
123

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data Portability Using WebComposition/Data Grid Service

Olexiy Chudnovskyy, Stefan Wild, Hendrik Gebhardt and Martin Gaedke
Faculty of Computer Science

Chemnitz University of Technology

Chemnitz, Germany

olexiy.chudnovskyy@informatik.tu-chemnitz.de, stefan.wild@informatik.tu-chemnitz.de,

hendrik.gebhardt@informatik.tu-chemnitz.de, martin.gaedke@informatik.tu-chemnitz.de

Abstract - Web 2.0 has become the ubiquitous platform for

publishing, sharing and linking of content. While users are

empowered to create and manage their data, the latter is still

scattered and controlled by distributed and heterogeneous

Web applications. The data is usually stored in internal silos

and is only partially exposed through platform APIs. As a

result, the reuse possibilities, fine-grained access control and

maintenance of distributed data pieces become a time-

consuming and costly activity, if feasible at all. In this paper,

we introduce our approach to develop Web applications based

on the principles of data portability, decentralization and user-

defined access control. Our main contributions are (1) a novel

Web service-based storage solution for the read-write Web,

combined with (2) a security framework for WebID

authentication and authorization based on WebAccessControl

lists (WAC), and (3) a corresponding systematic approach for

Web applications development based on loosely-coupled and

user-controlled storage solutions.

Keywords - WebComposition; Data Engineering; REST; WebID;

Web 2.0

I. INTRODUCTION

In the age of Web 2.0, it is the users, who produce a huge
amount of data by contributing to blogs, wikis, discussion
boards, feedback channels or social networks [1]. The
numerous platforms on the Web facilitate this activity by
providing sophisticated publishing tools, data sharing
functionalities and environments for collaborative work.
While users enjoy the simplicity and comfort given by these
applications, they usually face the problem that “their”
created data belongs to the service provider and is basically
out of their control [2]. The data can be accessed, edited or
linked only in the ways that were originally foreseen by
platform developers. For example, user profile stored in
Facebook cannot be synchronized with profiles in other
social networks. An uploaded picture cannot be linked with
others using new relationship types like “same event” or
“same place”. The accessibility and portability of data
depends on APIs, usage terms and conditions of different
platforms. In summary, users are not only hindered in their
sharing, linking and publishing possibilities – they do not
really control their data anymore. Application developers, on
their side, are hindered in consuming the published content,
either because existing platforms expose it in a restricted

way or do not include enough metadata required for the
particular domain.

There is a clear need for storage solutions, frameworks
and tools, which would support both: users and developers in
their corresponding activities. In this paper, we present our
approach to decouple Web applications from storage
solutions and analyze the resulting consequences regarding
data access, security and application development process. In
particular, the contributions of the paper are the following:

1. A novel Web-service-based storage solution
enabling data publishing and linking based on the
principles of Linked Data. The solution acts as a
portable Web component, which provides repository
functionality and also enables aggregation of access
to distributed heterogeneous data sources.

2. A security framework for user-defined access
control based on the social graph defined by the
Friend-of-a-Friend ontology (FOAF). We apply the
WebID concept [3] and WebAccessControl protocol
[4] to design a reusable module for client
authentication and authorization.

3. A systematic approach to develop storage-decoupled
Web applications. We adapt modeling techniques
and tools used to design application data domain and
provide guidance in adoption of the presented
architecture.

The rest of the paper is organized as follows: in
Section II, we discuss the concept of application-independent
storage solution and introduce our implementation based on
WebComposition/Data Grid Service (DGS). In Section III,
we describe the utilized authentication and authorization
approach based on WebID and WebAccessControl protocol.
Section IV discusses how traditional development process
should be adapted to take the new architecture into account.
In Section V, we illustrate our approach by implementing a
simple photo management application. Finally, in Section
VI, we summarize the paper and give an outlook into our
further work.

II. WEBCOMPOSITION/DATA GRID SERVICE AND READ-

WRITE WEB

WebComposition/Data Grid Service [5] is the core
element of the fourth generation of the WebComposition
approach [6]. It acts as an extensible storage and gateway

124

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1 WebComposition/Data Grid Service

solution, which focuses on data integration and uniform
access to distributed data sources [7][1]. Data Grid Service
has several interfaces and applies the Linked Data principles
to identify, describe and link internal resources.

Following, we describe the data model, interface and
functional capabilities of Data Grid Service. Furthermore, we
give an insight into its internal architecture and show
extension possibilities.

A. Data model

The data space managed by WebComposition/Data Grid
Service consists of a set of typed lists. Lists can have
different nature and provide different operations on items
inside. For example, the core modules of Data Grid Service
implement operations on XML resources, which can be
retrieved, updated, removed or linked with others. Extension
modules implement handling of binary collections or
structured access to external data sources, like relational
databases, user tweets, blog entries, documents etc. In all
cases, Data Grid Service provides a common view on
distributed data spaces and exposes them to clients as lists of
entries (Figure 1).

Beside typed lists, the so called virtual resources can be
defined within Data Grid Service. While they do not offer
any storage or gateway functionality, they are used to
provide additional access and manipulation methods on the
top of the existing lists. An example of such a virtual
resource is the one enabling further representations of
existing resources. With the help of transformation
stylesheets like XSLT, the default XML representation of
resources can be extended with RSS, Atom, JSON and other
formats.

Collections and items within Data Grid Service can be

annotated to provide additional information about their
origin, author, creation time etc. Annotations also give
information about resource behavior and defined access
control. Furthermore, a repository-wide metadata is
available, where specification of the lists and general service
description are stored.

B. Interface

WebComposition/Data Grid Service follows the REST
architectural style to identify and manipulate internal
resources. All resources within Data Grid Service are
identified using URIs. Some pre-defined URI-patterns are
used to access metadata ({resource URI}/meta) or

access control lists ({service URI}/meta/acl) etc. The
standard HTTP methods GET, POST, PUT and DELETE are
used to read, create, update and delete resources. Depending
on the configuration, some of the resources may require
authorization before executing the operations.

REST/HTTP interface provides several advantages for
multi-tier architectures, where data storage is decoupled from
services and third-party applications. First, it is simple,
complies with well-proven Web standards and can be
seamlessly integrated into the Web landscape [8]. Second,
REST/HTTP enables loose coupling between services and
clients. A REST-based storage solution can evolve
independently and extend its functionality without breaking
the contract. And finally, based on the HTTP protocol, third-
party providers are empowered to provide additional services
on the top of user-controlled storage solutions, e.g., caching,
security etc.

Though REST/HTTP is the main and most suitable
interface for decoupled data storages, also SOAP and
XML/RPC endpoints are foreseen to support business

125

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scenarios and proprietary clients.

C. Core functionality

Data Grid Service provides several core modules, which
enable management of both structured and unstructured
content. In particular, users have the possibility to upload
their profile information, multimedia content and define fine-
grained access control on the resources. Applications can
utilize the published content and create new collections
within Data Grid Service to store their internal data. In both
cases, user is the only owner of the data and can extend,
update or revoke access at any time.

Following example creates a new XML list within Data
Grid Service:

<collection xmlns="http://www.w3.org/2007/app"

xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:dgs="http://www.webcomposition.net/2008/02/d

gs/">

<atom:title>profiles</atom:title>

<dgs:dataspaceengines>

 <dgs:dataspaceengine

dgs:type="http://.../CacheDataSpaceEngine" />

 <dgs:dataspaceengine

dgs:type="http://.../XmlDataSpaceEngine"

xmlns:dx="http://.../XmlDataSpaceEngine/" >

 <dx:primarykey>

 childnode1/childnode2/id

 </dx:primarykey>

 </dgs:dataspaceengine>

</dgs:dataspaceengines>

</collection>

Listing 1. Definition of new list

The request contains title and type of the list as well as
list-specific metadata. The type of the list defines the
module(s) (or so called Data Space Engines), which would
be responsible for the HTTP requests on corresponding URI
namespace. The metadata may describe the behavior of the
module more precisely, e.g., security policies or
configuration settings. After creation it is accessible under
{list URI}/meta URI and can be retrieved in Resource
Description Framework (RDF) format.

A single request can be processed by several modules,
called within a pipeline, where output of one module is
passed to another one as input. This enables pre- and post-
processing of incoming data - for example, for caching or
transformation purposes.

Following, we present the core modules of Data Grid
Service, their capabilities and usage examples.

1) Data Space Engine for XML lists
XML is a well-understood and easy to use format, which

is commonly used in distributed Web applications. Data Grid
Service uses XML as the main data representation format,
mainly because of many existing tools and standards to
validate, to transform and to navigate through XML-based
documents. The module “Data Space Engine for XML lists”
provides a broad range of functionality to deal with XML

resources. Though basic Create/Read/Update/Delete
(CRUD) functionality is supported for all kinds of XML
resources, the main purpose of this Data Space Engine is to
manage so called XML lists, i.e., XML resources, which
have a flat tree structure and contain a list of semantically
and structurally related XML items. The list model can be
applied for many kinds of Web applications, e.g., blogs,
content-management-systems, e-commerce applications etc.

By restricting the view from general XML resources to
XML lists, the Data Space Engine can provide additional
functionality specific to lists. In particular, the module
provides operations to identify and retrieve single items,
append new or delete existing ones. Furthermore, XML
Schema and XSLT stylesheets can be applied to perform
data validation or create alternative representation formats of
list items.

XML lists are useful to represent user- or application-
produced content and make it available to others. For
example, a simple address book service can model user
contacts as XML items and publish them as a collection in
the user’s storage solution:

$curl https://dgs.example.org/contacts

<contacts>

 <contact id="1001">

 <firstname>John</firstname>

 <secondname>Smith</secondname>

 <address>

 <street>2nd Avenue</street>

 <number>54</number>

 <zip>11124</zip>

 <city>New York</city>

 </address>

</contact>

 <contact id="1002">

 …

 <contact id="1003">

 …

</contacts>

Listing 2. Example of XML list

Following the RESTful architecture style the contact

items can be retrieved, created, updated or deleted using the
corresponding HTTP methods. However, as soon as user
enables write access to further service providers, she might
want to restrict the structure of the list items or check them
for valid content. For this purpose, an XML schema is
defined for the list, causing validation of document after all
incoming write requests.

The XML representation of list items empowers
application developers to use complex data structures while
describing their data. An XML item is a tree, whose depth
can vary depending on the application needs. In order to
update nested items, like the contact address in the example
above (so called partial update operation), the module
provides the concept of URI templates, which enables
dynamic assignment of URIs to item pieces. URI templates
are configuration settings for the module and can be defined
at run-time by adding dedicated metadata to the XML list:

126

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

POST /contacts/meta HTTP/1.1

Host: user1.datagridservice.example.org

Content-Type: text/n3

…

@prefix meta:

<http://www.webcomposition.net/2008/02/dgs/meta/>.

<http://dgs.example.org/contacts>

meta:urlTemplate

[

meta:url "contacts/{value}/address";

meta:xPath "/contacts[@id='{value}']/address"

].

Listing 3. Definition of URI template

An URI template consists of 2 patterns - the one to be

applied on URIs of incoming requests and the one to be
applied on XML list to select the desired subnodes. As a
result, the nested XML nodes get associated with the URI
https://dgs.example.org/contacts/{contact-

id}/address and can be manipulated the same way as the
parent ones.

Furthermore, arbitrary views on the XML lists can be
defined in the same way. The expressiveness of view
definitions, however, is limited to the expressiveness of
XPath query language. As an example, one could define a
view on all persons living in a particular city and retrieve
them using a dedicated URI pattern.

Many data-driven applications rely on entity-relationship
models while designing and managing their data domain. To
model the “JOIN” operations on resources, i.e., to retrieve all
the related items for some given one, XML Data Space
Engine introduces the concept of relationships. Relationships
define the connection between two items in terms of some
given ontology. The relationships are described using RDF
and belong to the list metadata. The definitions can be
consumed by service clients in order to discover and apply
additional retrieval functions. A relationship is configured
through 3 obligatory and 3 optional attributes:

 Parent: A URI of the list to act as a primary list, e.g.,
http://dgs.example.org/contacts

 Child: A URI of the list to act as a subordinate list,
e.g., http://dgs.example.org/pictures

 Predicate: A URI of RDF predicate to act as a
foreign key, defining a connection between primary
and secondary list items, e.g.,
http://xmlns.com/foaf/0.1/img.

A relationship configured using the above attributes
enables processing of the following URI pattern:

http://{service_host}/{parent_list_name}/

{parent_item_id}/{child_list_name}

As a result, only those items from child list are retrieved,

which are linked to the parent list item using the relationship-
specific predicate. For example, a GET request on
http://dgs.example.org/contacts/1001/pictures would
return picture descriptions associated with the contact 1001.

A POST HTTP request on the same URI is used to add
new items to the child list linking them simultaneously with
the specified parent list item.

To create an inverse link from child item to the parent
one, each time a direct connection is established, the optional
Inverse Predicate attribute is used, containing a URI of RDF
predicate for the inverse relationship. A corresponding RDF
statement is then automatically added to the child list
metadata, acting as a foreign key to the parent list item. The
same URI patterns can be applied to retrieve, create or delete
parent items linked to some given child item.

If many relationships between the same parent and child
list should be modeled (1:n, n:m), optional Parent and Child
Aliases can be defined to match the incoming request with
corresponding relationship definition. Listing 4 gives an
insight into the list metadata and shows the internal
relationship representation.

In summary, Data Space Engine for XML lists enables
users and third-party applications to store and manage their
data using simple and flexible data model. It follows
principles of RESTful architecture style and can be applied
to implement a broad range of data-centric Web applications.

2) Data Space Engine for binary resources
Current Web 2.0 applications require from storage

solutions efficient support of both structured data and
arbitrary binary content. Some of the data is supposed to be
public, while access to other has to be limited. This fact
elicits corresponding requirements on resource publishing
and access control functions.

In case of public resources, users should be assisted by
annotating and linking resources among each other’s. For
example, metadata available in the uploaded media files has
to be exposed in machine-processable format, so that Web
crawlers and service clients can utilize it to implement more
intelligent search and discovery functions. Providing links to
related content is also essential to enable third-party
applications to explore the user space.

127

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Data Space Engine for binary resources implements
basic CRUD functionality for the arbitrary content. Binary
resources are grouped within collections. The GET request
on the collection returns an Atom feed with basic
descriptions of collection items. To create and update new
resources, corresponding HTTP requests with MIME type
specification are used. The annotations and metadata of the
items is accessible using the {resource URI}/meta URI
pattern. Third-party applications can consume this metadata
according to their needs or update it using corresponding
HTTP methods.

We have implemented automatic metadata extraction for
some common MIME types (based on pre-defined mapping
between file attributes and RDF properties). For example,
just after uploading an MP3 file to Data Grid Service, the
artist and album information are immediately published
using RDF and terms coming from Music Ontology [9]:

<rdf:Description

rdf:about="http://dgs.example.org/music/31"

xmlns:ns0=”http://purl.org/ontology/mo/”>

 <dc:date>2005</dc:date>

 <dc:description>

 Amazon.com Song ID: 20206547

 </dc:description>

 <dc:title>Von Hier An Blind</dc:title>

 <ns0:album>Von Hier An Blind</ns0:album>

 <ns1:genre>Pop</ns1:genre>

 <ns2:singer>Wir Sind Helden</ns2:singer>

<rdf:Description>

 Listing 5. Example of metadata extraction

Similarly, Data Space Engine analyzes PDF, JPEG and

MPEG file encodings in order to extract the metadata and
expose it using the RDF and common vocabularies.

3) Data Space Engine for XSLT transformations
Data Space Engine for XSLT transformations enables

definition of further representations of XML resources. For
example, contact details from the example above can be
exposed as JSON list, CSV table, Atom Feed etc. For this
purpose, new resources are added to Data Grid Service and

configured to be processed by the XSLT module. The
configuration contains the specification of the XML resource
to be transformed, the MIME type of the resulting resource
and the XSLT stylesheet with the transformation algorithm
(Listing 6).

The resource configuration and the stylesheet are
considered as resource metadata and can be updated later to
adapt the module behavior.

4) Data Space Engines for external services
The design of the architecture foresees extensibility

possibilities by implementing the pre-defined module
interface. As such, further data spaces, e.g., user blogs,
tweets, activity streams or multimedia content scattered
across different platforms can be embedded into Data Grid
Service. Third-party applications may access this content
according to policies defined by the user. We implemented
gateways to Twitter, Dropbox and Flickr as examples to let
users and applications discover the data in one place and
consume it using one single unified REST/HTTP interface.

5) SPARQL Endpoint
All of the resources within Data Grid Service can be

annotated using RDF metadata. To let service clients find
resources they are interested in, we implemented a dedicated
SPARQL endpoint, accessible at the dedicated {service

URI}/meta/sparql URI. By sending compliant queries,
clients can search for resources within Data Grid Service’s
data spaces.

III. SECURITY FRAMEWORK FOR PORTABLE DATA

While consolidating the user data in one place, storage

solution has to guarantee its safety, security and privacy. As

such, only authorized clients are allowed to read and modify

the data. The choice of the authorization mechanism is

crucial in order to address different types of clients and the

peculiarities of the Web domain. Our goal is to enable easy-

to-understand but still fine-grained access control, where

rules are expressive enough to take users’ social graph and

relationships in account.

$curl https://dgs.example.org/contacts/meta

<rdf:Description rdf:about="http://dgs.example.org/contacts/">

<dc:creator rdf:resource=”http://dgs.example.org/profiles/27” />

<dc:title rdf:resource=”Contacts” />

...

</rdf:Description>

...

<rdf:Description

 rdf:about="http://dgs.example.org/contacts/meta/relationships/68">

 <dm:source rdf:resource="http://dgs.example.org/contacts" />

 <dm:target rdf:resource="http://dgs.example.org/pictures" />

 <dm:predicate rdf:resource=”http://xmlns.com/foaf/0.1/img" />

 <dm:inverse-predicate rdf:resource=”http://purl.org/dc/elements/1.1/creator” />

</rdf:Description>

 Listing 4. Example of the list metadata

128

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The emerging WebID standard is a promising

technology, which enables single sign-on, flexible identity

management and complex authorization rules. Every agent

(person, organization or application) is identified using a

URI, which refers to the user’s corresponding public profile.

To prove that the WebID belongs to the user, he creates

a self-signed certificate, which points to his WebID. The

X.509 v3 certificate standard allows the binding of

additional identities to the subject of the certificate through

a subject alternative names extension [10]. Furthermore, the

user extends the profile document with certificate’s public

key. When the user agent tries to access a protected

resource, the server asks for the client certificate, before

connection is established. The possession of the certificate is

verified during the SSL/TLS handshake and is the first step

in the authentication process. As the second step, server

compares the certificates’ public key with the one stored in

the WebID profile. The comparison is usually performed

with a dedicated SPARQL query on user profile URI. The

successful authentication process proves that the FOAF

resource belongs to the user and provides additional

information to the server about the user profile, social

relationships, etc.

After the user has been authenticated, the storage

solution determines if he has enough rights to access the

requested resource. We utilize WebAccessControl

mechanism, which complements WebID with access control

lists based on Semantic Web technologies [11].

WebAccessControl is inspired by authorization mechanisms

implemented in many file systems. It allows placing a set of

permissions on a specific resource for a user or a group,

identified by an URI:

@prefix acl: <http://www.w3.org/ns/auth/acl>.

[acl:accessTo <http://example.org/img.png>;

acl:mode acl:Read, acl:agentClass foaf:Agent].

[acl:accessTo <http://example.org/img.png>;

acl:mode acl:Read, acl:Write; acl:agent

<http://example.org/foaf#joe>]

Listing 7. Example of WebAccessControl list

The access control lists are RDF resources with

precisely defined semantics. The example above is an N3

serialization of the access control list and protects the

resource with URI http://example.org/img.png. The first

rule makes the resource readable for every user agent with a

valid WebID, while the second one grants write permissions

to the identity http://example.org/foaf#joe.

Currently, WebAccessControl foresees four different

access modes. In addition to the mentioned Read and Write

modes, one is able to grant Append and Control

permissions. Append is a restricted Write permission, where

one is only allowed to attach new data to the resource (e.g.,

in case of log files). If the agent should be capable of

modifying the access control list, the mode Control has to

be set.

The WAC list is stored centralized within Data Grid

Service. The owner of the storage solution has write

permissions to the access control list and can define the

access rules for other agents.

The presented authentication and authorization

mechanism is implemented as independent and reusable

module. It is invoked before the request reaches the Data

Space Engines-pipeline and checks if user has a valid

WebID and was assigned required permissions to access the

resource. The check of the permissions is done by mapping

the HTTP methods GET, POST, PUT and DELETE to its

<collection xmlns="http://www.w3.org/2007/app" xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:dgs="http://www.webcomposition.net/2008/02/dgs/">

<atom:title>contacts-atom</atom:title>

 <dgs:dataspaceengines>

 <dgs:dataspaceengine dgs:type="http://.../XsltDataSpaceEngine"

 xmlns:dsexslt="http://.../XsltDataSpaceEngine/" >

 <dsexslt:source>contacts</dsexslt:soruce>

 <dsexslt:mimetype>application/atom+xml</dsexslt:mimetype>

 <dsexslt:stylesheet>

 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="contacts">

 <feed xmlns="http://www.w3.org/2005/Atom">

 ...

 <xsl:apply-templates select="contact"/>

 </feed>

 </xsl:template>

 ...

 </xsl:stylesheet>

 </dsexslt:stylesheet>

 </dgs:dataspaceengine>

 </dgs:dataspaceengines>

</collection>

Listing 6. Data Space Engine for XSLT resources

129

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2 Development cycle of storage-decoupled Web applications

equivalents in the WebAccessControl ontology. We mapped

HTTP GET to acl:Read, HTTP PUT as well as HTTP

DELETE to acl:Write and HTTP POST to acl:Append.

IV. DEVELOPMENT OF WEB APPLICATIONS USING

WEBCOMPOSITION/DATA GRID SERVICE

We envision that users will be the only owners of their
data independently from its usage by third-party Web
applications. Applications have to provide an added value on
the top of the data and not limiting its reuse, sharing and
linking possibilities. To deal with the fact, that the storage is
decoupled from the application and is shared on the Web
between many applications, the classical development
processes, models and supporting tools for data-driven Web
applications should be adapted (Figure 2).

To illustrate our approach, we consider a simple Web
application for management of photo albums. The platform
should enable users to manage their pictures, tag them, and
assign them to photo albums. Users should be able to browse
albums of others and search for pictures using different
criteria. Though there are plenty of platforms on the Web
providing similar functionality, all of them require users to
put the data inside one single platform.

Following, we show how to engineer Web applications,
which do not host the user data in internal data silos, but
utilize user-controlled storage solutions.

The development of the Web application starts with a
requirements engineering step. We analyze user needs and
capture their requirements regarding functional and non-
functional aspects of the Web application. For our example
scenario, we refine and write down the functionality
described above. Apart other possible non-functional

requirements, we focus on the fact that the data should be
stored decentralized in user-controlled storage solutions.

After the requirements are captured, we analyze the
structure of business domain in order to produce the
conceptual model of the application. The result of the
analysis is usually an Entity-Relationship (ER) model, which
captures different types of objects from the business world,
their attributes and relationships. To meet the peculiarities of
storage-decoupled Web applications, we extend the model
and distinguish between local and global entities, which
should indicate that entity belongs either to user or to the
application data space. For example, pictures and albums are
entities, which belong to user and should be maintained
within his data space, while platform-wide categories and
tags can be managed centralized in the application data
space.

Entity-Relationship model is an important artifact, which
is used, among others, for database schema specification and
automated code generation. In our approach, we apply
distributed and Web-based storage solutions instead of
monolithic databases, so that the data can be shared between
different application and services. To enable independent
(and possibly serendipitous) data consumption, not only
structure, but also semantics of the data should be unified
and captured within dedicated models. To meet this need,
we extend the Entity-Relationship model with semantic-
specific aspects. In particular, we capture the semantics of
entities, attributes and relationships using common
ontologies and vocabularies. For example, entity Picture can
be annotated with http://xmlns.com/foaf/0.1/Image

concept, and its attributes with
http://purl.org/dc/elements/1.1/description and
http://purl.org/dc/terms/created coming from FOAF
and Dublin Core profiles respectively (Figure 3).

130

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Picture

-title : string = dc:title
-link : string = atom:link
-creator : string = dc:creator
-description : string = dc:description
-created : Date = dcm:created

Category

-title : string = dc:title
-created : Date = dcm:created

Album

-title : string = dc:title
-description : string = dcm:description
-created : Date = dcm:created

foaf:Image (local)

sioc_t:ImageGallery (local)

sioc_t:Category (global)

sioc:container_of

sioc:has_container

sioc:topic

Tag

-label : string = rdfs:label

sioc_t:Tag (global)
sioc:topic

Figure 3 Extended Entity-Relationship model of the example application

By putting more semantics into the ER-model, the
storage solutions are empowered to deliver data after the
Linked Data principles. Due to the common model and
explicit semantics, data stored within user storage can be
discovered and reused more efficiently. In our approach, we
transform the ER-model into a set of Data Grid Service
XML lists, corresponding XML Schemas, relationship
objects and transformation stylesheets to produce RDF/XML
representation of application content.

The rest of the development process can be executed as
in traditional Web applications. In the hypertext design phase
we specify data display, input and navigation functions. We
apply faceted navigation pattern for category browsing,
thumbnails for album and set-based navigation for picture
lists [12]. It is desirable that the storage solution has built-in
support for these operations, so they perform more
efficiently.

Our application has common three-tier architecture [13],
where data server is a distributed layer of user-controlled
storage solutions. We use WebComposition/Data Grid
Service due to its broad support for both binary resources
and structured XML content. Annotation and data
transformation enables publishing of data after Linked Data
principles, so that data created by one application can be
seamlessly consumed by another. Furthermore we utilize
ASP.NET Model-View-Controller framework [14] as “glue”
between user interface and data storage.

To implement application authentication and
authorization mechanisms, we apply the same approach as
with securing user storages. The security modules described
in Section III can be reused and integrated into the
application. As a result, users authenticate themselves by
presenting a certificate with WebID field, so that application
can reuse the profile information stored within the FOAF
file. To consume application services, user has to prepare a
data space within his storage solution to be used by
application and store it in his configuration settings.

Corresponding access control rules have to be defined within
the storage solution, so that application, identified by WebID
as well, can access the required data.

The resulting application is tested and installed in the
target environment (Figure 4).

Figure 4 The photo album management application based on Data Grid

Service [15]

We notice that the application is loosely coupled with its

data storage, which means, that their evolution can take place
independently and hence be performed more efficiently.

V. RELATED WORK

Many distributed data storage solutions focusing on
scalability, availability and simple data modeling appeared
during the last couple of years [16]. In this section, the
important contributions in this field of research are analyzed
and discussed. The presented approaches can be roughly
separated into the three areas: structured, distributed data
storages, classical NoSQL databases and publishing tools.

131

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DataWiki [17] is a platform to manage structured data
using basic CRUDS operations enabled via a RESTful Web
service API. To access or modify data sets stored in the
DataWiki, mashups and forms can be created and hosted
independently from the platform. All documents available in
the DataWiki can be exported as Atom feeds. Information
sharing with other systems is supported through built-in
federation. Although the DataWiki approach separates data
and representation from each other, it lacks of coping with
large unstructured data sets, e.g., binary large objects.

data.fm [18] is an open source Web service implementing
the REST architectural style, which supports common
request methods and various response and media types, e.g.,
JSON, RSS or Atom, to perform access and retrieval
operations on structured data sets available in the internal
cloud storage. A graphical Web interface offers a convenient
way to create new storage clouds with optionally restricting
their access via ACLs. Data within the internal storage is
organized in files and directories, which can be adapted from
privileged persons through the API or GUI. Like the
DataWiki platform, data.fm is well-suited for managing
structured data, but compared to our approach, data.fm
cannot apply post-transformations, e.g., via XSLT, to
responses.

Another representative in this context is OpenLink
Virtuoso [19], a structured data cluster providing certain
virtualization layers to handle heterogeneous data sources
and processing components. Principally, the software
consists of an object-relational database accessible through
specific database engines, integrated web and application
servers. OpenLink Virtuoso provides a rich set of interfaces,
e.g., SOAP, REST, XML-RPC, and SPARQL, to query for
the uniquely identifiable elements stored in the database. In
addition, the software supports protocols, e.g., Blogger and
Atom 1.0, to publish data in a suitable form as well as
components to interact with many types of application, e.g.,
wikis and address books. Although Virtuoso is a powerful
tool to manage different types of data, it is complicated in
installation and administration, which may become a crucial
factor in success of user-controlled storage solutions. In
contrast, Data Grid Service doesn’t require a database or
triple store in the backend and is installed using a simple
installation wizard.

Similar to our approach, NoSQL solutions can be used as
Web components, which support essential CRUD
functionality for structured and unstructured data. For
example, Apache CouchDB [20] stores schema-free data as
name-value pairs, which are accessible through a RESTful
Web interface. Like CouchDB, Amazon S3 [21] can be used
to store unstructured data and access it through a
REST/HTTP or a SOAP interface. In addition, Amazon S3 is
often accompanied with Amazon SimpleDB [22], which
allows saving structured, but schema-free data sets. NoSQL
databases are designed to provide a scalable, fault-tolerant
and flexible storage solution for schema-free data. Though
NoSQL solutions can handle frequently changing document
structures and new file types, the qualified data validation via
document schemas is missing. Furthermore, they do not

provide any support to centralize user data and enable fine-
grained access control.

In conjunction with classic relational databases, the so
called publishing tools can be applied to expose user data as
Linked Data. The publishing tools automate the tasks of
interpreting incoming HTTP requests, dereferencing URIs
and converting the data in a proper form. One representative
of this kind of tool is D2R server [23], which selectively
transforms data from a legacy data source into RDF. The
transformation is performed based on the parameters
specified in the request. Currently, D2R server supports
HTML and RDF browsers and provides a SPARQL endpoint
to query the database content. Similar to D2R server, Triplify
[24] converts the results of queries transmitted to a relational
database into RDF, JSON or Linked Data. However, Triplify
just executes a transformation of the output, i.e., queries have
to be written in SQL. In contrast to our approach, the
publishing tools only perform non-modifying operations on
the legacy databases and do not aim to integrate other Web-
based data sources.

Though the presented tools facilitate tasks of storing,
publishing and linking data on the Web, they do not provide
an integrated solution. Data wikis are flexible tools enabling
collaborative data acquisition but cannot deal with
unstructured data and distributed data spaces. NoSQL
databases are scalable Web-based storage solutions, but are
not so extensible in the sense of integrating additional data
spaces. Finally, publishing tools support users gathering
Linked Data out of legacy database. However, they cannot
be used to propagate modifications back to the same storage.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented our approach to engineer
Web applications based on user-controlled storage solutions.
The separation of applications and data brings many
advantages both for the end-user but also for application
developers. Users have the full control of their data - they
can specify what data should be public or private, what parts
the third-party applications are allowed to access and how
this data is linked to other resources. Application developers
profit from the accessibility of user data and can deliver
novel services more easily. Finally, the evolution of storage
solutions and applications can take place independently and
therefore less coordination and synchronization effort is
needed.

We introduced WebComposition/Data Grid Service, a
loosely coupled persistence and gateway layer for Web
applications. We have shown how Data Grid Service can be
used as a Web-based storage solution and how users can
define access control using WebAccessControl lists. We
presented reusable authentication and authorization modules
based on the emerging WebID standard. Finally, we
described a systematic approach to develop Web applications
for decoupled storage solutions and illustrated it using a
simple photo album management example.

In future, we expect the growth of the flexibility and
functionality of user-controlled storages. As more and more
applications access and change user data, the need to keep
provenance information emerges. To meet this demand we

132

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are going to add management and monitoring functionality
for Data Grid Service. Especially quota assignment and
event logging are important issues to protect the users’ data
space from malicious use and attacks. To link and
synchronize data between storage solutions of different
users, we are building dedicated publish/subscribe
infrastructures. Finally, we are planning to extend the
vocabulary for specification of access control lists and
implement additional authorization rules based on the social
graph of the user.

VII. REFERENCES

[1] O. Chudnovskyy and M. Gaedke, “Development of Web

2.0 Applications using WebComposition / Data Grid

Service,” in The Second International Conferences on

Advanced Service Computing (Service Computation

2010), 2010, pp. 55-61.

[2] T. Berners-Lee, “Socially aware cloud storage - Design

Issues,” 2009. [Online]. Available:

http://www.w3.org/DesignIssues/CloudStorage.html.

[Accessed: 23-Jan-2012].

[3] Manu Sporny, Toby Inkster, Henry Story, Bruno

Harbulot, and Reto Bachmann-Gmür, “WebID 1.0 - Web

Identification and Discovery,” W3C Editor’s Draft, 2011.

[Online]. Available:

http://www.w3.org/2005/Incubator/webid/spec/.

[Accessed: 23-Jan-2012].

[4] W3C, “WebAccessControl - W3C Wiki,” 2011. [Online].

Available: http://www.w3.org/wiki/WebAccessControl.

[Accessed: 23-Jan-2012].

[5] O. Chudnovskyy and M. Gaedke, “WebComposition/Data

Grid Service v1.0: Demo.” [Online]. Available:

https://vsr.informatik.tu-

chemnitz.de/demo/datagridservice/. [Accessed: 23-Jan-

2012].

[6] H.-W. Gellersen, R. Wicke, and M. Gaedke,

“WebComposition: An Object-Oriented Support System

for the Web Engineering Lifecycle,” in Electronic Proc.

of The 6th International WWW Conference, 1997.

[7] M. Gaedke, D. Härtzer, and A. Heil, “WebComposition /

DGS : Dynamic Service Components for Web 2.0

Development,” in Proceedings of the 6th International

Conference on Advances in Mobile Computing and

Multimedia, 2008, no. c, pp. 2-5.

[8] E. Wilde and M. Gaedke, “Web Engineering Revisited.,”

in BCS Int. Acad. Conf., 2008, pp. 41-50.

[9] Y. Raimond, F. Giasson, K. Jacobson, G. Fazekas, T.

Gängler, and S. Reinhardt, “Music Ontology

Specification,” 2010. [Online]. Available:

http://musicontology.com/. [Accessed: 23-Jan-2012].

[10] D. Solo, R. Housley, and W. Ford, “RFC 2459: Internet

X.509 Public Key Infrastructure Certificate and CRL

Profile,” 1999. [Online]. Available:

http://tools.ietf.org/html/rfc2459. [Accessed: 23-Jan-

2012].

[11] J. Hollenbach, J. Presbrey, and T. Berners-lee, “Using

RDF Metadata To Enable Access Control on the Social

Semantic Web,” in Proceedings of the Workshop on

Collaborative Construction, Management and Linking of

Structured Knowledge (CK2009), 2009.

[12] G. Rossi, D. Schwabe, and F. Lyardet, “Improving Web

information systems with navigational patterns,”

Computer Networks, vol. 31, no. 11-16, pp. 1667-1678,

May 1999.

[13] M. Fowler, Patterns of Enterprise Application

Architecture. Addison-Wesley Professional, 2002, p. 560.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software

le. Addison-Wesley, 1994.

[15] O. Chudnovskyy and M. Gaedke, “DGS Photogallery:

Demo.” [Online]. Available: https://vsr.informatik.tu-

chemnitz.de/demo/photogallery. [Accessed: 23-Jan-2012].

[16] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM

SIGMOD Record, vol. 39, no. 4, p. 12, May 2011.

[17] Google, “DataWiki,” 2011. [Online]. Available:

http://code.google.com/p/datawiki/. [Accessed: 23-Jan-

2012].

[18] Data.fm, “Data Cloud,” 2011. [Online]. Available:

http://data.fm/. [Accessed: 23-Jan-2012].

[19] OpenLink Software, “Virtuoso Universal Server.”

[Online]. Available: http://virtuoso.openlinksw.com/.

[Accessed: 23-Jan-2012].

[20] The Apache Software Foundation, “Apache CouchDB:

The CouchDB Project,” 2008. [Online]. Available:

http://couchdb.apache.org/. [Accessed: 23-Jan-2012].

[21] Amazon, “Simple Storage Service (Amazon S3).”

[Online]. Available: http://aws.amazon.com/de/s3/.

[Accessed: 23-Jan-2012].

[22] Amazon, “SimpleDB.” [Online]. Available:

http://aws.amazon.com/de/simpledb/. [Accessed: 23-Jan-

2012].

[23] C. Bizer and R. Cyganiak, “D2R server - publishing

relational databases on the Semantic Web,” in Poster at

the 5th International Semantic Web Conference

(ISWC2006), 2006.

[24] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D.

Aumueller, “Triplify – Light-Weight Linked Data

Publication from Relational Databases,” Proceedings of

the 18th international conference on World Wide Web,

pp. 621-630, 2009.

