency. 
Therefore, only OS-dependent parts of the tunneling were 
written in C++. 

A. Generality, Usability and Security 

As our solution is a general-purpose server, there is no 
special software needed to create custom active applications. 
Recently, some basic applications already work and 
development of others is in progress. The working ones 
include ping, trace route and IP tunneling. The work in 
progress comprises of dynamic routing, telnet, SSH and 
possibly a port of AVNMP [8] – a tool to predict network’s 
load. 

SAN active application is written in the standard Java 
language, compiled and packaged into a Java archive with a 
manifest file. The applications can be developed in IDE such 
as Eclipse or Netbeans with no expenses.  

The application’s, or capsule’s, code is interpreted as a 
Java byte-code in the present state. We developed our own 
byte-code interpreter. As it has been written from scratch to 
allow strict control over the execution process, it interprets 
everything, down to Java native methods. As the result, 
nearly every valid Java construct can be used to create an 
active application. Moreover, we have a full control over the 
code. Thus, passing a special file system identifier to obtain 
undesired access on particular operating system can be 
forbidden, as well as a simple constructs like calling 
System.exit(0) to shut down the server maliciously. 
Preceding works, such as ANTS, used directly the Java 
machine they run within, thus virtually providing no security. 

B. Optimization 

SAN started as a Java project for various reasons. As 
already mentioned, we need to address the performance. To 
improve it, a C++ clone of the server is being written. From 
this step, we expect a performance increase and the 
possibility to deploy the server on such nodes, where Java is 
not available, e.g. switches and routers. 

In an active network server, the most likely bottleneck is 
byte-code interpreter and scheduler. To run the byte-code, it 
is necessary to prepare execution environment, i.e. the sand 
box, and to schedule it for execution. Preparing the execution 
environment is a time-significant part of total run-time, in a 
case of shortly running capsule codes such as ping. Thus, the 
overhead does not matter, if the application run-time is long 
and frequency of runs is low. However, it matters with 
applications such as the IP tunneling. The IP tunneling run-

time per capsule is very short and the frequency of runs can 
be very high. It depends on the data stream being transferred.  

To speed up the code execution, we would like to have a 
mechanism that would optimize parts of code being executed 
frequently, and to cache them subsequently. The 
optimization would be a byte-code transformation into 
processor’s native instruction set. 

 Last optimization task is to examine the internal 
scheduler. It is currently implemented as a fair-share. 

C. IP Tunneling on Linux 

We have implemented the IP tunneling over active 
network on Linux first. 

The idea behind the tunneling is following. If we want to 
pass IP packets transparently through the active network, we 
have to intercept IP packets either on physical layer, link 
layer or network layer to prevent the operating system from 
managing these packets. Otherwise, the operating system 
could possibly send ICMP error packets back, because it is 
not aware of being a part of active network. 

We chose to use unmodified Linux kernel along with the 
Netfilter/Iptables [9] project to preserve simplicity, 
generality and ease of use. We used the Iptables' NFQUEUE 
target along with the ipq library for queuing packets into user 
space. There is a benefit coming from the usage of this 
approach – we can easily decide, which packets from and to 
the IP networks are transferred through the active network. 

After en-queuing a packet, entire datagram containing all 
headers is fetched into user space with libipq API calls. And, 
it is sent unmodified through a network socket to the SAN 
along with information about active code that handles its 
data. 

Packet data and meta information exchange between 
saninterceptor and SAN ii component is accomplished 
through a standard socket, while using a special type of PDU 
to transfer the data. The PDU format and primitive data types 
are shown in Fig. 3; PDU stands for Protocol Data Unit. The 
first position of the PDU is the name of the active application 
being executed upon receiving the data. Then, an array of 

Figure 3.  SAN Interceptor-Injector PDU. 
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application parameters apply. For example, they can 
represent routing, QoS or ToS information; ToS stands for 
Type of Service. Finally, entire datagram is attached. The 
PDU is flexible enough to handle a datagram up to 65kB. 
This is enough even for super jumbo frames. 

Upon receiving PDU, the active node passes the 
datagram to the active application that is responsible for the 
IP tunneling. The application creates a capsule and injects it 
into the network. When the capsule arrives at the destination 
active node, datagram is unpacked and sent through the 
socket to the injecting application. Injector injects the 
datagram into the IP network. As the packet is not modified 
on its route, the process is fully transparent to IP 
applications. 

We did tests with HTTP, SSH and FTP protocols. They 
worked flawlessly, like if no active network was presented. 

D. IP Tunneling on Windows 

We continued with implementation of the WDM driver 
model that applies to Windows 2003, Vista and 7. ReactOS 
uses the WDM model as well, but we made no tests on 
ReactOS yet. Fig. 4 depicts the implementation. 

Legacy IP applications communicate via the TCP/IP 
NDIS protocol as usually. SAN filter intercepts the 
communication. Intercepted IP packet is accompanied with 
additional information and sent to SAN server via an inter-
process communication. In SAN address space, an active 
application converts it into a capsule. Then, SAN server 
handles the capsule in a standard way. 

When the capsule is to be converted back into the IP 
packet, NDIS driver does this as instructed by SAN. A 
legacy IP application gets the packet from the TCP/IP NDIS 
protocol as usually. 

With the further development, we aim to support two 
kinds of applications – legacy IP applications and SAN-
aware applications. SAN-aware applications would be free to 
use SAN capabilities directly. Thus, they would be able to 
exercise a finer control over the transmission. 

VI. WORSE-PATH ROUTING 

References [4, 5] give existing enhancements on multi-
cast and tunneling of existing IP applications. We would like 
to go a step further by proposing such routing scheme that 
will rearrange network flows to benefit time-sensitive 
networking applications. 

A. Policy-Based Routing 

Let us classify network traffic into two categories. First 
one is time-sensitive traffic, for instance IPTV and VoIP. 
Second category is such traffic, where it is possible to 
tolerate some increase of delivery delay. For instance, SMTP 
and file-sharing services fall into this category. 

We do not use terms real-time and non-real time traffic, 
because we discuss additional scenarios such as MPI in 
subsection D. While we assume a possible benefit for MPI, 
we do not assume a real-time application using MPI. 

Multiple routes to target nodes may exist in a computer 
network, or an interconnection of computer networks – 
especially the Internet. Some routes are better in terms of 

bandwidth, load, reliability, number of hops, etc. Routing 
algorithms try to find an optimum route. Regarding Internet 
Service Providers (ISPs), a price of link plays a role as well. 

Let us consider an ISP with two different links to other 
ISP. One link is cheaper, but there is a lower bandwidth. To 
reduce costs, ISP would prefer such policy that would route 
most of the traffic through the cheaper link. Nevertheless, 
ISP should route the time-sensitive traffic through the faster 
link to maintain a quality of services to customers. In IP, this 
concept is implemented as policy-based routing. 

However, the other ISP may not be interested in 
maintaining such quality of services to the customers of the 
traffic-originating ISP. By addressing this issue, the 
proposed concept differs from policy-based routing, as it is 
implemented in IP. 

We give such IP tunneling scheme that routes the delay-
tolerant traffic through slower links. As a result, it reduces 
the need to throttle the transmission speed of time-sensitive 
traffic on faster links. The proposed approach does not 
impose a need for agreement on common routing policies 
between two ISPs. 

B. Principle 

First task is to intercept such IP packets, which do not 
belong to the time-sensitive traffic. Then, we wrap these 
packets into capsules. Finally, associated program code 
routes the capsules through slower links – the worse-path. 

Let us consider SMTP and IPTV for demonstration. 
Once SMTP server retrieves MX record for target domain, it 
opens a TCP connection to the destination server. Routers 
will direct the flow of connection’s packets according to 
routing tables, as it would happen with the IPTV packets. 
SMTP and IPTV packets may share the same link. QoS can 
throttle transmission speed to favor time-sensitive traffic 
such as IPTV. However, QoS cannot route a particular TCP 
connection over a different link to gain yet more bandwidth 
for the IPTV. With IP and policy-based routing, we would 
need ISPs, which agreed on compatible routing policies. 
With a programmable network, we can apply the following 
concept. 

Figure 4.  Windows IP Tunneling Components. 
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First, we need an additional routing table at the router. To 
fill the table, it is necessary to modify routing metric so that 
it favors slower links. For example, OSPF uses inverse value 
of bandwidth. Then, we would take the bandwidth as the 
metric.  

Second, we need a data unit that would be routed by the 
alternative routing table. In active networks, the router would 
execute the capsule’s code. So, the capsule would look-up 
the alternative routing table and set its destination 
accordingly. If the router would not execute the code, e.g. for 
security reasons, the capsule would be forwarded according 
to the standard routing table. So, it would reach the 
destination as well, just sooner. 

Capsules route themselves through slower links. Thus, 
they leave more bandwidth for the time-sensitive traffic on 
the faster links. Considering a possibility of different routing 
policies in transit networks, capsule’s behavior increases the 
probability that time-sensitive traffic will use the faster links.  

As capsule’s program code does not change, the capsule 
acts the same way in all transit networks. Therefore, no two 
ISPs have to make a prior agreement on common routing 
policies. 

C. IP-Programmable Hybrid Network 

Let us consider a scenario, where a programmable node 
would aid a traditional IP network. As we do not tunnel the 
time-sensitive traffic, we can route it the standard way. On 
the other hand, the tunneled traffic is wrapped into capsules. 
We can distinguish such traffic easily, e.g. by port number, 
or a header bit. Therefore, it is possible to establish an 
efficient routing policy. Such policy would route capsules to 
the programmable node, while leaving rest of the traffic 
untouched. 

Fig. 5 depicts a case scenario. Various clients from the 
source network #1 want to connect to particular hosts in the 
destination network #4. There is a policy-based routing 
enabled at the router that acts as their default gateway. It 
identifies particular protocols by port numbers. Selected 
traffic goes to the SAN server. Otherwise, the router 
forwards rest of the traffic to the IP-based border router. 
SAN server intercepts incoming IP packets and transforms 
them into capsules. According to programmable rules, it 
forwards them to the next SAN server. Note that the 
associated code can do much more than just policy-based 
routing. SAN servers in the transient networks act the same 
way. In the destination network #4, SAN server transforms 
capsules back into IP packets and forwards them with the 
standard IP routing mechanism. 

The IP-programmable hybrid is not a fully programmable 
network. However, Fig. 5 depicts such scenario, where it is 
possible to route a defined amount of traffic to the 
programmable servers. As a result, we can test 
responsiveness and stability of the programmable servers to 
given load, while having backup routes. 

Note that it is not necessary to deploy the hybrid network 
at the Internet scale. It can serve as well for networks of a 
single organization, or its department. 

D. Additional Case Scenarios 

Let us consider a grid computing, for an illustrative 
example. A large grid may consist of several sub-grids, 
which are connected with slower links than the links inside 
the sub-grids. For distributed computing, there are tools such 
as GridMPI and PVM available. These libraries provide 
means for asynchronous and blocking communication.  

For example, MPI_Send function is blocking. The caller 
does not continue its execution, until it receives a 
confirmation message. The communication overhead affects 
caller’s performance, i.e. the completion time. For this 
reason, we can consider such communication as time-
sensitive. Therefore, we should route it through faster links. 

On the other hand, MPI_Ibsend function is non-blocking. 
The caller continues its execution, while MPI delivers the 
message. For such programs, we could route such messages 
through slower links to reduce the waiting time of blocking 
operations such as MPI_Send. 

Another possible scenario is secure, anonymous 
communication. The TOR project provides a network of 
nodes, which route communication in such manner that it is 
too hard to find its origin. TOR uses so-called onion routing 
and it supports applications, which use TCP. With tunneling, 
SAN could implement the same behavior for any packets, 
i.e. to build a secure network by default. With policy-based 
routing and client’s IP, it would be possible to enable such 
service per individual user. 

Figure 5.  Hybrid Scenario of Worse-Path Routing. 
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E. Comparison with Source Routing 

IP offers loose and strict source routing. With such 
routing, packet’s route is set in advance by the source node. 
While the strict routing sets entire path, routers may forward 
the packet through other routers as well with the loose 
routing. In both cases, sender must have such knowledge of 
topology so that the packet reaches the destination. There are 
two problems. 

First, internal topology of other ISP is supposed to be 
opaque. At the best, there is no guarantee on knowledge of 
the topology, including bandwidths, utilization and other 
factors. In a worse case, ISP can choose to block the source 
routing. 

Second, we do not discuss a use of source routing for an 
administrative task. We discuss use of the source routing for 
a regular traffic. In such case, the source node would have to 
maintain a complete routing table for entire Internet. This 
would impose overwhelming requirements on the node, thus 
rendering such solution as impossible. 

In contrast to the source routing, SAN-based solution 
uses the well-established concept of routing tables along the 
route to the destination node. 

VII. EXPERIMENTAL IMPLEMENTATION  

OF WORSE-PATH ROUTING 

To implement the worse-path routing, we use the 
following technologies – AntNet for routing and Rendez-
Vous to expose an additional programming interface to 
active code of capsules. 

A. AntNet 

First, we needed a routing algorithm. To benefit from the 
programmability, we implemented the AntNet algorithm 
[10]. This algorithm was originally designed for mobile 
agents. It is inspired by a behavior of ant colony. Using 
indirect information, a simulated pheromone trail, simulated 
ants find shortest path thanks to their cooperative behavior. 

Making a reference comparison to OSPF, AntNet has 
better distribution of packet delays and negligible impact on 
the use of network bandwidth [10]. There are recent 
improvements to AntNet. They further improve throughput, 
stability and shorten time delay [11, 12]. Improved AntNet 
deals with topology changes better than OSPF does [11]. 
Reference [10] gives a comparison with other routing 
protocols as well. 

For our experiments, we simulate Internet with a set of 
interconnected nodes. We simulate networks of individual 
ISPs with these nodes. In this fashion, we use AntNet as an 
exterior gateway routing protocol.  

B. Rendez-Vous 

Having the routing algorithm implemented, we needed to 
implement an alternative routing table in a general fashion. 
We wanted to avoid any ad-hoc solution. We implemented 
Ada rendez-vous synchronization mechanism into our Java 
byte-code interpreter. 

In our implementation, an active application can register 
a rendez-vous server. Incoming capsule can lookup a 
particular server and call its entries. This way, we have 

achieved a possibility of having so-called installable APIs. 
As a result, SAN exposes just the minimum set of functions 
through a pre-defined interface. Then, it is upon networking 
services and applications to expose desired application 
programming interfaces – APIs. It is possible to register and 
unregister particular API dynamically, without a need to 
restart SAN server. 

The choice of rendez-vous has a security background. 
Synchronizing with a monitor, the calling thread executes 
monitor’s code, thus using its internal data structures. A 
malicious code could possibly exploit such design. With 
rendez-vous, the calling thread is suspended, until the called 
thread, the server, finished the execution. Thus, the caller has 
no access to server’s internal data structures by the very 
principle of rendez-vous. This is important to us as we 
consider a possibility of execution environment reuse to 
speed-up code execution. 

There are stability benefits as well. Having a rendez-vous 
executing in a standalone thread, we avoid priority problems. 
As the rendez-vous thread keeps its priority, a critical section 
will not be blocked for too long by a thread with low 
priority. Moreover, the rendez-vous thread can exercise a 
better control over resources being allocated in a critical 
section, than calling threads could do. An unknown calling 
thread is more likely to be terminated by security monitor 
than a rendez-vous server thread is. 

Java has no native program construct to implement 
rendez-vous as Ada has. There are two ways to implement 
the mechanism into present Java language standard. 

One way is to develop a pre-processor that would allow 
Ada syntax in .java file. The preprocessor would generate a 
.java file that a Java compiler would accept. Therefore, any 
debug info would be valid for the generated .java file. 

It is always necessary to develop a package, which would 
synchronize threads in the rendez-vous manner. Therefore, 
the second way is to use this package directly, without the 
pre-processor. This way, we have a .java file that 
programmer understands, compiler can process it and 
generates a debug info for it. We chose this way. 

The following code shows a fragment of the rendez-vous 
server, which implements the worse-path routing table. 

 
public void worsePathRoutingServer() { 

 

//1. Register Rendez-Vous server 

if (!applicationAPI.registerServer(this,   

                               WPRTable_GUID)) { 

  //Error registering the server, however      

  //traffic is still routable. Capsules will  

  //just use the default routing table. 
  return; 

} 

  

//2. Register supported entry-calls 
applicationAPI.registerEntryCall(WPRTable_GUID,   

                               GetGateway_NAME); 

 

//3. Handle the entry-calls 
try { 

  applicationAPI.makeAccept(WPRTable_GUID); 
} catch (InterruptedException ex) { 

  handleException(ex); 
} 
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//4. Clean-up 
applicationAPI.unregisterServer(WPRTable_GUID); 

} //end of worsePathRoutingServer() 

 
The following code fragment shows as capsule routes 

itself, using the worse-path routing table: 
 

 

public void routeCapsule() { 

 

//1. Get capsule’s destination; it is not stored 

//   in capsule’s header as the header may  

//   change on the route. Therefore, we store  
//   the real destination in the payload. 

 

NetIdentifier realDst = readCapsuleDestination( 

                       capsuleAPI.getPayload());  
 

//2. Try to get worse-path routing record  

//   for the real destination. 

try { 

  RoutingRecord rr =  

       capsuleAPI.callEntryCallByName( 

       WPRTable_GUID, GetGateway_NAME, realDst); 
 

   //3. If the previous call succeeded, extract 

   //   the gateway and set it as capsule’s 

   //   destination.   
 
  if (rr != null)  

    capsuleAPI.setDestination(rr.getGateway) 

  
   //4. In a case of failure, set the real  

   //   destination. Then, the capsule will 

   //   reach its destination through a normal 

   //   route. However, this code will attempt  
   //   to resume the worse-path routing 

   //   at the very next node. 

 
   else capsuleAPI.setDestination(realDst); 

 

  
} catch (InterruptedException ex) { 

  capsuleAPI.setDestination(realDst); 
} 

 

} //end of routeCapsule() 

 
 

While we have the key components done, the worse-path 
routing is not finished yet. As given in the following section, 
we need to switch to the SAN C++ port, first. Then, we can 
finish the implementation with such execution speed that is 
fast enough for a productive use. As SAN servers make a 
distributed environment, where each node is a parallel 
application, the execution speed is an important factor for 
debugging. 

VIII. RESULTS 

Initially, we expected better performance results than we 
achieved. Eventually, it turned out that speed and security 
with Java-in-Java in JVM will not run fast enough, despite 
source code optimization, runtime profiling and performance 
tuning done by JVM. For this reason, the paper ends with a 
focus on speed of code execution. 

A. Background 

The PANDA project [5] was built on a top of ANTS 
project [6]. ANTS project ran in Sun JVM. The JVM 
executed capsule code as well as ANTS’ code. While this 
allowed a greater throughput than a Java-in-Java approach, 
the solution was not secure enough. Later on, secured 
solutions appeared. They included PLAN [13], RCANE [14], 
SANE [15] and SNAP [16]. They were able to verify 
integrity of server’s code and configuration, and authenticity 
of capsule’s code. Also, some of them limited programming 
constructs to avoid creating of a possibly dangerous program 
code. 

We decided to strengthen the security measures by being 
able to monitor code execution on-the-fly. For this reason, 
we replaced the use of Sun JVM with our own Java-in-Java 
interpreter. This became the performance bottleneck of our 
server. Eventually, it became obvious that we need to 
abandon Sun JVM to run the server. We chose to port the 
server to C++, while leaving the Java development branch as 
a sand box. Presently, we use it to test new ideas and to 
develop active protocols in advance, prior to finishing the 
C++ port of the SAN server.  

B. Linux IP Tunneling 

We performed a couple of tests with the IP tunneling 
implementation. In all tests, there was a saturating traffic 
flow from one computer to another. We generated a 
continuous stream of IP packets to saturate link’s bandwidth. 

The first test was the performance test of the 
saninterceptor itself. It was aimed to prove correct memory 
management, effective CPU and bandwidth usage. Table 1 
shows results for two directly connected PCs with 100 Mbps 
network cards and the same PCs connected through two 
instances of saninterceptor. Looking at the Table 1, we can 
say that use of saninterceptor nearly does not affect data 
transmission, even if it is implemented by simple means. 
N/A means that values were not observable or affected at all. 

The second test was the performance test of a complete 
system, i.e. including SAN, active applications, etc. This test 
revealed some drawbacks in SAN’s implementation. They 
are related to running many instances of short-run-time 
applications and capsules. 

Although the tunneling results were not satisfying, they 
showed that the IP tunneling works and that it can be used 
for tunneling of applications like HTTP and SSH. 
Nevertheless, it became clear that we need to improve byte-
code execution prior making any other substantial changes. 

TABLE I.  INITIAL SANINTERCEPTOR PERFORMANCE RESULTS  
ON LINUX TO LINUX 

 CPU Memory Latency Throughput 

direct connection N/A N/A <2ms 94 Mbps 

Saninterceptor only N/A 18kB 2ms 90 Mbps 

SAN + saninterceptor 100% N/A >200ms 120 kbps 
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C. Execution Environment Benchmark 

To compare performance of particular environments, and 
to estimate a minimum needed performance, we created a 
benchmark test. Since the C++ port is not finished yet, we 
cannot evaluate network-specific operations. Therefore, the 
benchmark computes a matrix determinant in such manner, 
that is uses memory, ALU and floating point instructions. 

Table II gives results for Windows 7. To eliminate side 
effects of operating system, such as caching and program 
loading at random addresses, we ran the test for 10 times. 
Then, we ran the test for another 30 times and computed 
average execution time. The First Time column gives time 
just for the very first run. As the server has to execute a 
program code for a first time, as well as it may execute a 
particular code frequently, we give both – average and the 
first time. We collected the presented results on Intel64, 
family 6, model 23, stepping 10, frequency 2.40 GHz. 

Table III gives results for Debian 4.3.2-1.1.  The machine 
is part of Czech National Grid Project – MetaCentrum. This 
affects the software equipment. It runs on Intel Xeon, family 
15, model 4, stepping 3, frequency 2.80 GHz. The 
benchmarking procedure was the same. 

Using Sun JVM, we performed tests with non-standard 
switches. After the regular test, we run the test again, but 
with the non-standard –Xcomp switch. According to the 
documentation, everything should be optimized. Program 
loading took ~1 second on Windows, ~3 seconds on Linux. 
On Windows, the execution time did not change. On Linux, 
the execution time was longer. Then, we run the JVM again, 
but without the switch. On Linux, the execution time 
returned back to normal. On Windows, it was reduced by 
~50%. Perhaps, there is some caching effect that causes such 
behavior. 

Beside –Xcomp, we tested the –Xint switch as well. 
Accordingly to the documentation, the code should be 
interpreted only. 

For comparison, we ran a C++ port of the benchmark 
with VisualC++ 2008 64-bit compiler, and with GCC 4.3.2 
32-bit compiler.  

SAN C++ JVM does not compile on Linux yet, so it is 
not included in Table III. 

D. Discussion 

SAN’s Java-in-Java interpreter is so slow that it has no 
point to measure the networking performance. With Java-in-
Java, we test flow and logic correctness of program code. 

Present JVM of SAN C++ performs much better. 
However, it is still significantly slower than Sun JVM. The 
performance results indicate that Sun JVM transforms byte-
code into the native instruction set, based on some threshold 
given by code profiling. However, the optimization does not 
seem to be as good as it could be, on Windows and Linux 
x86 platforms. 

If we would consider that the optimization does not make 
an intensive use of available processor registers to favor 
simpler-to-code utilization of stack, then it is a reasonable 
appeal to us to pursue the byte-code transformation, instead 
of developing the Java-in-Java byte-code interpreter further. 

So, we already started to implement the byte-code 
transformation to the C++ port. SAN C++ will transform the 
byte-code, which is being executed frequently, into the 
native instruction set. Otherwise, it will execute the byte-
code inside its JVM. We chose this rule to avoid program-
code cache-trashing, and to reflect the very fact that the 
transformation takes some time as well. The threshold values 
of “executed frequently” and program-cache size are a 
subject to future research. 

IX. CODE EXECUTION 

To execute the active-networking code, we decided to 
support two code notations – the byte-code and processor-
native code. The byte-code will be either interpreted, or 
transformed into the native instruction set. Any application 
can be executed in byte-code. For selected operating 
systems, the code can be supplied in a processor-native 
instruction set to support critical operations. Such code has to 
be signed digitally, and the server has to trust explicitly the 
particular code and the signer.  

A well-written program in C has lower memory 
requirements than a byte-code equivalent. In addition, 
compilers such as GCC produce much more efficient native-
instruction code than JVM does from byte-code. This is our 
motivation for allowing the possibility to supply the code in 

TABLE III.  CODE EXECUTION TIMES ON WINDOWS 

Environment Average Time [sec] First Time [sec] 

SAN Java-in-Java >> 1 >>1 

SAN C++ JVM   1.37200   1.38000 

1st Sun JVM 1.6.0_17 64-bit   0.02350   0.02594 

1.6.0_17 64-bit -Xcomp   0.02535   0.02605 

2nd Sun JVM 1.6.0_17 64-bit   0.01255   0.01295 

1.6.0_17 64-bit -Xint   0.22561   0.22412 

1.6.0_17 64-bit –g:none   0.01301   0.01363 

VC2008 x64 Debug   0.07000   0.07000 

VC2008 x64 Release <0.00001 

0.01000 occassionally 

<0.00001 

 

 

TABLE II.  CODE EXECUTION TIMES ON LINUX 

Environment Average Time [sec] First Time [sec] 

SAN Java-in-Java >> 1  >>1 

SAN C++ JVM  N/A  N/A 

1st Sun JVM 1.5.0_10 32-bit   0.06137   0.06185 

1.5.0_10 32-bit -Xcomp   0.09401   0.09388 

2nd Sun JVM 1.5.0_10 32-bit   0.06127   0.06138 

1.5.0_10 32-bit -Xint   0.46654   0.46329 

1.5.0_10 32-bit –g:none   0.06257   0.05964 

GCC x86 –O0   0.02000   0.02000 

GCC x86 –O3 <0.00001 <0.00001 
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native instruction set. We would like to have popular 
protocols to be handled as most efficiently as possible, with 
respect to their share in traffic composition. 

A. Byte-Code Transformation 

Instead of transforming byte-code instructions directly 
into processor-native instructions, we decided to generate C 
code. The generated code will use pointer arithmetic to 
manipulate operands of the byte-code instructions, which are 
stored in the stack. Then, we will rely on a C compiler for 
optimization. 

For a complex byte-code instruction, such as a newarray 
or monitorenter, we will call a respective C-coded function. 
This way, we can handle methods such as System.arraycopy, 
as JVM already does [24]. 

B. Security 

To enforce security measures at the program-code level, 
we need to forbid particular program constructs and to limit 
memory and processor-time utilization. 

When we encounter an instruction such as anewarray, the 
byte-code interpreter asks security monitor. A C-transformed 
code will call a function that will do the same. The security 
monitor checks current memory allocation status and acts 
accordingly. If the amount of allocated memory is over a 
given threshold, the request is denied. 

As byte-code interpreter runs, it counts number of 
executed instructions per interval. Scheduler will not plan the 
process, if it would overcome an imposed limit. Into the C 
code, we can insert such code blocks, which will check 
processor-time utilization and yield the processor eventually. 

Alternatively, there are SetThreadContext and 
GetThreadContext functions on Windows. On Linux, there is 
the ptrace function. With these functions, we can suspend 
thread execution and get/set its context. Then, there will be 
no need to include those code blocks into the generated C-
code. 

A programmer may desire to call a certain, possibly 
dangerous method like System.exit. In SAN, calls are 
checked and possibly denied with black-lists. The 
configuration may look like this fragment: 

 
<roles> 

 <role name="anonymous"  
        resourceProfile="anonymousProfile"> 

  <permissions> 

  <access name="java.lang.System.exit"  

             type="method" allow="forbidden"/> 
     </permissions> 

 </role> 

</roles> 

   
<resourceProfiles maxRunningCapsules="20"  

                  maxActiveCodes="50">   

 <profile name="anonymousProfile"  

          priority="onIdle"> 
  <cpu type="percent" maxValue="5" /> 

  <memory type="percent" maxValue="5" /> 

  <bandwidth type="percent" maxValue="5" /> 

  <activeCodes maxValue="100" /> 
  <createdCapsules maxValue="5" /> 

 </profile> 

</resourceProfiles> 

 

The concept of roles serves as an additional protection. 
For example, a time protocol cannot modify routing table, 
and routing protocol cannot set system time. Uncategorized 
protocols are most restricted with the anonymous role. 

X. RELATED WORK 

A number of papers were published on Active Networks 
in earlier years. Also, some recent works are relevant, 
although they do not address Active Networks exactly.  

A. Google Chrome 

Taking a closer look on the concept of the Google 
Chrome [17] operating system, we see a resemblance with 
the active networks concept. There is a simple, underlying 
operating system that provides hard application isolation – 
sandboxing [18]. API and the definition of web services 
define the Execution Environment. Also, it features a 
security manager that prevents running a malware. 

B. Google Native Client 

Although the Native Client [19] is not primarily designed 
for a use in active networks, there are ideas valuable to a 
high performance execution environment. 

C. AntNet QoS 

Another implementation of QoS that is based on a 
programmable approach is an adaptation of the AntNet 
routing algorithm for QoS [20]. The implementation was 
tested in a heterogeneous network as a part of a multimedia 
transcoding system. As a server receives a request, it 
generates ants, which search for a best transcoding path and 
service, based on desired QoS. 

By having the AntNet algorithm implemented, we can 
continue to implement the QoS capability. 

D. Security 

Reference [21] gives an overview on CSANE active 
network concept, which aims for security and scalability. 
CSANE goes for cluster processing. It builds on ANTS, 
JanOS and Linux. 

With rendez-vous, we take a preemptive counter-measure 
to deal with a possibility of attack, which is based on sharing 
a memory with another process. There was a similar attack, 
on the HyperThreading platform. One process obtained data 
of another process, particularly RSA key. We consider 
principle of this attack to possibly apply to monitor calls. 
Reference [22] provides attack details and gives suggestions 
to designers of operating systems. 

E. Performance Testing 

Reference [23] gives a recent, comparative study of JVM 
benchmarking – Sun JVM and Oracle JRockit. It concludes 
that JRockit runs usually 19% to 27% faster. Such numbers 
support the decision to perform byte-code transformation 
with SAN C++ internal means, instead of switching to 
another JVM. 
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F. Native Code 

Reference [25] presents a load-redistribution method for 
distributed applications. As a proof of concept, it uses a 
special active-network server with no security, but utilizing 
active programs coded in processor-native instruction set. 
Execution overhead of this approach is insignificant. 

XI. CONCLUSION 

Adding program logic to passive IP packets may lead to a 
significant increase of network’s efficiency [4, 5]. A network 
flow can adapt to current conditions automatically, as its 
units of transmission traverse the network. This is paid with 
increased overhead, as there is an executing code.  

SAN is a universal active node server that is capable of 
IP tunneling to enhance performance of IP applications, as 
well as supporting newly created, active networking 
applications. Both can be accomplished in standard operating 
systems, so that no “overnight” revolution is needed to start 
benefiting from the active-networking concepts. 

The related work shows that the concept of active 
networks is usable for the future – although, not in a way it 
was supposed to happen originally. With respect to the 
advances on the original work [1], we can try to evaluate 
history of active networks’ development. Looking back at 
the history of active networks from the point of view of SAN 
development, it seems that the magnitude of initial support 
was driven more by expectations and possibilities, than it 
was corrected by development costs and requirements. 

Active networks appeared with a proof-of-concept that 
was implemented with Java. While specialized languages 
appeared for active programs, a vast majority of well-
accepted papers on active networking used Java. This gave 
the impression that Java is a good choice for development of 
active-networking server. And, we do not agree. 

Speed and security were the major disadvantages, which 
prevented adoption of active networks. Our results suggest 
that the use of JVM is the cause. JVM cannot compete with 
an optimized code from a C compiler like GCC. Comparing 
Java and JVM with a well-written C program, Java loose, 
when it comes to memory requirements and code execution 
speed of both, active program and associated security checks. 
JVM overhead seems to be too great for software like active-
networking server. 

We still consider Java as a good choice for using the 
byte-code as active program notation, across different 
operating systems and processors. Also, Java benefits from a 
number of programmers and some language characteristics. 
For example, we consider it to be easier to implement 
security measures with references rather than pointers. Next, 
the garbage collector reduces the risk of memory leaks and 
segmentation faults.  

On the other hand, references and garbage collector lead 
to increased memory demands and processor time spent in 
finalizing and freeing unreferenced objects. In addition, 
memory fragmentation boosts incurred speed penalty. 
Therefore, the server must be written in a C-like language, as 
well as frequently executed active program code. GCC-like 

optimized code in processor-native instruction set is 
essential. 

Java was an adequate choice for creating the proof of the 
concept for particular aspects of active networking. 
However, the situation has changed. To prove the concept of 
active networks as feasible for a productive use, we have to 
come close to performance of today IP stack 
implementations. 

We succeeded with implementation of key components, 
while addressing shortcomings of preceding active-network 
implementations. Now, we need to finish the C++ port and to 
subsequently improve the code-execution speed with byte-
code transformation. 
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