
89

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Peer-to-Peer Virtualized Services

David Bailey and Kevin Vella
University of Malta

Msida, Malta
Email: david@davidbailey.info, kevin.vella@um.edu.mt

Abstract—This paper describes the design and operation
of a peer-to-peer framework for providing, locating and
consuming distributed services that are encapsulated within
virtual machines. We believe that the decentralized nature of
peer-to-peer networks acting in tandem with techniques such
as live virtual machine migration and replication facilitate
scalable and on-demand provision of services. Furthermore,
the use of virtual machines eases the deployment of a wide
range of legacy systems that may subsequently be exposed
through the framework. To illustrate the feasibility of running
distributed services within virtual machines, several computa-
tional benchmarks are executed on a compute cluster running
our framework, and their performance characteristics are
evaluated. While I/O-intensive benchmarks suffer a penalty
due to virtualization-related limitations in the prevailing I/O
architecture, the performance of processor-bound benchmarks
is virtually unaffected. Thus, the combination of peer-to-peer
technology and virtualization merits serious consideration as a
scalable and ubiquitous basis for distributed services. A view
of some challenges and opportunities that emerge in the design
of such frameworks is also offered.

Keywords-Virtualization; distributed systems; peer-to-peer
computing; service-oriented computing; cloud computing.

I. INTRODUCTION

This paper describes a framework that enables the dy-
namic provision, discovery, consumption and management
of software services hosted within distributed virtual ma-
chines. The framework, Xenos [1][2], uses a decentralised
peer-to-peer overlay network for advertising and locating
service instances and factories. It also leverages techniques
such as live virtual machine migration and replication to
enhance operational agility and ease of management, and to
lay the foundations for deploying fault-tolerant services. The
primary objective is to shift the focus away from managing
physical or virtual machines to managing software services.

In recent years, data centre operations have experienced
a shift in focus away from managing physical machines
to managing virtual machines. Renewed exploration of this
well-trodden path is arguably driven by virtualization’s
mantra of enhanced operational agility and ease of manage-
ment, increased resource utilisation, improved fault isolation
and reliability, and simplified integration of multiple legacy
systems. Virtualization is also permeating the cluster and
grid computing communities, and we believe it will feature
at the heart of future desktop computers and possibly even

advance a rethink of general purpose operating system
architecture.

The performance hit commonly associated with virtual-
ization has been partly addressed on commodity computers
by recent modifications to the x86 architecture [3], with both
AMD and Intel announcing specifications for integrating
IOMMUs (Input/Output Memory Management Units) with
upcoming architectures. While this largely resolves the issue
of computational slow-down and simplifies hypervisor de-
sign, virtualized I/O performance will remain mostly below
par until I/O devices are capable of holding direct and
concurrent conversations with several virtual machines on
the same host. This generally requires I/O devices to be
aware of each individual virtual machine’s memory regions
and demultiplex transfers accordingly. We assume that this
capability or a similar enabler will be commonplace in
coming years, and that the commoditization of larger multi-
core processors will reduce the frequency of expensive
world-switches as different virtual machines are mapped to
cores over space rather than time.

The paper is organized as follows. Section II provides an
overview of related work, and Section III briefly describes
the key topics that underpin this research. Section IV details
the proposed framework and the implemented prototype,
while Section V presents an evaluation of the framework.
Finally, Section VI exposes a number of issues for future
investigation, and an overview of this work’s contribution
can be found in Section VII.

II. RELATED WORK

The ideas presented here are influenced by the
Xenoservers project [4], initiated by the creators of the
Xen hypervisor. Xenoservers was designed to “build a
public infrastructure for wide-area distributed computing” by
hosting services within Xen virtual machines. The authors
argue that current solutions for providing access to online
resources, such as data storage space or an application-
specific server, is not flexible enough and is often based
on a timeline of months or years, which might not always
accommodate certain users. The Xenoserver infrastructure
would allow for users to purchase temporary resources for
immediate use and for a small time period, for instance
a group of players wanting to host a game server for a
few hours or even minutes. A global infrastructure can also



90

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

aid in exploiting locality by running code on a network
location that is close to the entities that it uses, such as
data and services, to improve performance. In order to allow
untrusted sources to submit their own applications, execution
environments need to be isolated; the authors propose to
use the Xen hypervisor [5] to provide these isolated and
secure environments in the form of virtual machines, which
also allows for a high degree of flexibility as users have a
wide array of operating system and application environments
to choose from. Xenosearch [6] locates Xenoservers using
the Pastry peer-to-peer overlay network. A Xenoservers
implementation is not generally available, hence our decision
to build and conduct experiments with Xenos.

WOW [7] is a “distributed system that combines virtual
machine, overlay networking and peer-to-peer techniques to
create scalable wide-area networks of virtual workstations
for high-throughput computing”. Applications and services
in the system are provided in virtual machines, which must
also contain a virtual network component that is used to
register the machine on a peer-to-peer overlay network when
the machine boots up. This peer-to-peer overlay network is
used to create virtual links between the virtual machines,
which are self-organizing and maintain IP connectivity be-
tween machines even if a virtual machine migrates across
the network. The authors do not provide a mechanism which
allows for searching of other services registered on the peer-
to-peer network; this is where our approach differs in that
we intend to use a peer-to-peer overlay network to advertise
the services running within the virtual machines rather than
to set up a virtual network to enable communication between
virtual machines.

SP2A [8] is a service-oriented peer-to-peer architecture
which enables peer-to-peer resource sharing in grid envi-
ronments, but is not concerned with the uses of virtualiza-
tion in distributed computing architectures, which is one
of our main interests. Several publications have focused
on the use of peer-to-peer overlay networks to implement
distributed resource indexing and discovery schemes in grids
[9][10][11]. Wadge [12] investigates the use of peer groups
to provide services in a grid, as well as transferring service
code from one node to another for increased fault-tolerance
and availability.

The dynamic provisioning of services is a relatively young
area of research, and commercial products such as Amazon
Elastic Compute Cloud (EC2) have only appeared in the past
few years. Virtualization and hardware advancements have
had a major impact on the structure of these datacenters,
which typically rely on tried-and-tested setups and favour the
traditional client-server approach to locating and consuming
services. We believe that exploiting the advantages of peer-
to-peer networks is the next step in achieving a truly
distributed, scalable and resilient services platform.

III. BACKGROUND

A. Virtualization

In computing, virtualization can be broadly defined as the
software abstraction of a set of resources, which enables
the sharing of these resources in parallel by higher-level
systems. While the actual definition and mechanisms used
varies depending on the type of virtualization in question,
the concept always remains the same; that of efficiently,
securely and transparently multiplexing a set of resources
in a manner which allows for higher-level systems to use
these resources and allowing them to assume that they are
using the real resources instead of the abstraction provided
by the mechanism. We are mostly interested in hardware-
level virtualization, where the virtualization layer sits on
top of the hardware and virtualizes the hardware devices,
allowing multiple operating systems to execute within the
virtual machine environments presented by the layer. Hard-
ware resources such as the processor, memory and I/O
are managed by the virtualization layer and shared by
the executing operating systems, although the latter might
have no knowledge of the underlying virtualization layer.
This layer is often called a virtual machine monitor or a
hypervisor.

One of the techniques used in achieving full hardware
virtulization is paravirtualization, where the hypervisor pro-
vides virtual machines that are not exact copies of the
underlying hardware architecture. This implies that the op-
erating system executing in a virtual machine provided by
the hypervisor is aware that it is running inside a virtualized
environment, and has to issue calls to the hypervisor for
certain operations. Legacy operating systems therefore need
to be ported in order to run on the hypervisor. Perhaps the
most successful paravirtualized hypervisor that has gained
widespread use in the industry is the Xen hypervisor, on
which a number of commercial solutions are based, such
as Citrix XenServer, Oracle VM and Sun xVM, as well
as heavily influencing the design of Microsoft’s Hyper-
V hypervisor. Xen supports existing application binary in-
terfaces, meaning it can support applications written for
the x86 architecture without the need for modification;
and it exposes certain physical resources directly to guest
operating systems, allowing for better performance. The
Xen hypervisor aims at supporting legacy operating systems
(with minimal porting effort) and existing applications, while
leveraging the benefits of a paravirtualized approach, such
as high performance and stronger isolation.

B. High-Performance Computing and Grids

Mergen et al. [13] argue that hypervisors offer a new
opportunity for high performance computing (HPC) envi-
ronments to circumvent the limitations imposed by legacy
operating systems. Modern hypervisors not only support
legacy systems, but they can also simultaneously execute



91

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Xenos-enabled Internet Server A

Physical Peer Machine

Xen VMM

FTP

Service
T1

Distributed 

File System

Service F2

SOAP

Web 

Service S2

Spare 

capacity
Xenos 

Coordinator

Linux 

Desktop

Service

Distributed 

File System

Service F1

SOAP

Web 

Service S1

Web 

Hosting 

Service W1

E-mail

Service M1

Physical Peer Machine

Xen VMM

FTP

Service
T1

Distributed 

File System

Service F4

SOAP

Web 

Service S4

Spare 

capacity
Xenos 

Coordinator

Cross-

compilation 

and IDE 

Service

Distributed 

File System

Service F3

SOAP

Web 

Service S3

Web 

Hosting 

Service W1

E-mail

Service M1

Xenos-enabled Cluster

Xenos-enabled Desktop

Xenos-enabled Internet Server B

Physical Peer Machine

Xen VMM

Xenos
Coordinator

Hadoop

Worker

Physical Peer Machine

Xen VMM

Xenos 
Coordinator

Hadoop

Deployer

Physical Peer Machine

Xen VMM

Xenos 
Coordinator

Hadoop

Worker

Physical Peer Machine

Xen VMM

Xenos 
Coordinator

Hadoop

Worker

Hadoop

Monitor

FTP

Service
T1

Physical Peer Machine

Xen VMM

Xenos 
Coordinator

Web 

Browser 

Service

Legacy

Windows 

XP

Service

Legacy

MacOS

Service

OS-agnostic

Window 

Manager 

Service

Live Service 

Migration

Service

Distribution,

Replication

Service

Access

Hadoop

Worker

Hadoop

Worker

Figure 1. A selection of computing platforms running the Xenos framework and hosting several interacting services.

specialized execution environments in which HPC applica-
tions are run; this allows for legacy HPC software and other
non-critical operating system services, such as file systems,
to be run within the legacy operating system, while the
HPC application can exploit the hypervisor directly and
implement any optimization opportunities, such as the use
of super-pages. These specialized execution environments
are also known as library OS, since they typically contain
only the required software stacks for the application(s)
that will be executing within them. Thibault et al. [14]
implement lightweight Xen domains based on the Mini-
OS paravirtualized kernel, which is included with the Xen
hypervisor as a demonstration of how to implement a basic
guest kernel for Xen – it is able to use the Xen network,
block and console mechanisms, supports non-preemptive
threads and only one virtual memory address space. A
similar approach is taken by Anderson et al. [15], although
the focus is on security and reliability; the authors argue that
partitioning critical services and applications into domains
with tight restrictions improves trustworthiness. Falzon [16]
implements a lightweight Xen domain to explicitly execute a
thread scheduler that supports multiple processors and offers
several scheduling policies. This allows for the creation and
evaluation of different schedulers that have direct access to
the virtualized hardware, and can for instance control the
number of kernel threads mapped on a particular virtual
CPU, or disable timers and interrupts in the domain.

A number of publications have focused on the use of
virtualization and virtual machines in grid computing en-

vironments in response to a number of significant issues
such as security, administration costs and resource control.
Figueiredo et al. [17] present a number of tests that show
overheads to be minimal under the VMware Workstation
hypervisor. The authors also present an architecture for
dynamically instantiated virtual machines based on a user’s
request, where a virtual machine is distributed across three
logical entities: image servers that hold static virtual machine
states, computation servers that can dynamically instantiate
and execute images, and data servers which store user
application data. Keahey et al. [18] propose a similar ar-
chitecture, providing execution environments for grid users
called Dynamic Virtual Environments (DVEs), as well as
implementing DVEs using different technologies such as
UNIX accounts, and operating-system and hardware-level
virtual machines such as VServer sandboxes and VMware
respectively. The different implementations were analyzed
to determine their viability for use in a grid infrastructure,
and while they provided sufficient in terms of applications
without heavy I/O loads, the authors believe that all had
shortcomings in Quality of Service (QoS) functionality, and
some technologies such as VMware did not expose enough
of their functionality for direct use in the grid. Santhanam
et al. [19] experiment with different sandbox configurations,
deployed using the Xen hypevisor, and concluded that jobs
with heavy I/O loads take a performance hit when running
inside a virtual machine sandbox, although they advocate
the use of virtual machines in grid environments where
applications often tolerate delays on the order of minutes,



92

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and if the user wishes to benefit from the advantages
obtained by using virtual environments.

IV. THE XENOS FRAMEWORK

Xenos is built on top of Xen, a virtualization platform
that has gained traction as a stable and mature virtualization
solution, but any hypervisor with the appropriate hooks and
programming interfaces will suffice in principle, including a
hypothetical ROM-based hypervisor. The JXTA framework
is currently used to maintain a peer-to-peer overlay net-
work for service advertisement, discovery and, optionally,
transport. However, we feel that a more specialized or
expressive latter generation peer-to-peer framework would
better fit our requirements. The Hadoop map-reduce frame-
work, described in more detail in Section V, is used as a
benchmarking tool to evaluate the framework, but it is not
an intrinsic part of the Xenos framework itself.

A. Physiology

Figure 1 illustrates a scenario with different hardware plat-
forms running Xenos and a variety of services, which may
be any software application that can be encapsulated within
a Xen virtual machine. A commodity cluster, typically
used for high-performance computing applications, offers
users the ability to dynamically create computation services,
such as Hadoop map-reduce nodes, while also using other
services such as the Hadoop deployer and Hadoop monitor
to easily deploy these services on the network, and monitor
them for fault-tolerance and load-balancing. Xenos also runs
on desktop machines, with the user utilizing several services
such as a file system for personal data storage, and a legacy
operating system service offering traditional applications.
The user interface that the user interacts with is itself a
virtualized service, possibly forming part of a distributed
operating system made up of several services running on
the Xenos framework. If, for instance, the user is transferring
files between the file system and the Hadoop cluster, it would
be possible for the instance of the file system containing
the required files to be migrated (physically moved) to the
cluster, thus improving the performance when transferring
data to the cluster or retrieving results. Finally, another plat-
form supporting Xenos is a traditional server in a datacentre,
where services such as web, FTP and email servers, and web
services are executed as virtual machines, and are used by
clients or by other services across the Xenos cloud.

From the perspective of the user, the platform provides
two major features: the ability to search for services, obtain
information about them and make use of them, and the
ability to control these services by creating new service in-
stances, migrate running services, manage existing ones and
monitor their use. System administrators are responsible for
setting up and managing the infrastructure on which Xenos
is hosted, providing services packaged in virtual machines,

and configuring these services to appear on the Xenos peer-
to-peer network. Optionally, users or administrators can also
develop custom services that participate on the same peer-
to-peer network as the other hosts and services and act as
an additional feature to the platform. These services join
the peer-to-peer network provided by Xenos and comple-
ment the existing features of our framework, or act as
support services for a user’s existing services. These can
include fault-tolerance and load-balancing monitors, which
trigger migration and replication of services as required,
introspection services that provide useful information about
domains, and management services that use JXTA groups to
effectively manage a user’s services.

B. Architecture

Figure 2 illustrates the architecture of a single physical
machine in the framework. Each Xenos-enabled physical
machine runs the Xen hypervisor using a paravirtualized
Linux kernel in Domain 0, which is a privileged domain
capable of controlling the guest domains (virtual machines)
that will host services on the same physical machine. The
Xenos Coordinator is a Java application that executes in
Domain 0 whose primary function is to incorporate the
physical machine into Xenos’ peer-to-peer overlay network
and advertise services running on that physical machine,
through the JXTA library. Services running within guest
domains do not normally join the overlay network directly,
but are registered with the coordinator in Domain 0, which
acts as a ’notice board’ for all local services. Administrators
configure these services through text-based configuration
files that are picked up by the Coordinator on startup. It also
provides utilities for controlling these domains by making
use of the Xen Management API, and other utilities used
by other components of the system itself or directly by
administrators, such as file management routines and ID
generators for quick configuration of hosts and services.

The Xenos API is an XML-RPC programming interface
available for users and services to interact with, and is the
primary channel through which services are discovered and
managed. Users can search for services and/or hosts on the
peer-to-peer network by passing in search parameters to
the API, which then returns results describing the services
or hosts. Services may also be controlled and monitored
remotely by passing in identifiers for the services to be acted
upon. Migration and replication of services can also be trig-
gered through the API, which implements file transfer and
copying features that are required for this functionality. The
Xenos API also features an implementation of XML-RPC
over JXTA protocols, which enables hosts on the peer-to-
peer network to issue XML-RPC calls to each other without
requiring a TCP/IP socket connection, but rather use the
built-in socket functionality in JXTA. Service delivery itself
may be accomplished without the involvement of Xenos,
and is not restricted to any particular network protocol or



93

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Physical Peer Machine (virtualization-friendly multi-core desktop/server)

Xen VMM

Domain 0 VM (Xen/Linux) Dom U1 VM ...

Xen API P2P (JXTA)

Xenos Coordinator

Service creation, migration, 
destruction, monitoring,

advertisement and discovery

Xenos API (Service Management)

Dom U2 VM

Service1

Legacy OS

Service2

Raw 

Virtualized

Hardware

...

Service1 API Service2 API ...

Dom Un VM

ServiceN

Minimal OS 

and libraries

Servicen API

Figure 2. A Xenos-enabled physical machine.

address space. However, the direct use of network protocols
beneath layer three (for example, Ethernet) would oblige
communicating services to share a physical network or a
physical machine.

In order to accommodate multiple instances of the same
service and service migration, each service type has a
template associated with it that enables the automatic config-
uration of new service instances and their Xen domains, as
illustrated in Figure 3. When replicating a service or creating
a new service instance, a new copy of the relevant template
is used. Service templates will automatically replicate on
other Xenos hosts as required so that service instances
can be spawned anywhere on the Xenos cloud. Migration
of service instances makes use of Xen’s virtual machine
migration mechanism with a slight modification to transfer
virtual machine disk images along with the virtual machine
configuration. Our current implementation inherits a Xen
restriction limiting live virtual machine migration to the local
area network, though this may be overcome as discussed in
Section VI.

C. Design Benefits

The architectural design discussed above leads to several
benefits over similar platforms. The use of a peer-to-peer
overlay network enables a decentralized approach to register-
ing and discovering services, in contrast with the centralized
approach often used within existing web services platforms,
such as Universal Description Discovery and Integration
(UDDI). By having the Xenos API available on every host
on the platform instead of a main server (and possibly
some backup servers), users of the platform can make the
applications that interact with the API more fault-tolerant by
initially searching for a number of Xenos hosts and storing
them locally as a backup list. If the host being used by
the applications becomes unavailable, another host can be

picked from the backup list and communication attempted
with it. This can also lead to implementing a load-balancing
approach to issuing API calls, so that the workload is spread
over multiple hosts instead of a single one.

JXTA provides a grouping facility, where services or
peers can be organized into groups that are created by the
user. Our framework allows administrators to specify which
groups a service should join initially; this can be used,
for instance, to group together services that offer the same
functionality, or to group together services that belong to the
same user. Services can form part of multiple groups, and are
always part of the net peer group, which is the global group
maintained by JXTA. Additionally, users who build their
own applications that form part of the peer-to-peer network
can create new groups on the fly and assign services to them.
For instance, a custom built load-balancer could create a
group and automatically monitor all the services that join it;
this scoping can help reduce the amount of messaging going
on in the network, since the load-balancer would only need
to broadcast into its created group instead of the net peer
group.

Existing commercial cloud solutions, such as Amazon
EC2, often provide computing instances that are fixed and
feature large amounts of memory, processor resources and
storage space, which are not always necessary when dealing
with lightweight or specialized services. We have already
discussed the benefits of running certain services inside
specialized execution environments in Section III; the ma-
jority of publications that we review have used Xen as
the hypervisor, as it is based on paravirtualization, which
performance significantly better that other virtualization
techniques and allows for modifications or development of
custom operating systems for running specific services. Our
platform allows administrators to create services that are
based within lightweight Xen domains, and assign to them



94

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Xenos-enabled 

cluster

Xenos-enabled 

desktop

Xenos-

enabled server

Hadoop

node

Hadoop

node

Hadoop

node

Hadoop

deployer

Hadoop

node

File system 

service

File system 

service

GUI service

Legacy OS 

applications

Web 

service

Web 

service

FTP 

server

Email 

server

Web 

server

Hadoop 

node 

template

Web server 

template

Web 

service 

template

is a

is a

is a

is a

is a

is a

is a

File system 

template

is a

Hadoop 

deployer 

template

is a

Legacy OS 

applications 

template

is a

Figure 3. The relationship between Xenos templates and services.

resources as needed. This is beneficial for certain services
that, for instance, would not require large amounts of storage
space but benefit from multiple virtual CPUs and large
amounts of memory due to their computation being mostly
processor bound. Conversely, certain services might deal
with data storage and processing, and thus require large
amount of storage space but can do with a single virtual
CPU and a small amount of memory. Although our current
prototype does not have the ability for users to upload their
own virtual machine images and configurations, this is trivial
to add to our existing infrastructure, and would be a powerful
feature that gives users even more flexibility.

V. HADOOP CASE STUDY AND PERFORMANCE
ANALYSIS

A series of preliminary tests were conducted in order to
assess the viability of our approach. The test cases all involve
deploying multiple instances of a Hadoop map-reduce wrap-
per service using a separate distributed coordination service.
We aim to explore three principal avenues, namely (1) the
automatic and dynamic deployment of the Hadoop service
to Xenos hosts and the migration of the master Hadoop
node from a failing physical machine; (2) the performance
of file I/O within virtual machines, which is crucial for
services with large-volume data processing requirements
(this is particularly relevant since Xenos requires virtual
machine images to exist in files rather than as physical disk

partitions); and (3) the performance of a series of virtualized
Hadoop map-reduce processing jobs.

A similar evaluation of running the Hadoop map-reduce
framework within a virtualized cluster is carried out by
Ibrahim et al. [20]. They argue that a virtual machine-
based Hadoop cluster can offer compensating benefits that
overshadow the potential performance hit, such as improved
resource utilization, reliability, ease of management and
deployment, and the ability to customize the guest operating
systems that host Hadoop to increase performance without
disrupting the cluster’s configuration.

A. Map-Reduce and Hadoop

In our experiments we used the Hadoop Distributed File
System (HDFS) and MapReduce components of the Apache
Hadoop framework. The map-reduce programming model,
introduced by Dean et al. [21], is aimed at processing large
amounts of data in a distributed fashion on clusters. HDFS
is a distributed file system suitable for storing large data sets
for applications with heavy data processing, such as typical
map-reduce jobs. The Hadoop map-reduce implementation
involves a master node that runs a single JobTracker, which
accepts jobs submitted by the user, schedules the job across
worker nodes by assigning map or reduce tasks to them,
monitors these tasks and re-executes failed ones. Each
worker (or slave) node runs a single TaskTracker, which is
responsible for executing the tasks assigned to it by the job



95

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tracker on the master node.

B. Deploying Hadoop Services

When setting up a computing cluster with the aim of run-
ning the Hadoop map-reduce framework, each node needs to
be configured with specific settings, such as the hostname,
SSH certificates and the hosts that it has access to, and the
HDFS and map-reduce settings that are common throughout
the cluster. When setting up a non-virtualized environment,
administrators typically configure a single node, and then
manually clone the hard disk to all the other nodes, resulting
in an identical installation across the cluster, which would
then require node-specific settings on each machine. Setting
up Hadoop on a more general cluster can be done by setting
up an installation on single node, and then distributing the in-
stallation to the other cluster nodes, typically via shell scripts
and rsync. Another alternative is to use existing deployment
frameworks that manage the configuration, deployment and
coordination of services such as Hadoop, and do much of
the work.

One of the issues that we identify with deploying any
sort of service on an existing cluster environment is the
potential to disrupt the configuration or execution of other
services when configuring the new one. If one were to use a
virtualized cluster, services could be supplied within pre-
packaged virtual machines that would not interfere with
other services running within their own virtual machines,
since the hypervisor guarantees isolation between them. The
configuration of the physical node would therefore never
need to be modified when adding new services; of course,
the initial setup of the virtualized cluster still needs to be
done manually by administrators cloning an initial setup to
all the cluster nodes, but this is inevitable. One can always
set up a physical cluster with a single service in mind, which
would not require frequent re-configuration, but this often
leads to wasted resources that virtual machines could fully
exploit if the cluster were to be virtualized.

We can identify several other benefits in using a virtual-
ized cluster for Hadoop services. Since services would be
packaged within their own virtual machine, we can easily
modify the installation and configuration of the operating
system running within the virtual machine to accommodate
Hadoop map-reduce and the HDFS and tweak its perfor-
mance, without having to modify the configuration of the
operating system running on the physical node, which is
Domain 0 in the case of Xen. Since the master nodes are po-
tential single-points-of-failure both in the HDFS and Hadoop
map-reduce, the master node can also be packaged inside
a virtual machine, which can be checkpointed regularly,
thus saving the whole virtual machine state, or migrated to
another physical host if the current host is malfunctioning
or needs to be shut down.

If we opt for a virtualized cluster on which to deploy
Hadoop, we are still faced with the task of deploying the

virtual machine containing the Hadoop map-reduce workers
on the nodes of the cluster. Deployments methods similar
to the ones when running a non-virtualized cluster can be
used, such as setting up shell scripts to transfer virtual
machine images and then issuing remote commands on
the nodes to start the virtual machines. However, a more
appropriate solution would be to use an existing platform,
which can deploy virtual machine images to the cluster’s
nodes, and allows users to administer these images remotely,
typically from the same node that acts as the map-reduce
master. The Xenos framework that we have implemented is
a perfect candidate on which to build a Hadoop deployer that
allows users and administrators to provide their own Hadoop
installation as a service within a domain, register this service
with the Xenos coordinator, and then use the framework’s
replication, migration and service control features to deploy
these services on the virtualized cluster. This requires a small
application to be developed that oversees this task, since by
itself the framework has no capabilities of deploying services
automatically, but simply provides the mechanisms that
allow this. We have therefore developed a Java application
that uses the JXTA framework to connect to the Xenos
network, and use the Xenos API to deploy the Hadoop
service supplied by the administrator. Although we have
tailored this application for the Hadoop map-reduce and
HDFS service, we feel that it can be generalized rather
easily to support any service that is registered within our
system; in fact, only a small portion of the application is
Hadoop-specific, as the rest simply deals with services that
are defined by the user in a separate configuration file. This
would provide users with a service deployer with which they
can deploy their services on the Xenos framework.

C. Evaluation Platform and Results

Our evaluation platform consists of a thirteen-host com-
modity cluster, connected over a 1 Gigabit Ethernet connec-
tion through a D-Link DGS-1224T switch. Each physical
host in the cluster runs an Intel Core 2 Duo E7200 CPU, with
3MB of L2 cache and clocked at 2.53GHz, 2GB of DDR2
RAM, and a 500GB SATA2 hard disk. All the hosts were
configured with Xen and the Xenos framework. One of the
hosts, which we refer to as the master host, was configured
with a template of the Hadoop slave service as well as an
instance of the Hadoop master node, from where we issue
commands to deploy services and execute tests; however, it
was also configured not to accept service instances of the
Hadoop slave service, meaning that we have 12 hosts on
which to instantiate Hadoop slave services. The master host
was also set as a JXTA rendezvous server, and all the Xenos
hosts configured to use it. All physical hosts were assigned
fixed IP addresses, and a DHCP server was configured on
the master host to allocate addresses to spawned domains.

In all of our tests except where stated, the domain that
we use as the Hadoop slave template which is replicated to



96

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

50

100

150

200

250

1GB 4GB 8GB

R
u

n
n

in
g 

Ti
m

e
 (

s)

Data Size

HDFS WritePHY-Cluster

VM1-Cluster

0

50

100

150

200

250

1GB 4GB 8GB

R
u

n
n

in
g 

Ti
m

e
 (

s)

Data Size

HDFS ReadPHY-Cluster

VM1-Cluster

Figure 4. PHY-Cluster vs VM1-Cluster with varying data sizes.

0

10

20

30

40

50

60

70

80

90

4 data nodes 8 data nodes 12 data nodes

R
u

n
n

in
g 

Ti
m

e
 (

s)

Number of data nodes (cluster size)

HDFS Read

PHY-Cluster

VM1-Cluster

VM2-Cluster

VM4-Cluster

0

10

20

30

40

50

60

70

80

90

100

110

120

4 data nodes 8 data nodes 12 data nodes

R
u

n
n

in
g 

Ti
m

e
 (

s)

Number of data nodes (cluster size)

HDFS Write

PHY-Cluster

VM1-Cluster

VM2-Cluster

VM4-Cluster

Figure 5. PHY-Cluster vs VM clusters with varying data nodes (cluster size) and virtual machines per physical machine.

all the hosts is configured with a 10GB disk image, 1GB
swap image, and the vmlinuz-2.6.24-27-xen kernel. Default
settings for the domain are 1 virtual CPU (VCPU), 384MB
of RAM, and set to use DHCP to obtain addresses. Domain
0 is set to use 512MB of memory, leaving the rest to be
allocated to domains, and has no restrictions on the physical
CPUs it can use. For the Hadoop tests run on the native, non-
virtualized Linux distribution, the same cluster and same
Linux installation that is used as Domain 0 is used, but
without booting into Xen so that the operating system runs
natively. In all our tests, the HDFS replication factor is set
to 2, and we do not use rack awareness since our network
only has one switch. Each task tracker is set to execute a
maximum of 2 map-tasks and 2 reduce-tasks at any given
time. No optimizations to Hadoop or any other software
component were made to suit this particular cluster.

1) Replication and Migration of Hadoop Service Tem-
plates and Services: The unoptimized replication process
took around 45 minutes to deploy a template and a single
slave service instance to each of the twelve cluster hosts,
which included a network transfer of 132GB as well as
another 132GB in local data copying; this translates to a
network throughput of around 40MB/s and a disk throughput
of around 25MBs/s. Since the process mostly involves
transferring domain files over the network and copying them
locally, its performance depends on the hardware platform
that the services are being deployed on, as well as the size

of the domains that contain the service. Other operations
performed during replication, such as issuing Xenos API
calls and updating local configuration files are typically sub-
second operations that do not affect the overall performance.
Further optimizations such as using LAN broadcasts on
the cluster to transfer the service to the hosts can be
implemented to minimize the time required for deployment.

In order to test the migration of the Hadoop master
instance, a Hadoop Wordcount benchmark was initiated on
the master, using a single slave instance deployed on each
cluster. About half-way through the job, we issue a migration
request from a small application in the master host to the
Xenos API in the same host, instructing Xenos to migrate
the master instance to another host on the cluster, which
is automatically located through a peer-to-peer search. This
causes the master to be paused while its files are moved
and its state migrated, inevitably causing some map tasks
on the slave services to fail, since they are not able to
report back to the master. Once the master has migrated, it
is un-paused and resumes executing the job, and the failed
map tasks are re-executed by Hadoop itself. The job finishes
successfully, although as expected it takes more time than if
it were not migrated, due to the re-execution of failed map
tasks. The migration itself takes less than 5 minutes, which
is practically the time needed to transfer the domain files
and the memory from the original host to the target host,
and to resolve the new address of the host. Once again,



97

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the operations issued by Xenos are lightweight and have a
negligible affect on the overall duration.

2) HDFS Performance: To evaluate the performance of
the HDFS on which Hadoop map-reduce relies, we designed
a series of tests to measure its performance when reading and
writing data in both a physical and virtualized cluster setup.
Our main objective is to determine the performance penalty
suffered by I/O operations in virtualized environments, using
different data set sizes, cluster configurations and number of
HDFS datanodes. All read and write operations were issued
using the get and put operations provided by Hadoop, which
allows reading from the HDFS to the local filesystem and
writing from the local filesystem to the HDFS respectively.
The data written into the HDFS in all tests is a large text file
automatically generated by scripts beforehand. In all results,
PHY-Cluster refers to a Hadoop cluster on native Linux,
while VM1-Cluster, VM2-Cluster and VM4-Cluster refer to
Xenos-enabled virtualized clusters with one, two and four
virtualized Hadoop slave services deployed per physical host
respectively.

We first evaluate the performance of the HDFS when read-
ing and writing different data sizes (1GB, 4GB and 8GB)
under a physical and a virtualized environment with only one
service instance per host (VM1-Cluster). 12 cluster hosts are
used in all these tests, resulting in 12 datanodes being made
available to the Hadoop master. As shown in Figure 4, PHY-
Cluster performs better than VM1-Cluster in both reading
and writing, which is expected due to the overheads typical
in virtual machines. While the performance gap is marginal
for the 1GB data set, which translates to around 85MB per
datanode, the gap increases with bigger data sets that involve
more data per node.

Another evaluation carried out for HDFS is to identify
whether the number of virtualized service instances on each
physical host affects read and write performance. For each
test, we read and write 256MB for each datanode, as in
the previous test, meaning 1GB, 2GB and 3GB for 4, 8
and 12 datanodes respectively. As shown in Figure 5, PHY-
Cluster once again outperforms all the virtualized setups
as expected. However, we note an interesting difference
between reading and writing on virtualized datanodes; when
writing, the performance gap grows significantly larger as
the number of datanodes increases, but remains stable when
reading. Ibrahim et al. [20] also make this observation in
one of their tests, indicating that the write performance
gap increased markedly but it increased only slightly when
reading.

3) Hadoop Benchmarks: One of the possible benefits of
running Hadoop jobs within virtual machines is increasing
the amount of computation nodes thus using the physical
processing resources available more efficiently. To evaluate
this, we execute several benchmark jobs that are provided
as examples by Hadoop. In all of the evaluations presented
below, we execute Hadoop jobs on the physical (native)

cluster and three other virtualized cluster setups, as shown
in Table I. We use 12 physical hosts throughout all tests,
but since the number of service instances (VMs) per host
changes, we have a different amount of Hadoop nodes
available in certain setups. We again refer to these setups as
PHY-Cluster, VM1-Cluster, VM2-Cluster and VM4-Cluster.
Note that since the domain of each service instance is set to
use 1 VCPU, when deploying four domains on each physical
host, the total number of VCPUs on the host is larger than
the number of physical CPU cores available, which can have
a detrimental effect on the performance of the domains on
the host, due to CPU contention. The best VCPU to CPU
core ratio is in the VM2-Cluster case, where each VCPU is
mapped to a CPU core, as shown in Table I.

The Wordcount benchmark counts the occurrence of each
word in a given text file, and outputs each word and its
associated count to a file on the HDFS. Each mapper takes
a line as input, tokenizes it and outputs a list of words with
the initial count of each, which is 1. The reducer sums the
counts of each word and outputs the word and its associated
count. We execute the benchmark varying the input data size,
using 1GB and 8GB data files. As shown in Figure 6, the
performance of the VM2-Cluster and VM4-Cluster is better
than the VM1-Cluster, indicating that the extra computation
nodes being made available are providing a performance
benefit. However, the performance of PHY-Cluster is still
better than all the virtualized clusters. In the Wordcount
benchmark, Ibrahim et al. [20] achieved better performance
on their virtualized clusters with 2 and 4 VMs per physical
host than their physical (native) cluster; however each host
in their evaluations was equipped with 8 cores, and their
VCPU to CPU core ratio is always less than 1.

The Sort benchmark sorts an input file containing
<key,value> pairs and outputs the sorted data to the file
system. The input data is usually generated using the Ran-
domWriter sample application provided with Hadoop, which
can be used to write large data sets to the HDFS, consisting
of sequence files. The mappers reads each record and outputs
a <key, record> pair, sorting them in the process, and
the reducer simply outputs all the pairs unchanged. We
execute the benchmark varying the input data size, using
1GB and 8GB data files. As shown in Figure 7, increasing
the number of computation nodes does not result in a
performance benefit for the VM2-Cluster and VM4-Cluster;
their performance actually degrades significantly. During the
tests we observed that while the mappers started executing
at a quick rate, once the reducers started executing, the
whole job execution slowed down considerably; this was
also observed by Ibrahim et al. [20] in their evaluation of the
Sort benchmark. The authors argue that this can be attributed
to the large amount of data transferred from the mappers
to the reducers when they start, causing the virtualized
Hadoop nodes on the same physical host to compete for I/O
resources. The performance of the HDFS is also a factor,



98

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster
Services (VMs) - 1 VM/host 2 VM/host 4 VM/host
Hadoop nodes 12 12 24 48
VCPU : CPU core ratio - 1:2 1:1 2:1

Table I
THE PHYSICAL AND VIRTUALIZED CLUSTERS SETUPS ON WHICH HADOOP JOBS ARE EXECUTED.

0

50

100

150

200

250

300

350

400

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster

R
u

n
n

in
g 

Ti
m

e
 (

s)

Cluster setup

Wordcount

1GB

8GB

Figure 6. Wordcount execution on PHY-Cluster and VM clusters with varying data input size and virtual machines per physical machine.

0

100

200

300

400

500

600

700

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster

R
u

n
n

in
g 

Ti
m

e
 (

s)

Cluster setup

Sort

1GB

8GB

Figure 7. Sort execution on PHY-Cluster and VM clusters with varying data input size and virtual machines per physical machine.

since large amounts of data are being read and written at
the same time.

The PiEstimator application included with Hadoop uses a
quasi-Monte Carlo method to estimate the value of Pi. The
mappers generate points in a unit square, and then count the
points inside and outside of the inscribed circle of the square.
The reducers accumulate these points from the mappers, and
estimate the value of Pi based on the ratio of inside to outside
points. The job takes as input the number of mappers to start,
and the number of points to generate for each mapper; 120
mappers and 10,000 points were used in all tests. As shown
in Figure 8, the performance of VM2-Cluster and VM4-
Cluster shows a decisive improvement over VM1-Cluster,
since more processing nodes are available, and very little
I/O operations are done on the HDFS. In order to verify
whether the ratio of VCPUs to physical cores has an effect
on performance, we setup a VM1-Cluster with each VM
assigned 2 VCPUs instead of 1; this resulted in the same
amount of Hadoop nodes available, but each node has an

extra VCPU compared to the standard VM1-Cluster. We
ran the PiEstimator tests on this cluster and noticed a con-
siderable performance improvement, although not as high
as the VM2-Cluster and VM4-Cluster. Interestingly enough,
we performed a test on PHY-Cluster where we restricted
the Linux kernel to use only a single core, expecting to
see a performance degradation when compared with a dual-
core setup. However there was no degradation; this could
be a deficiency with this particular Hadoop job or Hadoop
itself, although it does not explain how VM1-Cluster with
two VCPUs achieved better performance than with a single
VCPU. It would be an interesting exercise to perform more
tests, varying parameters such as the number of map-tasks
and reduce-tasks allowed per node, to identify the reasons
for this observation.

D. Summary of Results

Using the Hadoop map-reduce framework and the HDFS
as a test case, we evaluated the Xenos framework in terms of
the functionality and features that it provides, and whether



99

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

5

10

15

20

25

30

35

40

45

50

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster
R

u
n

n
in

g 
Ti

m
e

 (
s)

Cluster setup

PiEstimator

Figure 8. PiEstimator execution on PHY-Cluster and VM clusters with varying virtual machines per physical machine.

the use of virtualization introduces a performance penalty
that might not make it feasible to use such a framework for
certain data intensive applications such as Hadoop. Using
the functionality exposed by the Xenos API, we successfully
developed an application that automatically deploys Hadoop
map-reduce services over a cluster, allowing the user to
specify the number of cluster hosts to use, and the number
of services per host. We also successfully migrated the
Hadoop master node from its original host to another; the
node resumed without issues and eventually the job was
completed.

As expected, reading and writing operations on the HDFS
when run on a virtualized cluster suffers a performance
penalty when compared to a physical (native) cluster setup.
For small data transfers and cluster setups, the gap is
negligible, but increases steadily when involving large data
sets or a large number of cluster nodes. While we ac-
knowledge that these I/O performance penalties can be a
barrier when adopting virtualization, a significant amount of
ongoing work and research is aiding in reducing this cost
and increasing hardware support for virtual I/O.

Increasing the number of computation nodes by adding
more virtualized service instances per physical host benefits
certain Hadoop jobs that are processor bound, since more
efficient use of the physical processing resources is being
made. However, jobs that are more I/O bound and that
deal with large data sets tend to suffer a performance hit
due to the performance degradation of the HDFS. For this
reason, an interesting experiment would be to separate the
HDFS from the service instances, which become computa-
tion nodes that execute the Hadoop tasks but use a non-
virtualized HDFS, and evaluate whether any performance
benefits are obtained.

To summarize, we have shown that any negative per-
formance effects arising from using Xenos are related to
the deficiencies in current virtualized I/O systems, and not
due to the overhead imposed by Xenos, which is kept to
a minimum. A peer-to-peer virtualized services platform
similar to Xenos allows for rapid deployment of services,
with the additional benefit that it does not require applica-

tions to be modified. We have also shown that leveraging
the superior search capabilities of peer-to-peer networks
and virtualization features such as migration allows for a
more scalable and resilient approach to dynamic service
provisioning. Once a platform like Xenos is in place, we can
focus on managing services instead of managing physical
machines.

VI. TOPICS FOR FURTHER INVESTIGATION

Xenos can fill the role of a test-bed to facilitate experi-
mentation with a variety of emerging issues in distributed
virtualized services, some of which are briefly discussed
here.

A. A Library of Essential Services

The core functionality provided by the Xenos framework
can be further extended and abstracted away through ad-
ditional services. Examples include service wrappers for
load-balancing and fault-tolerance (virtual machine check-
pointing is invisible to the service(s) hosted within), virtual
machine pooling and replication, service deployers such as
the Hadoop deployer discussed previously, platform emula-
tors, legacy services supporting a range of operating systems,
and a Xenos-UDDI adapter that can be used to search
for Xenos services via UDDI. Xenos does not impose a
single method for actual service delivery, thus web services,
Sun RPC, and even services using raw Ethernet may be
advertised.

B. Seamless Wide-Area Service Migration

The issue of live virtual machine migration over WANs
has been addressed by several authors and a number of
prototypes are available. Travostino et al. [22] approach the
problem of preserving TCP connections by creating dynamic
IP tunnels and assigning a fixed IP address to each virtual
machine, which communicates with clients via a virtual gate-
way interface that is set up by Xen. After migration, a virtual
machine retains its address, and the IP tunnels are configured
accordingly to preserve network routes – this is completely
transparent to TCP or any other higher level protocol.
Bradford et al. [23] combine the IP tunneling approach with



100

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Physical devices (some of which may be IOMMU-enhanced)

Dom0 Linux OSDomU Service 1

 Xen

Thread scheduler

Shared I/O ring 

buffers

Communication 

front-end

Direct TCP/IP 

or JXTA connection 

to other Dom0

JXTA connection

to P2P overlay 

network

DomU Service 2

File system

Communication 

front-end
Device drivers

Communication 

back-end

TCP/IP

network stack

JXTA P2PXenos 

Coordinator

Data transfer path

Control path between Dom0 and DomUs

JXTA control path

Figure 9. An alternate architecture allowing for various transport methods.

Dynamic DNS to address the problem of preserving network
connections. More importantly, the authors also implement a
pre-copy approach for transferring the disk image attached to
a virtual machine, using a mechanism similar to that used by
Xen when live migrating the state of a virtual machine. This
greatly minimizes downtime even if the actual migration
takes long due to poor network performance. Harney et al.
[24] suggest using the mobility features in the IPv6 protocol
to preserve network communication sessions, an approach
that is viable in the long-term.

C. Alternative Transport Methods For Service Delivery

Applications featuring fine grained concurrency span-
ning across virtual and physical machines stand to gain
from inter-virtual machine communication path optimiza-
tions such as shared memory communication for services
residing on the same physical machine, and hypervisor-
bypass network communication for distributed services. In
both instances, the secure initialization of each communica-
tion path would be delegated to Xenos, allowing the data
to move directly between the participating virtual machines
and virtualization-enabled I/O devices. In some cases, an I/O
could be permanently and exclusively bound to a specific
service for low-latency dedicated access. Another enhance-
ment is to allow services to piggy-back their communication
over the JXTA protocol, which would allow communication
between services that cannot reach one another outside of

the peer-to-peer network. Figure 9 illustrates this concept.

D. Security, Authentication and Service Provisioning

A number of underlying mechanisms could be inher-
ited from the Xen hypervisor and the JXTA peer-to-peer
framework or their respective alternatives. To our benefit,
JXTA provides several security and authentication features,
as discussed by Yeager et al. [25]; these include TLS
(Transport Layer Security), and support for centralized and
distributed certification authorities. Xen provides a basis for
automated accounting and billing services that track service
consumption as well as physical resource use. However,
Xenos should at least provide unified and distributed user,
service and hierarchical service group authentication and
permission mechanisms, a non-trivial undertaking in itself.

E. The Operating System-Agnostic Operating System

Software architectures in the vein of Xenos could fit
the role of a distributed microkernel in a virtualization-
embracing operating system that consists of interacting light-
weight services hosted within virtual machines, including a
multi-core thread scheduler, file systems (a stripped down
Linux kernel), and device drivers. Each operating system
service would run within its own light-weight Xen domain
and expose itself through Xenos services (reminiscent of
system calls). Xenos services would also host legacy oper-
ating systems and applications, presented to users through an



101

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operating system-agnostic window manager hosted in a sep-
arate virtual machine. Applications with particular resource
requirements or requiring isolation, such as computer games
or web browsers, may easily be hosted in their own virtual
machines, supported by a minimal application-specific ker-
nel or library or even executing on ‘bare virtualized metal’.
Xen, and virtual machine monitors in general, have been
described as “microkernels done right” [26], although others
have argued that the drawbacks that muted the adoption of
microkernels [27] still apply.

VII. CONCLUSION

An approach to building distributed middleware where
services are hosted within virtual machines interconnected
through a peer-to-peer network has been presented through
the Xenos framework. Xenos extends well-established solu-
tions for virtualization hypervisors and peer-to-peer overlay
networks to deliver the beginnings of a fully decentralized
solution for virtualized service hosting, discovery and deliv-
ery.

Using the Hadoop map-reduce framework and the HDFS
as a test case, it was established that minimal performance
overheads are associated with using the Xenos framework
itself, and that the overheads introduced through the use of
virtual machines are principally linked with the incidence
of I/O operations. It is expected that forthcoming hardware
support for virtualization will further reduce the gap between
virtualized and native I/O performance pinpointed in the
results, while simplifying hypervisors. This will further con-
solidate the virtual machine’s position as a viable alternative
for hosting both computation- and I/O-intensive tasks.

In practice, Xenos automated to a large degree the de-
ployment of jobs while enabling the seamless migration of
live Hadoop nodes. We thus believe that the combination
of peer-to-peer technology and virtualization merits serious
consideration as a basis for resilient distributed services.

REFERENCES

[1] D. Bailey and K. Vella, “Towards peer-to-peer virtualized
service hosting, discovery and delivery,” in AP2PS ’10:
Proceesings of the The Second International Conference on
Advances in P2P Systems, 2010, pp. 44–49.

[2] D. Bailey, “Xenos: A service-oriented peer-to-peer framework
for paravirtualized domains,” Master’s thesis, University of
Malta, 2010.

[3] P. Willmann, S. Rixner, and A. L. Cox, “Protection strategies
for direct access to virtualized I/O devices,” in ATC’08:
USENIX 2008 Annual Technical Conference on Annual Tech-
nical Conference. Berkeley, CA, USA: USENIX Associa-
tion, 2008, pp. 15–28.

[4] K. A. Fraser, S. M. Hand, T. L. Harris, I. M. Leslie, and I. A.
Pratt, “The XenoServer computing infrastructure,” University
of Cambridge Computer Laboratory, Tech. Rep., 2003.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles. New
York, NY, USA: ACM, 2003, pp. 164–177.

[6] D. Spence and T. Harris, “XenoSearch: Distributed resource
discovery in the XenoServer open platform,” in HPDC ’03:
Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing. Washington, DC,
USA: IEEE Computer Society, 2003, p. 216.

[7] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo,
“WOW: Self-organizing wide area overlay networks of virtual
workstations,” in In Proc. of the 15th International Sympo-
sium on High-Performance Distributed Computing (HPDC-
15, 2006, pp. 30–41.

[8] M. Amoretti, F. Zanichelli, and G. Conte, “SP2A: a service-
oriented framework for P2P-based grids,” in MGC ’05: Pro-
ceedings of the 3rd international workshop on Middleware
for grid computing. New York, NY, USA: ACM, 2005, pp.
1–6.

[9] V. March, Y. M. Teo, and X. Wang, “DGRID: a DHT-based
resource indexing and discovery scheme for computational
grids,” in ACSW ’07: Proceedings of the fifth Australasian
symposium on ACSW frontiers. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2007, pp. 41–
48.

[10] Q. Xia, R. Yang, W. Wang, and D. Yang, “Fully decentralized
DHT based approach to grid service discovery using overlay
networks,” Computer and Information Technology, Interna-
tional Conference on, pp. 1140–1145, 2005.

[11] D. Talia, P. Trunfio, J. Zeng, and M. Hgqvist, “A DHT-based
peer-to-peer framework for resource discovery in grids,”
Institute on System Architecture, CoreGRID - Network of
Excellence, Tech. Rep. TR-0048, June 2006.

[12] W. Wadge, “Providing a grid-like experience in a P2P envi-
ronment,” Master’s thesis, University of Malta, 2007.

[13] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Vir-
tualization for high-performance computing,” SIGOPS Oper.
Syst. Rev., vol. 40, no. 2, pp. 8–11, 2006.

[14] S. Thibault and T. Deegan, “Improving performance by
embedding HPC applications in lightweight Xen domains,”
in HPCVirt ’08: Proceedings of the 2nd workshop on System-
level virtualization for high performance computing. New
York, NY, USA: ACM, 2008, pp. 9–15.

[15] M. J. Anderson, M. Moffie, and C. I. Dalton, “Towards
trustworthy virtualisation environments: Xen library OS se-
curity service infrastructure,” Hewlett-Packard Laboratories,
Tech. Rep. HPL-2007-69, April 2007. [Online]. Available:
http://www.hpl.hp.com/techreports/2007/HPL-2007-69.pdf

[16] K. Falzon, “Thread scheduling within paravirtualised do-
mains,” Bachelor of Science (Hons) Dissertation, University
of Malta, 2009.



102

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[17] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A
case for grid computing on virtual machines,” in ICDCS
’03: Proceedings of the 23rd International Conference on
Distributed Computing Systems. Washington, DC, USA:
IEEE Computer Society, 2003, p. 550.

[18] K. Keahey, K. Doering, and I. Foster, “From sandbox to
playground: Dynamic virtual environments in the grid,” in
GRID ’04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 34–42.

[19] S. Santhanam, P. Elango, A. Arpaci-Dusseau, and M. Livny,
“Deploying virtual machines as sandboxes for the grid,” in
WORLDS’05: Proceedings of the 2nd conference on Real,
Large Distributed Systems. Berkeley, CA, USA: USENIX
Association, 2005, pp. 7–12.

[20] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi,
“Evaluating MapReduce on virtual machines: The Hadoop
case,” in CloudCom, 2009, pp. 519–528.

[21] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[22] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat,
J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath,
and P. Y. Wang, “Seamless live migration of virtual machines
over the MAN/WAN,” Future Gener. Comput. Syst., vol. 22,
no. 8, pp. 901–907, 2006.

[23] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg,
“Live wide-area migration of virtual machines including
local persistent state,” in VEE ’07: Proceedings of the 3rd
international conference on Virtual execution environments.
New York, NY, USA: ACM, 2007, pp. 169–179.

[24] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. West-
all, “The efficacy of live virtual machine migrations over the
internet,” in VTDC ’07: Proceedings of the 3rd international
workshop on Virtualization technology in distributed comput-
ing. New York, NY, USA: ACM, 2007, pp. 1–7.

[25] W. Yeager and J. Williams, “Secure peer-to-peer networking:
The JXTA example,” IT Professional, vol. 4, pp. 53–57, 2002.

[26] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. Ma-
genheimer, “Are virtual machine monitors microkernels done
right?” in HOTOS’05: Proceedings of the 10th conference
on Hot Topics in Operating Systems. Berkeley, CA, USA:
USENIX Association, 2005.

[27] G. Heiser, V. Uhlig, and J. LeVasseur, “Are virtual-machine
monitors microkernels done right?” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 1, pp. 95–99, 2006.


