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Abstract—There is a tendency to Web-enable automation
control systems, with consequently the challenge to propagate
and aggregate data and control over the Internet. While
classical industrial controller systems are limited to a local
network, Web-enabled systems can be coupled in a new
dimension. However, this also introduces larger impacts of
changes and combinatorial effects. The Normalized Systems
theory was recently proposed with the explicit goal of keeping
these impacts bounded. It can be applied from the production
control level up to the Web-enabled interface. One of the
key principles of the Normalized Systems theory is to enforce
Separation of Concerns in a multi-technology environment.
To this end, this paper introduces Normalized Connection
Elements as a stable interface between PLC software and field
devices. As a case in point, the IEC 61131-3 code design of an
ISA88 Control Module following these principles is discussed.

Keywords-Normalized Systems; Automation control soft-
ware; IEC 61131-3; ISA88; OPC UA.

I. INTRODUCTION

Meeting the requirements of a software project has always
been one of the top priorities of software engineering.
However, not rarely, after taking in service, or even during
the development, customers come up with new requirements.
Project managers try to satisfy these additional requirements
accompanied with an extra cost to the customer. The esti-
mation of these additional efforts, depending on the devel-
opment progress of the project, is often not straightforward.
Managers tend to focus on functional requirements, while
experienced engineers know that non-functional require-
ments can sometimes cause more efforts and costs. Evolv-
ability became one of the most desirable non-functional
requirements in software development, but is hard to control.
One of the most annoying problems automation engineers
are confronted with is the fear to cause side-effects with
an intervention [1]. They have often no clear view in how
many places they have to adapt code to be consistent with the
consequences of a change. Some development environments
provide tools like cross references to address this, but the
behavior of a development environment is vendor-dependent,

although the programming languages are typically based on
IEC 61131-3 [2].

The Normalized Systems theory has recently been pro-
posed for engineering evolvable information systems [3].
This theory also has the potential to improve control soft-
ware for the automation of production systems. In produc-
tion control systems, the end user always has the right to a
copy of the source code. However, it is seldom manageable
to incrementally add changes to these systems, due to the
same problems as we see in business information systems,
such as undesired couplings, side-effects, combinatorial ef-
fects. Finding solutions for these problems includes several
aspects. Some standards like ISA88 suggest the use of
building blocks on the macro level. The Normalized Systems
theory suggests how these building blocks should be coded
on the micro level. Interfacing between modules can be
supported with the OPC UA standard.

Just like transaction support software and decision support
software systems, production automation systems also have
a tendency to evolve to integrated systems. Tracking and
tracing production data is not only improving the business, in
some cases it is also required by law (in particular in the food
and pharmacy sectors). Due to the scope of totally integrated
systems (combination of information systems and production
systems), the amount of suitable single vendor systems is
low or even non-existing. Large vendor companies may
offer totally integrated solutions, but mostly these solutions
are assembled from products with different history. For the
engineer, this situation is very similar to a multi-vendor
environment. Also, assembling software instead of program-
ming is a challenge Doug McIlroy called for already decades
ago [4]. Several guidelines, approaches, tools and techniques
have been proposed that aim at assisting in achieving this
goal. Unfortunately, none of these approaches have proven
to be truly able to meet this challenge.

Globalization is bringing opportunities for companies who
are focusing their target market on small niches, which are
part of a totally integrated system. These products can ex-
pand single-vendor systems, or can become part of a multi-
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vendor system. Moreover, strictly single-vendor systems are
rather rare in modern industry. Sometimes they are built from
scratch, but once improvements or expansions are needed,
products of multiple vendors might bring solutions. Hence,
over time single-vendor systems often evolve to multi-
vendor systems. Each of these systems can be considered
as a different technology. Isolating these technologies to
prevent them exporting the impact of their internal changes
into other technologies is the key contribution of this paper.

Minor changes, often optimizations or improvements of
the original concept, occur shortly after taking-in-service.
Major changes occur when new economical or technological
requirements are introduced over time. As a consequence,
software projects should not only satisfy the current require-
ments, but should also support future requirements [5].

The scope of changes in production control systems, or
the impact of changes to related modules in a multi-vendor
environment is typically smaller than in ERP (Enterprise
Resource Planning) systems and large supply chain systems.
However, there is a similarity in the problem of evolvabil-
ity [3]. Since the possibilities of industrial communication
increase, we anticipate to encounter similar problems to
the ones in business information systems. The more the
tendency of vertical integration (field devices up to ERP
systems) increases, the more the impact of changes on the
production level can increase. Since OPC UA (Open Product
Connectivity - Unified Architecture) [6] enables Web-based
communication between field controllers and all types of
software platforms, over local networks or the Internet, the
amount of combinatorial effects after a change can rise
significantly (change propagation).

This paper introduces a proof of principle on how the
software of an ISA88 Control Module [7] can be developed
following the Normalized Systems theory. Some developers
could recognize parts of this approach, because (as should
be emphasized) each of the Normalized Systems theorems
is not completely new, and some even relate to the heuristic
knowledge of developers. However, formulating this knowl-
edge as theorems that prevent combinatorial effects supports
systematic identification of these combinatorial effects so
that systems can be built to exhibit a minimum of these
combinatorial effects [3]. The Normalized Systems theory
allows the handling of a business flow of entities like orders,
parts or products. For these process-oriented solutions, five
patterns for evolvable software elements are defined [8]. In
this paper, however, we focus on the control of a piece of
physical equipment in an automated production system. The
code of an ISA88 based Control Module is not process-
oriented but equipment-oriented [1]. The focus of this code
is not about how a product has to be made, but about
how the equipment has to be controlled. Consequently, we
need another type of programming language because of
the nature of industrial controllers. Since the patterns for
evolvable software elements are fundamental, we can use

them as a base for IEC 61131-3 code. For this code, we
concentrate on 3 patterns: Data Elements, Action Elements
and Connection Elements. The Connection Elements can
connect software entities in two directions: first, towards the
physical process hardware, and second, towards higher level,
non-IEC 61131-3 software modules. The first concerns IEC
61131-3 code, the second typically Web-enabled platform
independent systems via an OPC UA interface. In this
paper, we focus on the connection with process physical
hardware. The possibility of OPC UA-based Connection
Elements is crucial to enable upcoming larger automation
systems, whose parts are connected via the Internet, and
will be worked out in detail in future work. Such automation
software entities should be able to evolve over time. This is a
key requirement in the beginning age of decentralized energy
generators and consumers prominently known as smart grid
[9].

The remainder of this paper is structured as follows. In
Section II, we discuss the Normalized Systems theory. In
Section III, we give an overview of industrial standards
on which industrial production Control Modules can be
based. These standards include software modeling and de-
sign patterns, communication capabilities, and programming
languages. In Section IV, an evolvable Control Module is
introduced. In Section V, we discuss some changes and their
evaluation. We tested the robustness of the Control Module
against these changes in our industrial automation labora-
tory. In Section VI, we conclude and introduce suggestions
for future research.

II. NORMALIZED SYSTEMS

Adding small changes or extending an existing software
system with new functionality often leads to an increase in
architectural complexity and a decrease in software quality
[10]. This is regarded as more expensive than developing the
same functionality from scratch. This phenomenon is known
as Lehman’s law of increasing complexity [11], expressing
the degradation of information systems’ structure over time:

”As an evolving program is continually changed,
its complexity, reflecting deteriorating structure,
increases unless work is done to maintain or
reduce it.”

To challenge this law, the Normalized Systems theory
has recently been established [12]. Since the Normalized
Systems theory takes modularity as basis, the principles are
independent of any specific programming language, devel-
opment environment or framework. Modularity implies that
every module hides its internal details from its environment:
another module does not need a white box view (i.e.,
analysis of the internal data and code) of the first module in
order to be able to call and use this module. Hiding internal
details is referred to as the black box principle. The user
or caller of a black box module only needs to know the
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Figure 1: Cumulative impact over time [13]

interface of the module, i.e., the name of the module, the
input and output parameters [3].

A. Stability

The starting point of the theory is system stability. In
systems theory, one of the most fundamental properties of
a system is its stability: in a stable system, a bounded input
function results in bounded output values, even for t → ∞
(with t representing time) [5]. This means that a limited
set of changes, needed for maintenance or extension of the
system, results in a limited amount of code changes or
impacts to the system, even for t → ∞. This includes the
absence of side-effects in modules which are not changed,
independent of the size of the system.

Stability demands that the impact of a change only de-
pends on the nature of the change itself. Conversely, changes
causing impacts that increase with the size of the system can
be termed combinatorial effects and should be eliminated
from the system in order to attain stability. Stability can
be seen as the requirement of a linear relation between
the cumulative changes and the growing size of the system
over time. Combinatorial effects or instabilities cause this
relation to become exponential (Figure 1). Systems that
exhibit stability are defined as Normalized Systems [3].

”Normalized systems are systems that are sta-
ble with respect to a defined set of anticipated
changes, which requires that a bounded set of
those changes results in a bounded amount of
impacts to system primitives.”

The challenge to control the impact of changes starts with
identifying the changes systematically. Here, it is interesting
to know the source or cause of a change. In terms of
modularity, it is useful to know which parts of a module
are changing independently. We should limit the size of a

module to a cohesive part of content, which is changing
independently of every other part. A cause or source of
a change, which can be considered independently, to a
software primitive can be called a ‘change driver’.

B. Design theorems for Normalized Systems

Derived from the postulate that a system needs to
be stable with respect to a defined set of anticipated
changes, four design theorems or principles for the
development of Normalized Systems are defined. They
are briefly summarized in the following. A more detailed
discussion can be found in the paper by Mannaert et al. [12].

1) Separation of Concerns: An Action Entity shall only
contain a single task.

The identification of a task is to some extent arbitrary.
The concept of change drivers brings clarity here,
because every Action Entity should only evolve
because of a single change driver. Every task can
evolve independently. If two or more aspects of a
functionality are considered to evolve independently,
they should be separated. It is proven that if one
action contains more than one task, an update of one
of the tasks requires updating all the others, too.

2) Data Version Transparency: Data Entities that are
received as input or produced as output by Action
Entities shall exhibit Version Transparency.

We now concentrate on the interaction between Data
Entities and Action Entities, more precisely, whether
the passing of parameters or arguments affects the
functionality of a module. Data Version Transparency
implies that Data Entities can have multiple versions
without affecting the actions that consume or produce
them. In more practical terms, merely adding a field
to a set of parameters that is not used in a specific
Action Entity should not affect that Action Entity.

3) Action Version Transparency: Action Entities that are
called by other Action Entities shall exhibit Version
Transparency.

In this theorem we concentrate on the interaction of
Actions Entities with other Action Entities. Action
Version Transparency implies that an Action Entity
can have multiple versions, without affecting the
actions that call the Action Entity. In other words,
the mere introduction of a new version of an Action
Entity or task should not affect the Action Entities
calling the Action Entity containing the task.
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4) Separation of States: The calling of an Action Entity
by another Action Entity shall exhibit State Keeping.

We continue to concentrate on the interaction of
Action Entities with other Action Entities, more
specifically on the aggregation or propagation
of Action Entities. Every Action Entity itself is
responsible for remembering the calling of other
Action Entities, and consequently the corresponding
state. To comply with this theorem, a chain of
actions calling other actions should always be
asynchronous. Besides, asynchronous processing is
usually associated with high reliability, and even
performance. The latter is a result of avoiding locking
resources related to one task during the execution of
(an)other task(s).

C. Encapsulation of Software Entities

On the level of individual Action Entities, Theorems 2 and
3 (Data and Action Version Transparency) avoid instabilities
caused by different versions of data and tasks. On the level
of aggregations and propagations, Theorems 1 and 4 (Sep-
aration of Concerns and States) avoid unstable interactions
between software constructs. Since software entities comply-
ing with Theorem 1 are very small, their application results
in a highly granular structure. On the application oriented
level, there is a need for larger building blocks, which are
not focused on actions with only one small task, but on
higher-level elements. The Normalized Systems Elements
are manifestations of encapsulations, which represent each
a typical building component in a software system:

• Data Encapsulation: This is a composition of software
constructs to encapsulate Data Entities into a Data El-
ement. Such a Data Element can also contain methods
to access the data in a Version Transparent way, or can
contain cross-cutting concerns – in separate constructs.

• Action Encapsulation: This is a composition of software
constructs to encapsulate Action Entities into an Action
Element. There can be only one construct for the core
task (core Action Entity), which is typically surrounded
by supporting tasks (supporting Action Entities). Argu-
ments or parameters of the individual Action Entities
need to be encapsulated as a Data Element for use in
the entire Action Element.

• Connection Encapsulation: This is a composition of
software constructs to encapsulate Connection Entities
into a Connection Element. Connection Elements can
ensure that external systems can interact with Data
Elements, but can never call an Action Element in a
stateless way. The concept of Connection Encapsulation
allows the representation of external systems in several
co-existing versions, or even alternative technologies,
without affecting the Normalized System.

• Flow Encapsulation: This is a composition of software
constructs to create an encapsulated Flow Element.
Flow Elements cannot contain other functional tasks
but the flow control itself, and they have to be stateful.

• Trigger Encapsulation: This is a composition of
software constructs to create an encapsulated Trigger
Element. Trigger Elements control the separated –
both error and non-error – states, and decide whether
an Action Element has to be triggered.

III. INDUSTRIAL STANDARDS

A. PLC coding with IEC 61131-3

Since their introduction in the late 1960s, PLCs (Pro-
grammable Logic Controllers) have found broad accep-
tance across the industry. Because they are programmable,
they provided a higher flexibility than the previous control
equipment based on hardwired relay circuits. PLCs were
produced and sold all over the world with a large diversity
of vendors. The programming languages used to program
PLCs of various brands were more or less similar, but due
to a lot of implementation details, intensive trainings were
needed if an engineer wanted to move from one vendor’s
system to another.

To unify the way PLCs are programmed, the IEC (Inter-
national Electrotechnical Commission) introduced the IEC
61131 standard, which is a general framework that es-
tablishes rules all PLCs should adhere to, encompassing
mechanical, electrical, and logical aspects, and consist of
several parts. The third part (IEC 61131-3) deals with
programming of industrial controllers and defines the pro-
gramming model. It defines data types, variables, POUs
(Program Organization Units), and programming languages.
A POU contains code; it can be a Function, Function Block,
or a Program.

Functions have similar semantics to those in traditional
procedural languages and directly return a single output
value. However, besides one or more input values, the
Function may also have parameters used as outputs, or
as input and output simultaneously. They cannot contain
internal state information. Consequently, they can call other
Functions, but no Function Blocks.

Function Blocks are similar to classes in object oriented
languages, with the limitation of having a single, public,
member function. Function Blocks are instantiated as vari-
ables, each with their own copy of the Function Block state.
The unique member function of a Function Block does not
directly return any value, but has parameters to pass data
as input, output or bidirectionally. Since Function Blocks
have internal memory, they can call both Functions and other
Function Blocks.

Programs can contain all the programming language ele-
ments and constructs and are instantiated by the PLC system.
They are cyclically triggered by the PLC system based on
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a configurable cycle time, or triggered by a system event.
Typically they organize the progress of the PLC functionality
during runtime, by calling Functions and Function Blocks.

All three types of POUs may be programmed in one
of two textual languages (IL: Instruction Language; ST:
Structured Text), or two graphical languages (LD: Ladder
Diagram; FBD: Function Block Diagram). The standard also
defines a graphical language for specifying state machines
(SFC: Sequential Function Chart), that may also be used
in Function Blocks or Programs. It should be noted that
typically one of the other languages are used to code the
SFC transition conditions and steps.

Programming in LD is similar to designing a relay based
electrical circuit. It can be said that LD is a historical artifact.
The very first PLCs were competing with existing control
equipment based on hardwired relay circuits and therefore
adopted a language similar to the design schematics of these
electrical circuits in order to ease platform acceptance by the
existing technicians.

The FBD language may be considered as a graphical
incarnation of boolean algebra, where boolean OR, AND
and more complex boxes are simply placed in the GUI. The
inputs and outputs of the boxes are connected by drawing
lines between them.

The IL language is similar to assembly. It is definitively
a low level programming language, because it contains a
jump instruction, which should be abolished from all “higher
level” programming languages [14].

The ST language has a syntax similar to Pascal, and can
be considered as a higher level language. Indeed, as proven
by Dijkstra [14], there is no need for a jump instruction in
ST because all processing algorithms can be implemented
through three primitive types of control: selection, sequenc-
ing, and iteration.

B. Modeling with ISA88 (IEC 61512)

Manufacturing operations can be generally classified as
one of three different processes: discrete, continuous, or
batch. In October 1995, the SP88 committee released the
ANSI/ISA-S88.01-1995 standard [7] (its international equiv-
alent is IEC 61512) to guideline the design, control and
operation of batch manufacturing plants.

The demand for production systems with a high flexibility,
with regard to setting up the system for making product
variants, became important. Process engineers focus on how
to handle the material flow to meet the specifications of the
end-product. Control system experts focus on how to control
equipment. To optimize the cooperation of both groups,
the SP88 committee wanted to separate product definition
information from production equipment capabilities.
Product definition information is contained in recipes, and
the production equipment capability is described using a
hierarchical equipment model. This provides the possibility
for process engineers to make process changes directly,

Figure 2: The relation between procedural, physical and
process models [16]

without the help of a control system expert (reducing the
setup costs). Moreover, the ability of producing many
product variants with the same installation is achieved,
increasing the target market. Expensive equipment can
be shared by different production units (reducing the
production costs). The utilization of ISA88 data models
simplifies the design process considerably [15].

1) Challenges:
Despite the usefulness of ISA88 terminology and models

to structure flexible manufacturing, different interpretations
are possible. The standard does not specify how the abstract
models should be applied in real applications. Implementers
sometimes develop recipes and procedures which are far
more complex than necessary. Since 1995 there have been
many applications and a commonly accepted method for
implementing the standard has emerged. The S88 design
patterns [15] of Dennis Brandl (2007) address this. These
patterns can reduce the tendency of implementers to make
their recipes and procedures more complex than necessary.

When automated control was introduced to manufac-
turing, it was accompanied by the problem that control
system programming became a critical activity in both initial
startup and upgrades. Often the physical equipment can be
reconfigured in days, if not minutes, if manually controlled
and maintained. In contrast, the automatic control system,
unless it was designed for reconfiguration, may take weeks
or months to reconfigure and reprogram [15].

Turning the ISA88 models into well structured code is
not straightforward [1]. Again, different interpretations are
possible. On the macro level they provide a clear structure,
but there is a need for prescriptive specifications to convert
these models into code, or even to divide them into smaller
sub-modules at the micro level.

2) Important ISA88 models for automation control:
During the development of ISA88, the SP88 committee

was focusing on batch control, but made the models univer-
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sal enough to make them suitable for other process types
[16]. However, to implement these models, different design
patterns are recommended for the different process types
[15].

The most important key-point of ISA88 is the separation
of (end) product definition information from production
equipment capability. This separation allows the same
equipment to be used in different ways to make multiple
products, or different equipment to be used to produce the
same product. Recipes are used to describe the product
definition information, and a hierarchical equipment
model is introduced to describe the production equipment
capability. A consequence of this approach is a separation
of expertise. Experts in different domains, who have to
cooperate to achieve the production goals, are educated
differently and think in different ways. Process engineers
focus on how to handle the material flow to meet the
specifications of the end-product. Control system experts
focus on how to control equipment. Recipes are to be
developed by process engineers, and control system
experts will have to make the equipment run, based on
information contained in the parameters and procedures
of the recipes. ISA88 provides a physical model hierarchy
to deal with equipment oriented control, and a procedural
model hierarchy to deal with process oriented control. For
researchers, the process model is provided (Figure 2). In
this paper, we focus on the lowest level equipment oriented
element: the ISA88 Control Module.

3) ISA88 Control Modules:
The lowest level of the ISA88 physical model is the

Control Module, but not all parts are necessarily physi-
cal. In an automated system, Control Modules are partly
(PLC) software. In their simplest form, Control Modules
are device drivers, but they can provide robust methods of
device control too, including functions such as automatic and
manual modes, simulation mode, Interlocks and Permissives
(ISA88 terminology), alarming. Control Modules execute
basic control and minimal coordination control. They per-
form no procedural control functions. The most common
method of programming basic control are any of the IEC
61131-3 programming languages, such as LD, FBD, IL, ST.
Control Modules usually make up the majority of control
system code, but they are also the mechanism for defining
significant amounts of reusable code [15].

Typically, at least two state machines are introduced for a
Control Module, one for the state of the device itself (e.g.,
on, off, fail), and a second for the mode (e.g., manual and
automatic). Normal operation of the Control Module should
be commanded from an equipment module (the equipment
oriented element right above Control Module in the ISA88
physical model); however, a Control Module may also be
controlled manually. Thus, the Control Module may be in
one of two modes – automatic or manual.

The ISA88 standards provide the models, but do not
prescribe how these models should be coded. After the
standard was released, many engineers applied the standards
in ways that the original authors had not considered. To
address this problem, the ISA88 models have been extended
with the so-called S88 design patterns [15]. These patterns
are not normative, but they are effectively applied in multiple
industries. The design patterns have been applied in almost
every kind of batch, discrete, and continuous manufacturing
applications.

C. OPC Unified Architecture (IEC 62541)

Reusable software components made their entry in au-
tomation technology and replaced monolithic, customized
software applications. These components are preferably con-
nected by standardized interfaces. In the mid-1990s, the
OPC Foundation was established with the goal to develop
a standard for accessing real-time data under Windows
operating systems, based on Microsoft’s DCOM technology.

OPC has become the de facto standard for industrial inte-
gration and process information sharing [17]. By now, over
20,000 products are offered by more than 3,500 vendors.
Millions of OPC based products are used in production
and process industry, in building automation, and many
other industries around the world [18]. However, in the
period when Internet based systems were introduced, the
DCOM technology resulted in limitations. To challenge
these limitations, and truly support Web-enabled automation
systems, a new standard family has recently been released:
The OPC Unified Architecture.

Web-based technology is the key to taking interoperability
to a new level. Web Services (WS), are totally platform inde-
pendent – they can be implemented using any programming
language and run on any hardware platform or operating
system. Components can be flexibly arranged into applica-
tions and collaborate over the Internet as well as corporate
intranets. OPC UA is considered one of the most promising
incarnations of WS technology for automation. Its design
takes into account that industrial communication differs from
regular IT communication: embedded automation devices
such as PLCs provide another environment for Web-based
communication than standard PCs.

The concepts of OPC UA include enabling Version Trans-
parency in a system with a high diversity of components.
OPC UA complements the existing OPC industrial standard
by adding two fundamental components: different transport
mechanisms and unified data modeling [19]. Scalability, high
availability, and Internet capability open up many possibil-
ities for new cost-saving automation concepts. Alternative
platforms, including typical embedded (systems) operating
systems, can be accessed directly, eliminating the need for
an intermediate Windows PC to run the OPC Server.

For this paper, the most important aspects of OPC UA
are the parts Address Space and Information Modeling
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Figure 3: Data Encapsulation

of the OPC UA specification [6]. Indeed, these models
include interesting concepts on converting our IEC 61131-3
based ISA88 Control Module to an evolvable black box
module, accessible by an OPC UA-based interface [20],
complying with the principles of Normalized Systems. This
enables the use of automation control building blocks over
a standardized network, even the Internet. As a result, PLC
projects, which are typically intra-process, can become
inter-process with a higher potential of production system
integration.

IV. EVOLVABLE CONTROL MODULES

A. Design concept

The Normalized Systems theory defines five
encapsulations of software entities. These encapsulations
are defined in a fundamental way, and further worked
out in the form of design patterns. These design patterns
are exemplified in the background technology of the Java
programming language [3]. We propose an interpretation
of the fundamental encapsulations for the IEC 61131-3
programming environment. When we base the design of
a Control Module on the Normalized Systems theory,
we propose 3 building components of a Control Module.
In this paper, we focus on Data Encapsulation, Action
Encapsulation, and Connection Encapsulation. The latter is
a special case of Action Encapsulation:

• Data Encapsulation: The composition of software
entities, i.e., encapsulating all tags of a larger building
block into a single data element, implies that only one
(complex) parameter shall be passed to and returned
from this building block. Note that in an IEC 61131-3
program, the use of structs can tackle the problem of

Figure 4: Action Encapsulation

adding extra parameters. By extending the struct, all
parts of the struct, old and new fields, remain visible
and accessible by every entity. We apply this concept
to the core module of this paper, an ISA88 Control
Module. Inside the borders of an IEC 61131-3 project,
this leads to a “struct” for the whole production control
device, containing smaller “substructs” for every action
or task in that device. There is no straightforward
concept of data hiding available in IEC 61131-3,
so we cannot hide the new fields in such a struct
for older entities. However, this is not causing data
type conflicts, because in IEC 61131-3 no runtime
construction of instances is supported, so all data
instances of this complex parameter have the same
type structure. On the inter-process level, different
type instances are possible, but we can use data hiding
based on OPC UA, where an interface is made for,
e.g., SCADA or MES software, which can run on
several technologies or platforms (inter-process). We
define the entire parameter, main struct and substructs
together, as a Data Element (Figure 3).

• Action Encapsulation: the composition of software
entities to encapsulate all Action Entities into a single
ISA88 Control Module implies that the core action
(state machine of the Control Module) shall only
contain a single functional task, not multiple tasks.
In concept, we consider one core task, surrounded by
supporting tasks (Figure 4). Arguments and parameters
of the larger building block (ISA88 Control Module)
should be an aggregation of all encapsulated Data
Entities: the single complex datastruct or Data Element
(Figure 3). We define the larger building block,
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Figure 5: Connection Encapsulation

encapsulating the core Action Entity together with
supporting Action Entities as an Action Element.

• Connection Encapsulation: Typically, three actors
are interacting with this Action Element as an
implementation of an ISA88 Control Module: An
Equipment Module (automatic mode, recipe based
control interface), the operator (manual mode, low
level HMI: Human Machine Interface) and the
process equipment hardware (e.g., a motor, valve
or instrumentation device). Each of these actors is
considered to represent an external technology, in
possible new versions or even alternative technologies
over time. The (supporting) Action Entities of
the Control Modules, which are handling the
connection of these actors with the core action, are
defined as Connection Entities. In case of multiple
versions of this special kind of Action Entities, every
connection is an encapsulation of several versions or
alternative technologies. We define such a Connection
Encapsulation as a Connection Element (Figure 5).
This encapsulation implies that the corresponding Data
Element has a subsubstruct for each Connection Entity
related to the substruct of the Connection Element.

The study of Flow Elements and Trigger Elements is
outside the scope of this paper. Remember that IEC 61131-3
Programs are triggered by the PLC system. Consequently,
Trigger Elements are integrated in the configuration part
of the IEC 61131-3 environment. Following the ISA88
modeling rules, Control Modules should not contain
procedures, so Flow Elements are not applicable in an
ISA88 Control Module.

B. Anticipated Changes

In the design of evolvable Control Modules, we want to
create a module which is stable with respect to a defined set
of anticipated changes. We distinguish high-level changes
and elementary changes. A lot of engineers know only
the high-level changes, which are either real-life changes
or changes with respect to implementation related aspects.
These changes reflect additional functional requirements,
which can typically be found in requirements documents
or new customer requests. The elementary changes are
related to software primitives, and formulated in terms of
software constructs. One additional functional requirement
corresponds to at least one elementary change, but, more
probably, several elementary changes. First, we discuss the
elementary anticipated changes of software primitives, and
second, we discuss how real-life changes can be translated
into these elementary changes. The elementary anticipated
changes are:

• A new version of a data entity
• An additional data entity
• A new version of an action entity
• An additional action entity
Remember we make an aggregation of several data tags

into an IEC 61131-3 struct, with a substruct for every Data
Entity corresponding with an Action Entity. Extending a
substruct with one or more tags corresponds with the change
“A new version of a data entity”; adding a new substruct
corresponds to the change “An additional data entity”. The
core task of a Control Module is a hardware device driver.
This core task is surrounded by supporting tasks, like
manual/automatic control, simulation, Permissives, alarm.
The introduction of a new surrounding task corresponds with
the change “An additional Action Entity”. A change of the
functionality of a task corresponds with the change “A new
version of an Action Entity”.

An experienced programmer should be able to trans-
form real-life changes into changes of software primitives.
However, in a team where inexperienced engineers do the
coding, a “change architect” should fulfill this task. The
systematic translation of high-level requirements into the
more elementary form is outside the scope of this paper,
but we do provide some examples in Section V.

C. Managing action versions

To comply with the third theorem of Normalized Systems,
Action Version Transparency, we distinguish three cases:
Transparent Coding, Wrapping Functionality and Wrapping
External Technologies. Each of them is another approach,
but provides a similar result to ‘the outside’.

1) Transparent Coding: Since Normalized Systems
require a high granularity, it is not unexpected that
the individual (small and straightforward) modules or
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subroutines end up to be a simple piece of code, on
which the programmer has a clear overview. In such cases,
the programmer can preview the effect of a functional
change on the previous version(s). If the change is not
contradictory with one of the previous versions, it might
be possible to apply Transparent Coding. This means the
new functionality can just remain in the module without
affecting the original code, even if a calling entity is not
aware of the new functionality. We provide some examples
in Section V.

2) Wrapping Functionality: There will be lots of cases
where Transparent Coding is not possible, because the code
is too complex for the programmer to have a reliable
overview, or if the new functionality is contradictory with
one or more of the previous versions. To exhibit Action
Version Transparency, the different versions can be wrapped.
The calling action has to inform the called action which
version should be used, by way of a version tag. In addition,
following the ‘Separation of States’ principle, the called
action has to inform the calling action whether the (type
version of the) instance of the called action is recent enough
to perform the requested action version.

An Action Entity which is designed according to the
concept of Wrapping Functionality is aggregating all the
versions as separate Action Entities, and is therefore called
an Action Element. Each of the nested Action Entities
contains a version of the core functionality. Following the
‘Separation of Concerns’ principle, the wrapping Action
Entity (Action Element) should not contain any core
functionality, but is limited to wrapping the versions as a
kind of supporting task.

3) Wrapping External Technologies: It is very unlikely
that an external technology complies with the Normalized
Systems theorems. On the contrary, Lehman’s Law of in-
creasing complexity probably applies in this external tech-
nology. Consequently, we assume that lots of combinatorial
effects and unbounded impacts are generated in case of any
change in this external technology. We do not want to allow
these effects and impacts to penetrate into our stable system.
To isolate these effects, we use the concept of Connection
Encapsulation. A Connection Entity is an Action Entity
dedicated to doing nothing but mapping requests from an
internal action to an external technology, and mapping the
responses of the external technology to the calling internal
action.

When there is a change in the external technology, this
change might have effect on our Connection Entity. If it
is a small update or hot fix, the Connection Entity could
handle this change by way of Transparent Coding, but in
general, the Connection Entity will remain dedicated to the
version of the external technology that it was developed
for. A new version of the external technology leads to

Figure 6: Actors on the Control Module [20]

the introduction of a new Connection Entity. An Action
Entity, which is representing the core functionality of the
external technology, has the task to wrap the different
Connection Entities. This wrapping Action Entity is defined
as a Connection Element. Again, following the ‘Separation
of Concerns’ principle, the functionality of the wrapping
entity should be limited to mapping requests from an internal
action to a specific Connection Entity, and mapping the
responses of the specific Connection Entity to the calling
internal action. Every Connection Entity, which is part of
the wrapped versions, should have a version tag of the
instance of the external technology it is connected to. The
calling internal action should inform the Connection Element
(wrapping action) about which Connection Entity or external
technology version is desired by way of a version tag.
The Connection Element should inform the calling action
whether the requested version is available.

With the concept of Wrapping External Technologies,
the separation of versions is done by wrapping Connection
Entities, each representing a version of the external
technology. This concept can be easily extended with the
introduction of Connection Entities, representing alternative
external technologies. Every new version of an alternative
external technology leads to the introduction of a new
Connection Entity.

D. Evolvable Control Module

In this section we introduce a Control Module for a motor.
We aim at making this motor control software module as
generic as possible. Instead of introducing new formalisms,
we based our proof of principle on existing standards. For
the modeling, we used concepts of ISA88 (IEC 61512),
for interfacing, we used OPC UA (IEC 62541), and for
coding we used IEC 61131-3. More specifically, we rely on
the S88 design patterns [15] (derived from ISA88) because
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Figure 7: Example of a motor state model [1]

these patterns can be used not only in batch control, but
also for discrete and continuous manufacturing. None of
these standards contains prescriptive suggestions on how
the internal code of a Control Module should be structured.
We introduce a granular structure following the theorems
of Normalized Systems. Every task (action), which must be
executed by the Control Module, is coded in a separated
Function Block.

In the most elementary form Control Modules are device
drivers, but they provide extra functions. In our proof of
principle we integrated the functionality manual/automatic
mode and alarming. We kept the functionalities ‘Interlock-
ing’ and ‘simulation’ as possible ‘future changes’, since it
should be able to add them without causing combinatorial
effects.

The proposed design of an evolvable Control Module
contains one Data Element and one Action Element, which
can include several Connection Elements. These Elements
are implementations of Data, Action and Connection
Encapsulation.

1) (One) Data Element: To make sure the interface
of an action will not be affected in case of adding an
additional tag or Data Entity, we work with one single
struct and define this struct as a Data Element (Figure 3).
The Data Element is a struct, which contains a substruct
for every Data Entity.

2) (One) Action Element: The Action Element is a
Function Block, which contains other Function Blocks,
one for each Action Entity. The Action Element contains
one core Action Entity, surrounded by supporting Action
Entities. The tags controlled by each Action Entity belong to
the corresponding substruct of the Data Element (Figure 4).
An Action Entity can read all tags of the other substructs,
but can only write in its own substruct (Data Entity).

3) Connection Elements: A Connection Element
corresponds with a special kind of Action Entity in the
sense that the change driver is an external technology,

Figure 8: The Data Element

or, more generally, the change driver is coming from the
outside of the Control Module. Typically, we have three
actors on the Control Modules: the operator (low level
HMI), the Equipment Module, which owns the Control
Module, and a Process Hardware Device (Figure 6).
Following the ‘Separation of Concerns’ principle, each
connection has to be handled with a separate software
module. If the device hardware has several versions, a
Connection Entity is needed for every version (Figure 5).

In the following, we specify the software entities which
represent the content of the Elements. We used the design
pattern shown in Figure 7. This state machine is very
simple. When the control system powers on, the motor
enters in the ‘OFF’ state. It can be started and stopped via
the ‘On’ and ‘Off’ commands. Hardware failures can cause
the motor to go to the ‘FAILED’ state, from where a ‘Reset’
command is required to return to the ‘OFF’ state. The
concept of this ‘FAILED’ state brings us a very important
benefit: process safety. Besides, it forms the base for failure
notification [15]. This functionality is implemented in a
Function Block we call ‘CoreStateAction’. This Function
Block has only one parameter we call ‘Device’. The
datatype of this parameter is called ‘DeviceDataType’.

4) Data Entities:

The ‘DeviceDataType’ is a struct containing 6 substructs
(Figure 8). Four of them include information coming from
‘the outside’:

• Man: Manual commands. Contains the tags ‘On’ and
‘Off’, which allow the operator to start and stop the
motor. Additionally, this substruct contains the tag
‘Reset’ to allow the operator to bring the status of the
Control Module back to the initial state after a failure.

• Auto: Automatic commands. Contains the tags ‘On’
and ‘Off’, which allow an ISA88 Equipment Phase to
start and stop the motor in automatic mode. In this
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Figure 9: The Action Entity ”ModeAction”

version, we choose that in Automatic Mode the reset
functionality can not be accessed.

• Mode: The mode of the Control Module. Contains
the tags ‘ManMode’ and ‘AutoMode’, which indicate
the mode of the Control Module. Additionally, this
substruct contains the tags ‘ToMan’ and ‘ToAuto’ to
allow an entity from ‘the outside’ to switch the Mode
between Manual and Automatic.

• Hardware: The Hardware tags. First, this substruct
contains the tag ‘Qout’, which can be linked with a
PLC output address to electrically control starting and
stopping of the motor. Second, this substruct contains
the tag ‘FeedBack’, which can be linked with a PLC
input address to check whether the motor is physically
running or not. Third, this substruct contains a tag
‘Fault’, which assumes the value ‘TRUE’ if the output
is not corresponding with the feedback of the motor.

A fifth substruct ‘State’ contains the state data of the
core state machine: ‘On’, ‘Off’ and ‘Failed’. The transition
tags ‘ToOn’, ‘ToOff’ and ‘Reset’ are placed in the sixth
substruct ‘Transitions’. These tags contain the results
(output) of an Action Entity, which decides whether the
operator or the Equipment Module has control (based on
the mode).

5) Action Entities:

Our evolvable Control Module contains four Action
Entities:

• ModeAction: Mode action (Figure 9). This is a state
machine, which maintains the mode. Mode commands
switch between manual mode and automatic mode. The
inputs of this action are the mode commands of the
substruct ‘Mode’. The outputs of this action are both
mode states of the same substruct.

• TransAction: Transition action (Figure 10). The inputs

Figure 10: The Action Entity ”TransAction”

of this action are all requests of both automatic control
and manual control entities, available in the substructs
‘Auto’ and ‘Man’, respectively. The outputs of this
action are the tags in the substruct ‘Transitions’.

• StateAction: Core state machine action (Figure 7).
This is the state machine, which maintains the state
of the Control Module. The inputs of this action are
the transitions tags of the substruct ‘Transitions’. The
outputs of this action are the state tags of the substruct
‘State’.

• HardwareAction: The hardware action (Figure 11). The
inputs of this action are the states of the substruct
‘State’, and the input ‘FeedBack’ of the substruct
‘Hardware’. The outputs are the tags of the substruct
‘Hardware’.

Please note that the entity which is performing manual
commands (typically the low level HMI), must check
the tags of the mode state machine to check whether the
manual commands will be accepted. In automatic mode,
the manual commands will be ignored. Similarly, the
ISA88 Equipment Module (automatic mode entity) must
check that automatic mode is active before sending requests.

6) Connection Entities:

In fact, the action ‘HardwareAction’ is a Connection
Entity, which connects the control software (with the core
state machine as its central task) of the Control Module
to physical production process hardware. Remember that
a Connection Entity is a special case of an Action Entity.
Indeed, in the first version of our proof of principle it maps
the ‘On’ state of the core state machine to the hardware
output ‘Qout’. In addition, it checks if the value of ‘Qout’
corresponds with the input value ‘FeedBack’. If there is
a discrepancy, it sets the tag ‘Fault’ to inform the core
state machine action that the hardware is not responding as
expected.

In a second version, we connected a bidirectional motor
to the Control Module. Consequently, we added a tag
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Figure 11: The Action Entity “HardwareAction”

‘Qreverse’ to the substruct ‘Hardware’. The Connection
Entity sets this ‘Qreverse’ tag in case the core state machine
action requests to run the motor in reverse direction. As a
result, when the core state action requests the motor to run
in the original direction, only the tag ‘Qout’ is set. When
the core state action requests the motor to run in the reverse
direction, both the tags ‘Qout’ and ‘Qreverse’ are set. Since
the way of setting the tag ‘Qout’ is not changed, we could
apply Transparent Coding. Instances of the Control Module
which are connected to a unidirectional motor will just start
and stop the motor and neglect the tag ‘Qreverse’ (which
is initialized to the value ‘FALSE’).

In a third version, we have a bidirectional motor, but
it is controlled differently. Instead of having a tag which
controls whether the motor should run or not and another
tag indicating the direction, we have two tags controlling
a direction each. If one of them is TRUE, the other must
be FALSE to provide an unambiguous command to the
device. Obviously, since the interface to the device is
changed, Transparent Coding is not possible. So for this
third version, we used the wrapping concept. We added
a tag ‘Version’ to the substruct ‘Hardware’. The code of
the action ‘HardwareAction’ is moved to a new module
called ‘HardwareActionV0’. The newly introduced code
in the action ‘HardwareAction’ is a selection, associated
with the version tag. If the version tag has the value ‘0’,
the request to the action ‘HardwareAction’ is forwarded
to the action ‘HardwareActionV0’. Besides, the Action
Entity ‘HardwareAction’ could more appropriately be
called ‘Connection Element’ now, because it is only
selecting versions and mapping. Another new Function
Block ‘HardwareActionV1’ contains the newly introduced
functionality of the new motor. HardwareActionV0 and
HardwareActionV1 are called Connection Entities.

To connect the automatic procedure (typically an ISA88
Equipment Phase) to our Control Module, no code is
needed. Indeed, such a Phase (Figure 2) is typically coded
in an ISA88 Equipment Module by way of the IEC 61131-3
language SFC. Since the Equipment Module, which has
control over our Control Module, is coded into the same
PLC as the Control Modules it owns, it only needs access
to the instance of the Data Element ‘Device’.

Besides, even for manual control no IEC 61131-3
connection code is needed. Similarly, the low level
HMI just needs access to the Data Element ‘Device’.
However, since the low level HMI is located in an external
technology, it would lead to the coding of a Connection
Entity or Element. Thanks to the OPC UA IEC 61131-3
companion specification [21], it is expected that we will
not need to code, but only configure the Connection Entity.
Based on this OPC UA companion specification, software
constructs of IEC 61131-3 can be mapped to OPC UA.
Unfortunately, this companion specification is rather recent,
and we could not find any commercial products supporting
this standard at the moment of submitting this paper.

V. CHANGES AND EVALUATION

A way to test evolvability is adding changes and
evaluating the impact of these changes. In general, we start
with a first version. Then we maintain one or more running
instances of the Control Module with the initially expected
behavior. Second, we consider the addition of a change,
and consequently a possible update of the datatype, existing
actions or introduction of a new action. Finally, we make
a new instance, check the new functionality and the initial
expected behavior of the older instances as well.

We provide some examples for the transformation of
high-level changes to the anticipated changes of software
primitives.

• We consider the situation that manual operations could
harm automatic procedures. For instance, stopping a
motor manually could confuse an algorithm if it is
happening during a dosing procedure. To prevent this,
we add the feature “manual lock”. This means, we still
support manual mode, but we disable manual mode dur-
ing the period a software entity such as an equipment
module requires the non-interruptible (exclusive) use of
the Control Module.
In terms of elementary changes, this requires an addi-
tional version of a Data Entity, more specifically the
addition of a tag ‘ManLock’ in the substruct (Data
Entity) dedicated to receiving automatic commands.
Additionally, a new version of an Action Entity is
introduced. The action dedicated to select manual or
automatic mode adds the ‘ManLock’ tag as a constraint
to switch over to manual mode.

• We consider the situation of a motor instance where the
motor must be able to run in two directions (while the
functionality of earlier unidirectional motor instances
should remain).
In terms of elementary changes, this requires an ad-
ditional version of three Data Entities. First, the addi-
tion of a tag ‘Reverse’ in the substruct (Data Entity)
dedicated to hardware control. Second, the addition
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of a tag ‘ManReverseCmd’ in the substruct dedicated
to receiving manual commands. Third, the addition
of a tag ‘AutoReverseCmd’ in the substruct (Data
Entity) dedicated to receiving automatic commands.
Moreover, the action which is processing the result
(aggregation) of the requests of both manual and au-
tomatic commands needs a new version to provide a
command ‘ReverseCmd’ for the core state machine
action. Finally, the core state machine Action Entity
needs a new version to add the new state ‘ReverseState’,
accompanied by transitions from and to this new state.

• We consider the situation where one wants to introduce
a simulation mode (for testing purposes), to neglect
the Fault transition if no hardware is connected.
In terms of elementary changes we need three changes.
First, an additional Data Entity or substruct which
can be used to store the state of the simulation
mode. Second, an additional Action Entity to process
the newly introduced state machine, and third, a
new version of the core state machine Action Entity
to neglect the Fault transition when in simulation mode.

Remember that manual operations could affect automatic
procedures. In terms of elementary anticipated changes, this
requires the addition of the tag ‘ManLock’ in the substruct
‘Mode’. The action ‘ModeAction’ adds the ’ManLock’ tag
as a constraint to switch over to manual mode. We applied
the concept of Transparent Coding. In the IEC 61131-3 data
type declaration part of this additional tag in the substruct,
we explicitly declared the initial value to be FALSE. We
did not remove or change the calls of instances which do
not need this feature. For older calls the behaviour did not
change, and for the new instances we can indeed prevent
the mode going to automatic.

We consider again the situation of a motor instance
(as above) which must be able to run in two directions.
In the previous section we discussed new versions of
the Connection Entity ‘HardwareAction’, updated to the
Connection Element ‘HardwareAction’, which is containing
the two Connection Entities ‘HardwareActionV0’ and
‘HardwareActionV1’. The elementary changes with
regard to this Connection Element can be done without
affecting the other actions or Data Entities. However,
this does not mean that the related high-level changes
or real-life requirements are met. Remember that one
additional functional requirement corresponds typically to
more elementary changes. For our two directions motor
instance, a change of the core state machine was necessary,
in addition to the elementary changes needed for the
Connection Element. First, in the Data Entity (substruct)
‘State’, an additional state ‘Reverse’ was introduced.
Second, in the data entity (substruct) ‘Transitions’, the tag

Figure 12: Core state machine bidirectional motor

‘Reverse’ was added. Third, the functionality of the Action
Entity ‘StateAction’ was extended by way of Transparent
Coding. Transparent Coding for a state machine means that
no states can be removed, no states can be changed, and no
transitions can be changed or removed. In other words, the
allowed changes are only additions of states and transitions
(Version Transparency principles). We end up with the new
version of the state machine depicted in Figure 12.

We provide two more examples of Transparent Coding.
Remember the manual lock feature. We can code the initial-
ization of the new tag ‘ManLock’ to FALSE. By assuming
this default value, the code of the change can be made in
a way that this default value guarantees the behavior of the
previous version. More precisely, if the value is FALSE,
the manual lock functionality will not apply until a newer
version instance is setting it to TRUE, which is not going to
happen if an older version is used on this specific instance.

Remember the motor instance, where a new version can
let the motor run in the reverse direction. Similarly, if the
default version of the tag ‘Reverse’ is initialized to FALSE,
the motor will run in the original direction until a newer
version instance is setting the reverse tag to TRUE, which
again is not going to happen if an older version is used on
this specific instance.

VI. CONCLUSION AND FUTURE WORK

Evolvability of software systems is important for IT
systems, but also a relevant quality for industrial automation
systems. IEC 61131 Function Blocks of automation systems
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are programmed close to the processor capabilities. For
example, there is a similarity between the IEC 61131-3
language Instruction List (IL) and assembly. The key point
of Normalized Systems is a high granularity of software
modules with a structure which is strictly disciplined to
the related theorems. As a consequence, making a proof
of principle close to the processor is a very informative
exercise to concretize the Normalized Systems theory. In
addition, this approach can be of great value for improving
the quality of industrial automation software projects.

It must be stated that implementing these concepts was
highly facilitated by the use of existing industrial standards.
They provide us with methods to develop the macro-design
of software modules, while the Normalized Systems theory
provides guidelines for the micro-design of the actions
and data structures encapsulated in these modules. Adding
functionality or even adding an action to a (macro) building
block, in our case the Control Module, can be done with
a limited impact (micro manageable) towards other (macro)
entities (bounded impact). To define the most basic actions
(tasks) and data structures, the identification of the change
drivers of the concerned entity is essential. This confirms the
first theorem for software stability, Separation of Concerns.

Our future work will be focused on other (macro) ele-
ments of ISA88, which contain different types of control. A
Control Module contains mainly basic control, together with
limited coordination control (the mode). We will extend this
study to elements with more advanced coordination control
code and procedural control, again designed to comply with
the Normalized Systems theory.

Moreover, future work will also be focused on interfaces.
Since OPC UA is very generic, we wonder if constraints
must be added to the standard to let data communication
be compliant with the second theorem of software stability,
Data Version Transparency. It will be interesting to inves-
tigate whether both currently existing OPC UA transport
types, UA binary and UA XML, can be handled in a Data
Transparent way.
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