
Lessons Learned on Enhancing Performance of Networking Applications

by IP Tunneling through Active Networks

Tomas Koutny and Jakub Sykora

Faculty of Applied Sciences

University of West Bohemia

Plzen, Czech Republic

txkoutny@kiv.zcu.cz, jsykora@students.zcu.cz

Abstract— In 1995, DARPA initiated a work on a

programmable concept of computer networking that would

overcome shortcomings of the Internet Protocol. In this

concept, each packet is associated with a program code that

defines packet’s behavior. The code defines available network

services and protocols. The concept has been called Active

Networks. The research of Active Networks nearly stopped as

DARPA ceased funding of research projects. Because we are

interested in research of possible successors to the Internet

Protocol, we continued the research. In this paper, we present

an active network node called Smart Active Node. Particularly,

this paper focuses on its ability to translate data flow

transparently between IP network and active network to

further improve performance of IP applications. We describe

the translation mechanism, its possible use and discuss

particular implementation aspects.

Keywords- Active Networks, Smart Active Node, IP

tunneling, routing

I. INTRODUCTION

This paper extends the original paper [1] (Sections 1 – 6,
sub-sections A and B of Section 10 and a portion of Section
11), as it captures recent advances on the project since
Section 5, sub-section D.

Today, IP networks suffer from low scalability and
deployment of new networking services is a subject to a long
standardization process. A particular problem that lies within
the scope of this paper is content delivery over IP, with
respect to time-sensitive traffic – e.g video. Simply said, an
effective solution is possible with a programmable network
and for that task we need Active Networks [2, 3].

For example, a number of multi-cast schemes and
protocols were developed. They try to do their best in
optimizing a multi-cast tree to satisfy and guarantee a proper
quality of service. These protocols cover multi-cast tree
creation, optimization and client group membership
management. This requires special hardware and software
support from both network and clients. In fact, there is a
complex overlay network built on a top of the IP network.
While it addresses needs of today, there is still a room for an
improvement [4]. We desire to be ready even for needs of
tomorrow.

We do not aim at solving a particular problem. We try to
build a general solution, which could be used to solve a
variety of tasks and issues in a simple manner. To solve this

general problem, we did not decide to use a traditional
network. Instead, we decided to use the concept that is
known as Active Networks.

Active Networks is such concept, where every network
node is active, when compared to passive elements used
today. The activity is meant as the ability of a network node
to process data in a context of application that created them.
To make this possible, a packet has been superseded with a
capsule. Along data, each capsule is associated with a
reference to a program code. The code is downloaded
through the network as needed and executed, as a capsule is
run at a node. As the code executes, the node is able to
handle the capsule’s data in an application specific context.
Thus, it is possible to teach the network new things on the
fly. Note that capsule can route itself.

Active application is such networking application that
injects capsules, which replace packets, into the network. In
turn, a capsule may inject another capsule or an active
application into the network. Both, application and capsule
have an access to a server-offered API to use its
functionality. Any custom code runs in a sand-box that is
called Execution Environment.

As it is not realistic to assume that Active Networks
would suddenly replace IP networks, these two networks
would have to co-exist for a certain period. Thus, instead of
awaiting a revolution in networking, we focus on adding
more functionality to existing IP solutions via tunneling them
into the world of Active Networks.

A preceding work is presented in Section 2. Section 3
explains our motivation. Fourth section describes proposed
solution, while the next section is focused on
implementation. Sections 6 and 7 focus on policy-based
routing and worth-path routing. We discuss results in Section
8. The following section gives additional details on the most
needed improvement – code execution. Related work is
given in Section 10. Section 11 finishes with conclusion.

II. PRECEDING WORK

The PANDA [5] project was the proof of the concept of
tunneling the IP protocol over an existing active network.
The PANDA software ran on a top of ANTS [6] active-
network server. It was a demonstration of active network's
capability to transfer UDP datagrams transparently and to
possibly recode contained video stream in order to satisfy
bandwidth limits. The project, namely its PIC component,
was implemented as a kernel module that communicated

223

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

through a BSD socket with the active network node. The
node performed recoding and distribution of the stream. The
demonstration showed that there is no need to modify neither
source stream server nor the client software. By using active
network as the underlying network, there was a significant
spare of bandwidth and better QoS, was presented; QoS
stands for Quality of Service.

III. MOTIVATION

In our research, we focused on problems, which showed
up in the preceding work. They include IP tunneling,
security, resource allocation and performance. We develop
our own, general-purpose active network server. Its design
addresses many shortcomings of the previous active network
implementations. Preceding projects were generally aimed at
particular problems, but without researching consequences
among those. Capsule and application programming
interfaces, performance and security have to be addressed
altogether, not as standalone issues.

An important issue of active networking is performance.
This is given by a number of possibly flowing capsules, and
the need to execute their code in a sand-boxed environment
to guarantee a required security. This is very challenging
goal and no satisfying solution was present. Perhaps, this
was the main reason, why DARPA ceased research funding
on Active Networks.

However, thanks to our research ideas and comparison
with other projects, we consider this issue as solvable.
Therefore, we did not decide to favor performance over
security and server’s design.

Thus, not taking the performance as a limiting factor, we
have a general-purpose active server that anyone can deploy,
write an application and investigate its behavior without
studying server’s source code.

The research project is called Smart Active Node, SAN
in short [7].

IV. PROPOSED SOLUTION

Our efforts on building an active network started with an
idea of a general-purpose server and IP-tunneling.

A. Generality, Usability and Security

The server does not make any assumption about
applications, which will run in the network. However,
programmer of an active application should aim for low
resources consumption. Otherwise, security monitor may
consider increased demands for resources as a possible
attempt of a denial of service attack, or a malfunctioning
application. The resource is anything that can be allocated to
the application, or a capsule – i.e. memory, processor time,
network bandwidth, etc.

Developing an active application should be as
comfortable as developing a traditional application. Usage of
a common IDE to develop active application is desired.

Any active code runs in a sand-boxed environment to
meet security measures. No instance of any program code
can affect another instance by mistake. For an inter-process
communication, it is necessary to use server-offered API.

In the present implementation, programmer supplies Java
byte-code that is executed in an execution environment, the
sand box, and controlled by the security monitor.

B. IP Tunneling

The goal is to let the Smart Active Node to provide a
seamless IP tunneling through the active network. Fig. 1
depicts an illustrative network scenario. Consider two IP
networks interconnected with an active network, where a
source node sends IP packets to a destination node. The
active nodes, which are connected to the IP networks, act as
hybrid devices with both, IP stack and active networking
functionality. As the IP packet gets to the hybrid node, it is
intercepted at the third ISO/OSI layer. A component named
Interceptor is responsible for this.

Then, the packet is encapsulated into a capsule and
routed through the active network to the hybrid border node
that is connected to the destination IP network. It is the
capsule’s program code, what makes the difference in
performance. Note that as SAN runs on a standard operating
system, both networks can overlay each other as well.

The destination-border hybrid node unpacks capsule’s
payload and injects the extracted packet into the IP network.
The responsible component is called Injector.

Finally, IP network routes the packet to its IP destination.
The principle is the same for both directions so that

Interceptor-Injector pair is present on each border node to
satisfy two-way communication.

Fig. 2 depicts a view on assignment of responsibilities.
Active network server and IP stack of underlying operating
system cooperate. Oriented lines show the data flow. Starting
with data coming through the IP stack, the interceptor
component, called saninterceptor, receives the data as a

Figure 2. Linux IP Tunneling Components.

Figure 1. IP Tunneling Network Scenario.

224

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

packet. Subsequently, it is passed to the ii component; ii
stands for interceptor-injector. This component is responsible
for encapsulating it into a capsule.

When receiving data as a capsule from an active network,
the ii component delivers the data to the injector component.
Then, the data are injected at the ISO/OSI network layer into
the IP stack.

V. IMPLEMENTATION

Having the design, we continued with implementation.
Initially, we assumed that Java and JVM will be fast enough,
to get acceptable values of throughput and latency.
Therefore, only OS-dependent parts of the tunneling were
written in C++.

A. Generality, Usability and Security

As our solution is a general-purpose server, there is no
special software needed to create custom active applications.
Recently, some basic applications already work and
development of others is in progress. The working ones
include ping, trace route and IP tunneling. The work in
progress comprises of dynamic routing, telnet, SSH and
possibly a port of AVNMP [8] – a tool to predict network’s
load.

SAN active application is written in the standard Java
language, compiled and packaged into a Java archive with a
manifest file. The applications can be developed in IDE such
as Eclipse or Netbeans with no expenses.

The application’s, or capsule’s, code is interpreted as a
Java byte-code in the present state. We developed our own
byte-code interpreter. As it has been written from scratch to
allow strict control over the execution process, it interprets
everything, down to Java native methods. As the result,
nearly every valid Java construct can be used to create an
active application. Moreover, we have a full control over the
code. Thus, passing a special file system identifier to obtain
undesired access on particular operating system can be
forbidden, as well as a simple constructs like calling
System.exit(0) to shut down the server maliciously.
Preceding works, such as ANTS, used directly the Java
machine they run within, thus virtually providing no security.

B. Optimization

SAN started as a Java project for various reasons. As
already mentioned, we need to address the performance. To
improve it, a C++ clone of the server is being written. From
this step, we expect a performance increase and the
possibility to deploy the server on such nodes, where Java is
not available, e.g. switches and routers.

In an active network server, the most likely bottleneck is
byte-code interpreter and scheduler. To run the byte-code, it
is necessary to prepare execution environment, i.e. the sand
box, and to schedule it for execution. Preparing the execution
environment is a time-significant part of total run-time, in a
case of shortly running capsule codes such as ping. Thus, the
overhead does not matter, if the application run-time is long
and frequency of runs is low. However, it matters with
applications such as the IP tunneling. The IP tunneling run-

time per capsule is very short and the frequency of runs can
be very high. It depends on the data stream being transferred.

To speed up the code execution, we would like to have a
mechanism that would optimize parts of code being executed
frequently, and to cache them subsequently. The
optimization would be a byte-code transformation into
processor’s native instruction set.

 Last optimization task is to examine the internal
scheduler. It is currently implemented as a fair-share.

C. IP Tunneling on Linux

We have implemented the IP tunneling over active
network on Linux first.

The idea behind the tunneling is following. If we want to
pass IP packets transparently through the active network, we
have to intercept IP packets either on physical layer, link
layer or network layer to prevent the operating system from
managing these packets. Otherwise, the operating system
could possibly send ICMP error packets back, because it is
not aware of being a part of active network.

We chose to use unmodified Linux kernel along with the
Netfilter/Iptables [9] project to preserve simplicity,
generality and ease of use. We used the Iptables' NFQUEUE
target along with the ipq library for queuing packets into user
space. There is a benefit coming from the usage of this
approach – we can easily decide, which packets from and to
the IP networks are transferred through the active network.

After en-queuing a packet, entire datagram containing all
headers is fetched into user space with libipq API calls. And,
it is sent unmodified through a network socket to the SAN
along with information about active code that handles its
data.

Packet data and meta information exchange between
saninterceptor and SAN ii component is accomplished
through a standard socket, while using a special type of PDU
to transfer the data. The PDU format and primitive data types
are shown in Fig. 3; PDU stands for Protocol Data Unit. The
first position of the PDU is the name of the active application
being executed upon receiving the data. Then, an array of

Figure 3. SAN Interceptor-Injector PDU.

225

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application parameters apply. For example, they can
represent routing, QoS or ToS information; ToS stands for
Type of Service. Finally, entire datagram is attached. The
PDU is flexible enough to handle a datagram up to 65kB.
This is enough even for super jumbo frames.

Upon receiving PDU, the active node passes the
datagram to the active application that is responsible for the
IP tunneling. The application creates a capsule and injects it
into the network. When the capsule arrives at the destination
active node, datagram is unpacked and sent through the
socket to the injecting application. Injector injects the
datagram into the IP network. As the packet is not modified
on its route, the process is fully transparent to IP
applications.

We did tests with HTTP, SSH and FTP protocols. They
worked flawlessly, like if no active network was presented.

D. IP Tunneling on Windows

We continued with implementation of the WDM driver
model that applies to Windows 2003, Vista and 7. ReactOS
uses the WDM model as well, but we made no tests on
ReactOS yet. Fig. 4 depicts the implementation.

Legacy IP applications communicate via the TCP/IP
NDIS protocol as usually. SAN filter intercepts the
communication. Intercepted IP packet is accompanied with
additional information and sent to SAN server via an inter-
process communication. In SAN address space, an active
application converts it into a capsule. Then, SAN server
handles the capsule in a standard way.

When the capsule is to be converted back into the IP
packet, NDIS driver does this as instructed by SAN. A
legacy IP application gets the packet from the TCP/IP NDIS
protocol as usually.

With the further development, we aim to support two
kinds of applications – legacy IP applications and SAN-
aware applications. SAN-aware applications would be free to
use SAN capabilities directly. Thus, they would be able to
exercise a finer control over the transmission.

VI. WORSE-PATH ROUTING

References [4, 5] give existing enhancements on multi-
cast and tunneling of existing IP applications. We would like
to go a step further by proposing such routing scheme that
will rearrange network flows to benefit time-sensitive
networking applications.

A. Policy-Based Routing

Let us classify network traffic into two categories. First
one is time-sensitive traffic, for instance IPTV and VoIP.
Second category is such traffic, where it is possible to
tolerate some increase of delivery delay. For instance, SMTP
and file-sharing services fall into this category.

We do not use terms real-time and non-real time traffic,
because we discuss additional scenarios such as MPI in
subsection D. While we assume a possible benefit for MPI,
we do not assume a real-time application using MPI.

Multiple routes to target nodes may exist in a computer
network, or an interconnection of computer networks –
especially the Internet. Some routes are better in terms of

bandwidth, load, reliability, number of hops, etc. Routing
algorithms try to find an optimum route. Regarding Internet
Service Providers (ISPs), a price of link plays a role as well.

Let us consider an ISP with two different links to other
ISP. One link is cheaper, but there is a lower bandwidth. To
reduce costs, ISP would prefer such policy that would route
most of the traffic through the cheaper link. Nevertheless,
ISP should route the time-sensitive traffic through the faster
link to maintain a quality of services to customers. In IP, this
concept is implemented as policy-based routing.

However, the other ISP may not be interested in
maintaining such quality of services to the customers of the
traffic-originating ISP. By addressing this issue, the
proposed concept differs from policy-based routing, as it is
implemented in IP.

We give such IP tunneling scheme that routes the delay-
tolerant traffic through slower links. As a result, it reduces
the need to throttle the transmission speed of time-sensitive
traffic on faster links. The proposed approach does not
impose a need for agreement on common routing policies
between two ISPs.

B. Principle

First task is to intercept such IP packets, which do not
belong to the time-sensitive traffic. Then, we wrap these
packets into capsules. Finally, associated program code
routes the capsules through slower links – the worse-path.

Let us consider SMTP and IPTV for demonstration.
Once SMTP server retrieves MX record for target domain, it
opens a TCP connection to the destination server. Routers
will direct the flow of connection’s packets according to
routing tables, as it would happen with the IPTV packets.
SMTP and IPTV packets may share the same link. QoS can
throttle transmission speed to favor time-sensitive traffic
such as IPTV. However, QoS cannot route a particular TCP
connection over a different link to gain yet more bandwidth
for the IPTV. With IP and policy-based routing, we would
need ISPs, which agreed on compatible routing policies.
With a programmable network, we can apply the following
concept.

Figure 4. Windows IP Tunneling Components.

226

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

First, we need an additional routing table at the router. To
fill the table, it is necessary to modify routing metric so that
it favors slower links. For example, OSPF uses inverse value
of bandwidth. Then, we would take the bandwidth as the
metric.

Second, we need a data unit that would be routed by the
alternative routing table. In active networks, the router would
execute the capsule’s code. So, the capsule would look-up
the alternative routing table and set its destination
accordingly. If the router would not execute the code, e.g. for
security reasons, the capsule would be forwarded according
to the standard routing table. So, it would reach the
destination as well, just sooner.

Capsules route themselves through slower links. Thus,
they leave more bandwidth for the time-sensitive traffic on
the faster links. Considering a possibility of different routing
policies in transit networks, capsule’s behavior increases the
probability that time-sensitive traffic will use the faster links.

As capsule’s program code does not change, the capsule
acts the same way in all transit networks. Therefore, no two
ISPs have to make a prior agreement on common routing
policies.

C. IP-Programmable Hybrid Network

Let us consider a scenario, where a programmable node
would aid a traditional IP network. As we do not tunnel the
time-sensitive traffic, we can route it the standard way. On
the other hand, the tunneled traffic is wrapped into capsules.
We can distinguish such traffic easily, e.g. by port number,
or a header bit. Therefore, it is possible to establish an
efficient routing policy. Such policy would route capsules to
the programmable node, while leaving rest of the traffic
untouched.

Fig. 5 depicts a case scenario. Various clients from the
source network #1 want to connect to particular hosts in the
destination network #4. There is a policy-based routing
enabled at the router that acts as their default gateway. It
identifies particular protocols by port numbers. Selected
traffic goes to the SAN server. Otherwise, the router
forwards rest of the traffic to the IP-based border router.
SAN server intercepts incoming IP packets and transforms
them into capsules. According to programmable rules, it
forwards them to the next SAN server. Note that the
associated code can do much more than just policy-based
routing. SAN servers in the transient networks act the same
way. In the destination network #4, SAN server transforms
capsules back into IP packets and forwards them with the
standard IP routing mechanism.

The IP-programmable hybrid is not a fully programmable
network. However, Fig. 5 depicts such scenario, where it is
possible to route a defined amount of traffic to the
programmable servers. As a result, we can test
responsiveness and stability of the programmable servers to
given load, while having backup routes.

Note that it is not necessary to deploy the hybrid network
at the Internet scale. It can serve as well for networks of a
single organization, or its department.

D. Additional Case Scenarios

Let us consider a grid computing, for an illustrative
example. A large grid may consist of several sub-grids,
which are connected with slower links than the links inside
the sub-grids. For distributed computing, there are tools such
as GridMPI and PVM available. These libraries provide
means for asynchronous and blocking communication.

For example, MPI_Send function is blocking. The caller
does not continue its execution, until it receives a
confirmation message. The communication overhead affects
caller’s performance, i.e. the completion time. For this
reason, we can consider such communication as time-
sensitive. Therefore, we should route it through faster links.

On the other hand, MPI_Ibsend function is non-blocking.
The caller continues its execution, while MPI delivers the
message. For such programs, we could route such messages
through slower links to reduce the waiting time of blocking
operations such as MPI_Send.

Another possible scenario is secure, anonymous
communication. The TOR project provides a network of
nodes, which route communication in such manner that it is
too hard to find its origin. TOR uses so-called onion routing
and it supports applications, which use TCP. With tunneling,
SAN could implement the same behavior for any packets,
i.e. to build a secure network by default. With policy-based
routing and client’s IP, it would be possible to enable such
service per individual user.

Figure 5. Hybrid Scenario of Worse-Path Routing.

227

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Comparison with Source Routing

IP offers loose and strict source routing. With such
routing, packet’s route is set in advance by the source node.
While the strict routing sets entire path, routers may forward
the packet through other routers as well with the loose
routing. In both cases, sender must have such knowledge of
topology so that the packet reaches the destination. There are
two problems.

First, internal topology of other ISP is supposed to be
opaque. At the best, there is no guarantee on knowledge of
the topology, including bandwidths, utilization and other
factors. In a worse case, ISP can choose to block the source
routing.

Second, we do not discuss a use of source routing for an
administrative task. We discuss use of the source routing for
a regular traffic. In such case, the source node would have to
maintain a complete routing table for entire Internet. This
would impose overwhelming requirements on the node, thus
rendering such solution as impossible.

In contrast to the source routing, SAN-based solution
uses the well-established concept of routing tables along the
route to the destination node.

VII. EXPERIMENTAL IMPLEMENTATION

OF WORSE-PATH ROUTING

To implement the worse-path routing, we use the
following technologies – AntNet for routing and Rendez-
Vous to expose an additional programming interface to
active code of capsules.

A. AntNet

First, we needed a routing algorithm. To benefit from the
programmability, we implemented the AntNet algorithm
[10]. This algorithm was originally designed for mobile
agents. It is inspired by a behavior of ant colony. Using
indirect information, a simulated pheromone trail, simulated
ants find shortest path thanks to their cooperative behavior.

Making a reference comparison to OSPF, AntNet has
better distribution of packet delays and negligible impact on
the use of network bandwidth [10]. There are recent
improvements to AntNet. They further improve throughput,
stability and shorten time delay [11, 12]. Improved AntNet
deals with topology changes better than OSPF does [11].
Reference [10] gives a comparison with other routing
protocols as well.

For our experiments, we simulate Internet with a set of
interconnected nodes. We simulate networks of individual
ISPs with these nodes. In this fashion, we use AntNet as an
exterior gateway routing protocol.

B. Rendez-Vous

Having the routing algorithm implemented, we needed to
implement an alternative routing table in a general fashion.
We wanted to avoid any ad-hoc solution. We implemented
Ada rendez-vous synchronization mechanism into our Java
byte-code interpreter.

In our implementation, an active application can register
a rendez-vous server. Incoming capsule can lookup a
particular server and call its entries. This way, we have

achieved a possibility of having so-called installable APIs.
As a result, SAN exposes just the minimum set of functions
through a pre-defined interface. Then, it is upon networking
services and applications to expose desired application
programming interfaces – APIs. It is possible to register and
unregister particular API dynamically, without a need to
restart SAN server.

The choice of rendez-vous has a security background.
Synchronizing with a monitor, the calling thread executes
monitor’s code, thus using its internal data structures. A
malicious code could possibly exploit such design. With
rendez-vous, the calling thread is suspended, until the called
thread, the server, finished the execution. Thus, the caller has
no access to server’s internal data structures by the very
principle of rendez-vous. This is important to us as we
consider a possibility of execution environment reuse to
speed-up code execution.

There are stability benefits as well. Having a rendez-vous
executing in a standalone thread, we avoid priority problems.
As the rendez-vous thread keeps its priority, a critical section
will not be blocked for too long by a thread with low
priority. Moreover, the rendez-vous thread can exercise a
better control over resources being allocated in a critical
section, than calling threads could do. An unknown calling
thread is more likely to be terminated by security monitor
than a rendez-vous server thread is.

Java has no native program construct to implement
rendez-vous as Ada has. There are two ways to implement
the mechanism into present Java language standard.

One way is to develop a pre-processor that would allow
Ada syntax in .java file. The preprocessor would generate a
.java file that a Java compiler would accept. Therefore, any
debug info would be valid for the generated .java file.

It is always necessary to develop a package, which would
synchronize threads in the rendez-vous manner. Therefore,
the second way is to use this package directly, without the
pre-processor. This way, we have a .java file that
programmer understands, compiler can process it and
generates a debug info for it. We chose this way.

The following code shows a fragment of the rendez-vous
server, which implements the worse-path routing table.

public void worsePathRoutingServer() {

//1. Register Rendez-Vous server

if (!applicationAPI.registerServer(this,

 WPRTable_GUID)) {

 //Error registering the server, however

 //traffic is still routable. Capsules will

 //just use the default routing table.
 return;

}

//2. Register supported entry-calls
applicationAPI.registerEntryCall(WPRTable_GUID,

 GetGateway_NAME);

//3. Handle the entry-calls
try {

 applicationAPI.makeAccept(WPRTable_GUID);
} catch (InterruptedException ex) {

 handleException(ex);
}

228

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

//4. Clean-up
applicationAPI.unregisterServer(WPRTable_GUID);

} //end of worsePathRoutingServer()

The following code fragment shows as capsule routes

itself, using the worse-path routing table:

public void routeCapsule() {

//1. Get capsule’s destination; it is not stored

// in capsule’s header as the header may

// change on the route. Therefore, we store
// the real destination in the payload.

NetIdentifier realDst = readCapsuleDestination(

 capsuleAPI.getPayload());

//2. Try to get worse-path routing record

// for the real destination.

try {

 RoutingRecord rr =

 capsuleAPI.callEntryCallByName(

 WPRTable_GUID, GetGateway_NAME, realDst);

 //3. If the previous call succeeded, extract

 // the gateway and set it as capsule’s

 // destination.

 if (rr != null)

 capsuleAPI.setDestination(rr.getGateway)

 //4. In a case of failure, set the real

 // destination. Then, the capsule will

 // reach its destination through a normal

 // route. However, this code will attempt
 // to resume the worse-path routing

 // at the very next node.

 else capsuleAPI.setDestination(realDst);

} catch (InterruptedException ex) {

 capsuleAPI.setDestination(realDst);
}

} //end of routeCapsule()

While we have the key components done, the worse-path
routing is not finished yet. As given in the following section,
we need to switch to the SAN C++ port, first. Then, we can
finish the implementation with such execution speed that is
fast enough for a productive use. As SAN servers make a
distributed environment, where each node is a parallel
application, the execution speed is an important factor for
debugging.

VIII. RESULTS

Initially, we expected better performance results than we
achieved. Eventually, it turned out that speed and security
with Java-in-Java in JVM will not run fast enough, despite
source code optimization, runtime profiling and performance
tuning done by JVM. For this reason, the paper ends with a
focus on speed of code execution.

A. Background

The PANDA project [5] was built on a top of ANTS
project [6]. ANTS project ran in Sun JVM. The JVM
executed capsule code as well as ANTS’ code. While this
allowed a greater throughput than a Java-in-Java approach,
the solution was not secure enough. Later on, secured
solutions appeared. They included PLAN [13], RCANE [14],
SANE [15] and SNAP [16]. They were able to verify
integrity of server’s code and configuration, and authenticity
of capsule’s code. Also, some of them limited programming
constructs to avoid creating of a possibly dangerous program
code.

We decided to strengthen the security measures by being
able to monitor code execution on-the-fly. For this reason,
we replaced the use of Sun JVM with our own Java-in-Java
interpreter. This became the performance bottleneck of our
server. Eventually, it became obvious that we need to
abandon Sun JVM to run the server. We chose to port the
server to C++, while leaving the Java development branch as
a sand box. Presently, we use it to test new ideas and to
develop active protocols in advance, prior to finishing the
C++ port of the SAN server.

B. Linux IP Tunneling

We performed a couple of tests with the IP tunneling
implementation. In all tests, there was a saturating traffic
flow from one computer to another. We generated a
continuous stream of IP packets to saturate link’s bandwidth.

The first test was the performance test of the
saninterceptor itself. It was aimed to prove correct memory
management, effective CPU and bandwidth usage. Table 1
shows results for two directly connected PCs with 100 Mbps
network cards and the same PCs connected through two
instances of saninterceptor. Looking at the Table 1, we can
say that use of saninterceptor nearly does not affect data
transmission, even if it is implemented by simple means.
N/A means that values were not observable or affected at all.

The second test was the performance test of a complete
system, i.e. including SAN, active applications, etc. This test
revealed some drawbacks in SAN’s implementation. They
are related to running many instances of short-run-time
applications and capsules.

Although the tunneling results were not satisfying, they
showed that the IP tunneling works and that it can be used
for tunneling of applications like HTTP and SSH.
Nevertheless, it became clear that we need to improve byte-
code execution prior making any other substantial changes.

TABLE I. INITIAL SANINTERCEPTOR PERFORMANCE RESULTS
ON LINUX TO LINUX

 CPU Memory Latency Throughput

direct connection N/A N/A <2ms 94 Mbps

Saninterceptor only N/A 18kB 2ms 90 Mbps

SAN + saninterceptor 100% N/A >200ms 120 kbps

229

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Execution Environment Benchmark

To compare performance of particular environments, and
to estimate a minimum needed performance, we created a
benchmark test. Since the C++ port is not finished yet, we
cannot evaluate network-specific operations. Therefore, the
benchmark computes a matrix determinant in such manner,
that is uses memory, ALU and floating point instructions.

Table II gives results for Windows 7. To eliminate side
effects of operating system, such as caching and program
loading at random addresses, we ran the test for 10 times.
Then, we ran the test for another 30 times and computed
average execution time. The First Time column gives time
just for the very first run. As the server has to execute a
program code for a first time, as well as it may execute a
particular code frequently, we give both – average and the
first time. We collected the presented results on Intel64,
family 6, model 23, stepping 10, frequency 2.40 GHz.

Table III gives results for Debian 4.3.2-1.1. The machine
is part of Czech National Grid Project – MetaCentrum. This
affects the software equipment. It runs on Intel Xeon, family
15, model 4, stepping 3, frequency 2.80 GHz. The
benchmarking procedure was the same.

Using Sun JVM, we performed tests with non-standard
switches. After the regular test, we run the test again, but
with the non-standard –Xcomp switch. According to the
documentation, everything should be optimized. Program
loading took ~1 second on Windows, ~3 seconds on Linux.
On Windows, the execution time did not change. On Linux,
the execution time was longer. Then, we run the JVM again,
but without the switch. On Linux, the execution time
returned back to normal. On Windows, it was reduced by
~50%. Perhaps, there is some caching effect that causes such
behavior.

Beside –Xcomp, we tested the –Xint switch as well.
Accordingly to the documentation, the code should be
interpreted only.

For comparison, we ran a C++ port of the benchmark
with VisualC++ 2008 64-bit compiler, and with GCC 4.3.2
32-bit compiler.

SAN C++ JVM does not compile on Linux yet, so it is
not included in Table III.

D. Discussion

SAN’s Java-in-Java interpreter is so slow that it has no
point to measure the networking performance. With Java-in-
Java, we test flow and logic correctness of program code.

Present JVM of SAN C++ performs much better.
However, it is still significantly slower than Sun JVM. The
performance results indicate that Sun JVM transforms byte-
code into the native instruction set, based on some threshold
given by code profiling. However, the optimization does not
seem to be as good as it could be, on Windows and Linux
x86 platforms.

If we would consider that the optimization does not make
an intensive use of available processor registers to favor
simpler-to-code utilization of stack, then it is a reasonable
appeal to us to pursue the byte-code transformation, instead
of developing the Java-in-Java byte-code interpreter further.

So, we already started to implement the byte-code
transformation to the C++ port. SAN C++ will transform the
byte-code, which is being executed frequently, into the
native instruction set. Otherwise, it will execute the byte-
code inside its JVM. We chose this rule to avoid program-
code cache-trashing, and to reflect the very fact that the
transformation takes some time as well. The threshold values
of “executed frequently” and program-cache size are a
subject to future research.

IX. CODE EXECUTION

To execute the active-networking code, we decided to
support two code notations – the byte-code and processor-
native code. The byte-code will be either interpreted, or
transformed into the native instruction set. Any application
can be executed in byte-code. For selected operating
systems, the code can be supplied in a processor-native
instruction set to support critical operations. Such code has to
be signed digitally, and the server has to trust explicitly the
particular code and the signer.

A well-written program in C has lower memory
requirements than a byte-code equivalent. In addition,
compilers such as GCC produce much more efficient native-
instruction code than JVM does from byte-code. This is our
motivation for allowing the possibility to supply the code in

TABLE III. CODE EXECUTION TIMES ON WINDOWS

Environment Average Time [sec] First Time [sec]

SAN Java-in-Java >> 1 >>1

SAN C++ JVM 1.37200 1.38000

1st Sun JVM 1.6.0_17 64-bit 0.02350 0.02594

1.6.0_17 64-bit -Xcomp 0.02535 0.02605

2nd Sun JVM 1.6.0_17 64-bit 0.01255 0.01295

1.6.0_17 64-bit -Xint 0.22561 0.22412

1.6.0_17 64-bit –g:none 0.01301 0.01363

VC2008 x64 Debug 0.07000 0.07000

VC2008 x64 Release <0.00001

0.01000 occassionally

<0.00001

TABLE II. CODE EXECUTION TIMES ON LINUX

Environment Average Time [sec] First Time [sec]

SAN Java-in-Java >> 1 >>1

SAN C++ JVM N/A N/A

1st Sun JVM 1.5.0_10 32-bit 0.06137 0.06185

1.5.0_10 32-bit -Xcomp 0.09401 0.09388

2nd Sun JVM 1.5.0_10 32-bit 0.06127 0.06138

1.5.0_10 32-bit -Xint 0.46654 0.46329

1.5.0_10 32-bit –g:none 0.06257 0.05964

GCC x86 –O0 0.02000 0.02000

GCC x86 –O3 <0.00001 <0.00001

230

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

native instruction set. We would like to have popular
protocols to be handled as most efficiently as possible, with
respect to their share in traffic composition.

A. Byte-Code Transformation

Instead of transforming byte-code instructions directly
into processor-native instructions, we decided to generate C
code. The generated code will use pointer arithmetic to
manipulate operands of the byte-code instructions, which are
stored in the stack. Then, we will rely on a C compiler for
optimization.

For a complex byte-code instruction, such as a newarray
or monitorenter, we will call a respective C-coded function.
This way, we can handle methods such as System.arraycopy,
as JVM already does [24].

B. Security

To enforce security measures at the program-code level,
we need to forbid particular program constructs and to limit
memory and processor-time utilization.

When we encounter an instruction such as anewarray, the
byte-code interpreter asks security monitor. A C-transformed
code will call a function that will do the same. The security
monitor checks current memory allocation status and acts
accordingly. If the amount of allocated memory is over a
given threshold, the request is denied.

As byte-code interpreter runs, it counts number of
executed instructions per interval. Scheduler will not plan the
process, if it would overcome an imposed limit. Into the C
code, we can insert such code blocks, which will check
processor-time utilization and yield the processor eventually.

Alternatively, there are SetThreadContext and
GetThreadContext functions on Windows. On Linux, there is
the ptrace function. With these functions, we can suspend
thread execution and get/set its context. Then, there will be
no need to include those code blocks into the generated C-
code.

A programmer may desire to call a certain, possibly
dangerous method like System.exit. In SAN, calls are
checked and possibly denied with black-lists. The
configuration may look like this fragment:

<roles>

 <role name="anonymous"
 resourceProfile="anonymousProfile">

 <permissions>

 <access name="java.lang.System.exit"

 type="method" allow="forbidden"/>
 </permissions>

 </role>

</roles>

<resourceProfiles maxRunningCapsules="20"

 maxActiveCodes="50">

 <profile name="anonymousProfile"

 priority="onIdle">
 <cpu type="percent" maxValue="5" />

 <memory type="percent" maxValue="5" />

 <bandwidth type="percent" maxValue="5" />

 <activeCodes maxValue="100" />
 <createdCapsules maxValue="5" />

 </profile>

</resourceProfiles>

The concept of roles serves as an additional protection.
For example, a time protocol cannot modify routing table,
and routing protocol cannot set system time. Uncategorized
protocols are most restricted with the anonymous role.

X. RELATED WORK

A number of papers were published on Active Networks
in earlier years. Also, some recent works are relevant,
although they do not address Active Networks exactly.

A. Google Chrome

Taking a closer look on the concept of the Google
Chrome [17] operating system, we see a resemblance with
the active networks concept. There is a simple, underlying
operating system that provides hard application isolation –
sandboxing [18]. API and the definition of web services
define the Execution Environment. Also, it features a
security manager that prevents running a malware.

B. Google Native Client

Although the Native Client [19] is not primarily designed
for a use in active networks, there are ideas valuable to a
high performance execution environment.

C. AntNet QoS

Another implementation of QoS that is based on a
programmable approach is an adaptation of the AntNet
routing algorithm for QoS [20]. The implementation was
tested in a heterogeneous network as a part of a multimedia
transcoding system. As a server receives a request, it
generates ants, which search for a best transcoding path and
service, based on desired QoS.

By having the AntNet algorithm implemented, we can
continue to implement the QoS capability.

D. Security

Reference [21] gives an overview on CSANE active
network concept, which aims for security and scalability.
CSANE goes for cluster processing. It builds on ANTS,
JanOS and Linux.

With rendez-vous, we take a preemptive counter-measure
to deal with a possibility of attack, which is based on sharing
a memory with another process. There was a similar attack,
on the HyperThreading platform. One process obtained data
of another process, particularly RSA key. We consider
principle of this attack to possibly apply to monitor calls.
Reference [22] provides attack details and gives suggestions
to designers of operating systems.

E. Performance Testing

Reference [23] gives a recent, comparative study of JVM
benchmarking – Sun JVM and Oracle JRockit. It concludes
that JRockit runs usually 19% to 27% faster. Such numbers
support the decision to perform byte-code transformation
with SAN C++ internal means, instead of switching to
another JVM.

231

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Native Code

Reference [25] presents a load-redistribution method for
distributed applications. As a proof of concept, it uses a
special active-network server with no security, but utilizing
active programs coded in processor-native instruction set.
Execution overhead of this approach is insignificant.

XI. CONCLUSION

Adding program logic to passive IP packets may lead to a
significant increase of network’s efficiency [4, 5]. A network
flow can adapt to current conditions automatically, as its
units of transmission traverse the network. This is paid with
increased overhead, as there is an executing code.

SAN is a universal active node server that is capable of
IP tunneling to enhance performance of IP applications, as
well as supporting newly created, active networking
applications. Both can be accomplished in standard operating
systems, so that no “overnight” revolution is needed to start
benefiting from the active-networking concepts.

The related work shows that the concept of active
networks is usable for the future – although, not in a way it
was supposed to happen originally. With respect to the
advances on the original work [1], we can try to evaluate
history of active networks’ development. Looking back at
the history of active networks from the point of view of SAN
development, it seems that the magnitude of initial support
was driven more by expectations and possibilities, than it
was corrected by development costs and requirements.

Active networks appeared with a proof-of-concept that
was implemented with Java. While specialized languages
appeared for active programs, a vast majority of well-
accepted papers on active networking used Java. This gave
the impression that Java is a good choice for development of
active-networking server. And, we do not agree.

Speed and security were the major disadvantages, which
prevented adoption of active networks. Our results suggest
that the use of JVM is the cause. JVM cannot compete with
an optimized code from a C compiler like GCC. Comparing
Java and JVM with a well-written C program, Java loose,
when it comes to memory requirements and code execution
speed of both, active program and associated security checks.
JVM overhead seems to be too great for software like active-
networking server.

We still consider Java as a good choice for using the
byte-code as active program notation, across different
operating systems and processors. Also, Java benefits from a
number of programmers and some language characteristics.
For example, we consider it to be easier to implement
security measures with references rather than pointers. Next,
the garbage collector reduces the risk of memory leaks and
segmentation faults.

On the other hand, references and garbage collector lead
to increased memory demands and processor time spent in
finalizing and freeing unreferenced objects. In addition,
memory fragmentation boosts incurred speed penalty.
Therefore, the server must be written in a C-like language, as
well as frequently executed active program code. GCC-like

optimized code in processor-native instruction set is
essential.

Java was an adequate choice for creating the proof of the
concept for particular aspects of active networking.
However, the situation has changed. To prove the concept of
active networks as feasible for a productive use, we have to
come close to performance of today IP stack
implementations.

We succeeded with implementation of key components,
while addressing shortcomings of preceding active-network
implementations. Now, we need to finish the C++ port and to
subsequently improve the code-execution speed with byte-
code transformation.

ACKNOWLEDGMENT

The following members of SAN team implemented
AntNet, Rendez-Vous, security and Windows IP Tunneling
features: Zdenek Vacek, Miroslav Hendrych, Vladimir
Aubrecht, Vaclav Papez and Petr Jaros {zdvacek|picard|
aubrechv|vpapez|jarosp@students.zcu.cz}.

REFERENCES

[1] J. Sykora and T. Koutny, "Enhancing Performance of Networking
Applications by IP Tunneling through Active Networks", Proceedings
of the Ninth International Conference on Networks, Les Menuires,
France, 2010

[2] K. Calvert, “Reflections on Network Architecture: an Active
Networking Perspective”, In ACM SIGCOMM Computer
Communication Review, Volume 36, 2006, pp. 27-30, doi:
10.1145/1129582.1129590

[3] D. L. Tennehouse and D. J. Wetherall, "Towards an Active Network
Architecture", Proceeedings of DARPA Active Networks Conference
and Exposition (DANCE.02), San Francisko, California, USA, 2002

[4] M. Maimour and C. D. Pham, "AMCA: An Active-based Multicast
Congestion Avoidance Algorithm," Proceeedings of Eighth IEEE
Symposium on Computers and Communications, Antalya, Turkey,
2003

[5] V. Ferreria, A. Rudenko, K. Eustice, R. Guy, V. Ramakrishna and P.
Reiher, “PANDA: Middleware to Provide the Benefits of Active
Networks to Legacy Applications, Proceedings of DARPA Active
Networks Conference and Exposition, San Francisco, California,
USA, 2002

[6] D. J. Wetherall, J. Guttag and D. Tennenhouse ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols, IEEE Open
Architectures and Network Programming 1998, San Francisco,
California, USA, 1998

[7] T. Koutny et al., “Smart Active Node”, http://www.san.zcu.cz/
Last Accessed on January 12, 2011

[8] S. F. Bush and A. B. Kulkarni, “Active Networks and Active
Network Management – A Proactive Management Framework”,
Kluwer Academic/Plenum Publishers, 2001

[9] R. Rusty and W. Harald, “Linux Netfilter Hacking HOWTO”, 2002,
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-
HOWTO.html Last Accessed on January 12, 2011

[10] G. di Caro and M. Dorigo, ”An Adaptive Multi-Agent Routing
Algorithm Inspired by Ants Behavior”, Proceedings of PART98 -
Fifth Annual Australasian Conference on Parallel and Real-Time
Systems, Adelaide, Australia, 1998

[11] S. Chandra, U. Shrivastava, R. Vaish, S. Dixit, M. Rana, “Improved-
AntNet: ACO Routing Algorithm in Practice” , Proceedings of
UKSim 2009: 11th International Conference on Computer Modelling
and Simulation, Cambridge, England, 2009

232

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] L. Zhang and L. Xiaoping, “The Research and Improvement of
AntNet Algorithm”, Proceedings of 2nd International Asia
Conference on Informatics in Control, Automation and Robotics,
Wuhan, China, 2010

[13] M. Hicks, J.T. Moore, D.S. Alexander, C.A. Gunter and S.M. Nettles,
“PLANet: an active internetwork”, Proceedings of Eighteenth Annual
Joint Conference of the IEEE Computer and Communications
Societies, New York, NY, USA, 1999

[14] P. Menage, “RCANE: A Resource Controlled Framework for Active
Network Services”, Proceedings of the First International Working
Conference on Active Networks, Berlin, Germany, 1999

[15] D.S. Alexander, P.B. Menage, A.D. Keromytis, W.A. Arbaugh, K.G.
Anagnostakis and J.M. Smith, “The Price of Safety in an Active
Network”, Journal of Communications and Networks, Special Issue
on Programmable Switches and Routers, Volume 3, Number. 1,
March 2001

[16] W. Eaves, L. Cheng, A. Galis, T. Becker, T. Suzuki, S. Denazis, C.
Kitahara, “SNAP Based Resource Control for Active Networks”,
Proceedings of IEEE Global Telecommunications Conference,
Taipei, Taiwan, 2002

[17] J. Gray, “Google Chrome: The Making of a Cross-Platform
Browser”, In Linux Journal, Volume 2009, 2009

[18] Ch. Reis, A. Barth and Ch. Pizano, “Browser Security: Lessons from
Google Chrome”, In Communications of the ACM, Volume 52, 2009,
pp. 45-49, doi: 10.1145/1536616.1536634

[19] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S.
Okasaka, N. Narula, and N. Fullagar, “Native Client: A Sandbox for
Portable, Untrusted x86 Native Code”, Proceedings of 2009 IEEE
Symposium on Security and Privacy, Oakland, California, USA, 2009

[20] M. S. Hossain, and A. El Saddik, “QoS Requirement in the
Multimedia Transcoding Service Selection Process”, IEEE
Transactions on Instrumentation And Measurement, Volume 59,
Number 6, June 2010

[21] C. Xiao-lin, Z. Jing-yang, D. Han, L. Sang-lu and C. Gui-hai, “A
Cluster-Based Secure Active Network Environment”, In Wuhan
University Journal of Natural Sciences, Volume 10, Number 1, 2005,
pp. 142 – 146, doi: 10.1007/BF02828636

[22] C. Percival, “Cache Missing for Fun and Profit”, Proceedings of
BSDCan 2005, Ottawa, Canada, 2005

[23] H. Oi, “A Comparative Study of JVM Implementations with
SPECjvm2008”, Proceedings of 2010 Second International
Conference on Computer Engineering and Applications (ICCEA),
Bali Island, Indonesia, 2010

[24] Sun Microsystems, Inc., “Java SE 6 Performance White Paper”,
http://java.sun.com/performance/reference/whitepapers/6_performanc
e.html#2 Last Accessed on January 12, 2011

[25] T. Koutny and J. Safarik, "Load Redistribution in Heterogeneous
Systems", Proceedings of the Third International Conference on
Autonomic and Autonomous Systems, Athens, Greece, 2007

233

International Journal on Advances in Internet Technology, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/internet_technology/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

