
Introducing openBOXware for Android:
The Convergence between Mobile Devices and Set-Top Boxes

Lorenz Klopfenstein1,2 Saverio Delpriori1,2 Gioele Luchetti1,2

Andrea Seraghiti1 Emanuele Lattanzi1,2 Alessandro Bogliolo1,2

1STI-DiSBeF - University of Urbino, Urbino, Italy 61029
2NeuNet Cultural Association, Urbino, Italy 61029

E-mail: lck@klopfenstein.net saveriodelpriori@gmail.com luchetti@sti.uniurb.it
andrea.seraghiti@uniurb.it emanuele.lattanzi@uniurb.it alessandro.bogliolo@uniurb.it

Abstract—Multimedia contents delivered over residential
and mobile IP networks are among the main driving forces of
the Internet. The pervasiveness of connected devices capable
of receiving and decoding multimedia streams has induced
a change in the market of set-top boxes from dedicated
proprietary appliances to software modules running on top
of off-the-shelf devices. In spite of the large number of devices
we use every day, smartphones are the favorite answer to our
communication needs because of their availability, of their user
friendliness, and of the great opportunities of personalization
offered by user-generated mobile applications. The last gen-
eration of smartphones and tablet PCs, capable of handling
HD multimedia streams while also retaining the distinguishing
features of mobile devices, enables the convergence between
personal communication devices and home entertainment ap-
pliances. This paper introduces openBOXware for Android, an
application suite which makes it possible to use any Android
device as a set-top box, allowing end-users to take advantage
of the tailored run-time environment of their personal mobile
devices while watching television in the comfort of their
living rooms. OpenBOXware exploits technology convergence
for usability, in the attempt of enhancing the accessibility of
the Internet by providing a TV-like usage experience. The
paper presents the key features of openBOXware, outlines the
implementation on top of the Android application framework,
and shows representative use cases.

Keywords-Set-top box, Tablet PC, openBOXware, Android,
Streaming

I. INTRODUCTION

The analog switch-off and the advent of digital video
broadcasting (DVB) have enabled the technological conver-
gence of client-side equipment required to take advantage of
broadcast TV channels, IPTV services, and Internet multi-
media streams. Nowadays, all new television sets come with
embedded decoders, and most of them are Internet enabled.
In this scenario, software components running on top of off-
the-shelf connected devices are replacing proprietary set-top
boxes (STBs), while traditional IPTV models are undergoing
deep changes in order to face the pressure of over-the-top
(OTT) multimedia contents streamed across global content
delivery networks (CDNs).

At the same time, the widespread diffusion of smart-
phones and Internet enabled mobile devices, together with

the growing coverage of broadband wireless networks, have
induced operators to move from triple-play offers (i.e.,
Internet access, VoIP, and IPTV) to quadruple-play offers
(which include mobility) [2], accelerating the convergence
between mobile and residential broadband markets and
creating the conditions for delivering mobile TV services
[3]. IP traffic trends and forecasts [4], [5] indicate that
multimedia contents delivered over residential and mobile
IP networks are among the main driving forces of next
generation networks.

In spite of the wide diversity of connected devices which
might work as multimedia boxes (including connected TV
sets, media centers, DVB decoders, video game consoles,
and personal computers), end-users spend most of their
connected time using personal smartphones (or similar hand-
held devices) which have several competitive advantages:
they are available everywhere and at any time, they offer
intuitive user interfaces, they provide suitable answers to
any communication need, and they provide unprecedented
opportunities of personalization thanks to the thriving market
of user-generated contents and applications [6].

Exploiting add-ins and configuration options to create a
perfectly tailored run time environment on a smart phone is
an intriguing pastime that engages the vast majority of end-
users. As a result, both the quality of experience offered by
smartphones and the effort devoted to personalize them keep
end-users from using (or at least from personalizing) other
devices.

Although a new generation of STBs has recently sprouted
which allow end-users to create their own applications and
to easily install third-party addins [7], [8], they are far away
from gaining the popularity of their mobile counterparts and
the gap is hard to be closed in the near future. In fact, mobile
devices are always at users’ disposal and they will maintain
their dominant role of personal communication equipment.
Moreover, STBs are typically installed in a living room
where they are mainly expected to provide a lean-back usage
experience, which is very well suited for media consumption
and is in contrast with the lean-forward attitude typical of
smart phone users, which has sustained the market of mobile

44

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



applications [9], [10].
On the other hand, personal handheld devices have never

threatened the market of media centers and STBs because
of their tight design constraints imposed by portability
requirements, which made them unsuitable to sustain the
workload of high definition multimedia streams. The gap
between personal mobile devices and multimedia boxes has
been closed, however, by the last generation of smartphones
and tablet PCs, which support HD video streams and are
equipped with HDMI interfaces, and by the advent of IP
boxes providing the same application framework of the most
popular mobile devices [11].

In a preliminary version of this paper [1], the authors
investigated the possibility of making an Android tablet PC
work as a STB in order to allow end-users to take advantage
of their personal runtime environment in the comfort of
their living room. This paper moves a step forward by
outlining the key features and the implementation details of
openBOXware (OBW) for Android, a modular application
suite which makes it possible for Android devices, including
smartphones, to switch from a lean-forward to a lean-back
usage mode in order to provide a TV-like experience of
Internet contents. The main purpose of openBOXware is to
exploit this convergence, making both the advanced features
of Android and the unlimited contents available on the
Internet directly accessible to television viewers, presenting
contents in a familiar way: as linear TV channels, possibly
controlled with a simple remote control.

The rest of the paper is organized as follows: Section II
presents the concept and the main features of openBOX-
ware, Section III outlines the software architecture and the
implementation details, Section IV shows representative use
cases, and Section V draws conclusions.

II. OPENBOXWARE FEATURES

OpenBOXware is an open-source framework built on top
of Android to provide a TV-like experience of multimedia
contents taken from heterogeneous sources (in terms of
format, protocol and access mode), while also allowing
the end-user to enjoy all the applications installed on the
underlying Android device. To this purpose openBOXware
sports a custom user interface conceived to offer a lean-
back usage experience by means of three home screens,
granting access to: the media library (Figure 1), the list of
openBOXware applications (Figure 2), and the list of all
other Android applications installed on the device.

The media library is the default home screen, which
allows the end-user to find media channels and to select the
one to watch. Multimedia contents are made available by
special add-ins, called media sources. A media source is a
tree of nested multimedia nodes. Leaf nodes are playable, in
that they can be forwarded to the media player for playback,
while all other nodes are explorable, in that they allow
the media library to navigate their content and display the

Figure 1. Media library home screen.

list of children nodes. Examples of media sources include
IPTV channels, Internet TV channels, UPnP/DLNA clients
granting access to the multimedia contents made available by
the UPNP/DLNA servers discovered in the LAN, collections
of media elements stored in the local file system, and
collections of online multimedia contents.

Media source nodes may contain metadata, including
title, duration, and an icon, that can be displayed by the
media library to provide a richer and more vivid browsing
experience and to help the end-user to decide which content
to pick.

Figure 2. OpenBOXware applications home screen.

Figure 1 shows the media library home screen, with the
icons of all the media sources installed in the device. When
a media source is selected, the media library shows the icons
of its children nodes. The three small icons on the top of the
screen can be used to switch among the three homes, while
the ones on the left represent filters that can be applied to
the media sources based on the location of the contents they
link to: local file system, LAN, Internet.

Playable media source nodes provide a TV-like watching
experience by offering both linear channels or contents on
demand. A content on demand is a media source node
associated with a single resource which is played back
whenever the media source node is selected by the user. The
node’s content do not change and depend exclusively on the
user’s choice. A linear channel, on the contrary, can be either
a link to a continuous stream provided by a live streaming
server, or a (possibly unlimited) list of disjoint multimedia

45

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 3. OpenBOXware media player with visible control bar.

elements which are glued together by the node and played
back as a continuous stream. In this case, contents may
depend on the moment in time the user decides to tune in.

Figure 4. Sidebar displayed over the media player.

OpenBOXware applications are special Android applica-
tions which make use of additional features provided by the
openBOXware library included in the Software Development
Kit (SDK). Applications can be executed in fullscreen (if
they take over the whole screen area, covering up other
applications), in background (in case of services that do not
require any graphic user interface), or in sidebar (the case of
widgets that can be displayed on a small part of the screen
letting the top-level fullscreen application shine through).
An example of sidebar applications displayed on top of the
media player is provided in Figure 4.

Figure 5. Background application management dialog box raised from the
control bar.

To support a lean-back usage experience, openBOXware
provides an overlay interface element, called control bar,
that is displayed at the bottom of the screen with minimum
interference with the foreground activity. User controls are
organized in sections which differ in type and scope. Each
section takes the entire area of the control bar, so that the
control sections are displayed one at the time. This is due to
two main reasons: first, to limit the area of the screen taken
by the control bar, second, to make it easier for the end-user
to issue commands which are limited in scope. In particular,
both the switching among the sections and the controls
contained in each one can be operated by means of the four
arrows and the “OK” button available in any remote control.
Control bar sections include: playback (Figure 3), containing
a seek bar together with pause, skip, and stop buttons;
volume, which controls the volume settings of the device;
home, which provides short cuts to the three home screens;
sidebar, which controls the configuration of the sidebar and
the widgets displayed in it; and background, which provides
a scrollable list of services running in background and allows
the end-user to pick one in order to check its status, change
its configuration, or stop it (Figure 5).

Figure 6. Overlay digits providing feedback of the zapping command
issued while watching a movie.

To further improve usability, any playable media element
can be associated with a unique 3-digit number to be used
as a short cut to directly zap to that channel from the media
player (or from any home screen) without going through the
media library and browsing media sources. Figure 6 shows
the three digits which appear in overlay whenever the end-
user presses a numeric key in the remote control to exploit
the zapping functionality.

OpenBOXware also supports the so called configurable
media sources: essentially standard media sources bundled
with companion openBOXware applications that can be used
to configure them. In what ways and to what extent a
media source can be customized depends on the structure
of the multimedia provider for which the media source is
developed, but the auxiliary application typically provides
a user interface to change settings and preferences, to set
search criteria, or to apply filters. Examples of configurable
media sources include a UPnP client with an auxiliary

46

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



application to be used to associate a channel to a specific
directory or to a specific file made available by some
UPnP server in the LAN, or a YouTube media source with
an auxiliary application allowing the end-user to create a
channel associated with a specific query and search options.
In both cases, the channels created by the end-user through
the companion applications appear as new children of the
corresponding media sources and they can be used as any
other playable node and possibly associated with numeric
shortcuts for quick zapping.

This advanced feature grants to openBOXware the flexi-
bility required to provide a TV-like experience of any online
contents (even if they are not natively organized in linear
channels) making them available to a broader audience. For
instance, people not accustomed to browse the Internet can
take advantage of thematic channels preinstalled or created
by other expert users. In addition, parent can create channels
of contents expressly selected and filtered for their children.

III. OPENBOXWARE IMPLEMENTATION

OpenBOXware is built on top of Android which is,
in its turn, built on top of Linux kernel. The Android
architecture consists of three main layers: i) the Android
runtime, based on the Dalvik virtual machine (VM) with
additional support libraries, ii) the application framework,
and iii) the applications which run on it [11]. For portability
and compatibility reasons, openBOXware has been fully
developed at the application level.

Figure 7. Software architecture of openBOXware.

An Android application can be made of several compo-
nents. For our purposes, the most important types of com-
ponents are activities, which represent screens with specific
user interfaces, and services, which run in background. Each
application runs in a separate VM instance for security and
protection. Communication among applications is guaran-
teed by an asynchronous message passing mechanism which

allows a component to issue an intent message which is
handled by another component, possibly belonging to a
different application. Each intent contains action and data
specifications which are used by the application framework
to dispatch the intent and trigger one of the components
registered for performing the requested action on the specific
type of data. The main graphic user interface is provided by
a launcher, which is a special activity registered to react to
a particular intent issued by the operating system at start
up. The launcher allows the end-user to browse and launch
activities which publish the MAIN intent filter. In addition,
the launcher can also act as a widget host to allow end-users
to customize the main page by embedding their preferred
miniature application views.

The openBOXware core is implemented as a package
containing a launcher and several additional components,
including background services and other activities, which
handle multimedia functionalities, notifications, and sidebar
widgets. As mentioned in Section II, the user interface of
openBOXware discriminates between normal Android ap-
plications and special openBOXware applications (identified
by the intents they are registered to handle, as detailed be-
low). An openBOXware application is nothing more than a
standard Android application, mainly composed of activities
and services, which additionally relies on the APIs exposed
by the openBOXware SDK and links to the openBOXware
library. Those APIs, written on top of the features provided
by the vanilla Android platform, enable the application to be
integrated inside the openBOXware environment and give
access to advanced multimedia features through high level
programming interfaces.

A schematic representation of the software architecture
is provided in Figure 7, where the openBOXware platform
rests on the Android application framework. Media sources
and openBOXware applications are represented as boxes
partially overlapping the openBOXware core to denote the
fact that they make use of the extended features provided
by the Software Development Kit, while all other Android
applications (activities and services) do not.

A. Home application

The core package, once installed onto an Android device,
works as a launcher which provides the three home screens
from which media sources can be explored and any other
application is launched.

It is worth noticing that multiple launchers can be installed
on the same device, but only one at the time can be set as
default and run in foreground. Hence, the device must be
setup to allow the user to select the launcher in order to
switch from a lean-forward to a lean-back use of his/her
own device. This can be achieved either by changing the
default launcher, or by avoiding to specify a default one (in
this case the choice is made every time the end-user taps
the home button, through an Android dialog box – shown

47

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8. Launcher selection dialog box.

in Figure 8 for a Samsung smartphone – which allows the
user to pick the desired launcher).

Once the openBOXware launcher is launched, it becomes
the main graphical user interface of the system, acting as
an application launcher and displaying additional messages
through the system bar and a custom control bar. As men-
tioned in the previous section, the launcher provides three
separate home screens: the media library, the openBOXware
application list, and the Android application list.

B. Media source

A media source is implemented as an Android service, re-
acting to the openboxware.media.source.ACCESS
intent. The media library (and in fact any other Android
application) can search for media sources by querying
for that specific intent and getting a list of the installed
services. Media sources may use an additional category
(namely openboxware.media.source.LOCAL, LAN,
or INTERNET) to specify the location of the data the media
source points to. These are known as content-type flags. The
Android package manager can filter out specific kinds of
media sources based on the location specified in the intent
query. From a user-interface perspective, filters are activated
by the three clicking on the three icons available on the left-
hand side of the media library home screen (see Figure 1).

Media sources implement a set of remote procedure calls
(RPCs) using the Android AIDL interface. The openBOX-
ware library provided by the SDK includes a collection of
interfaces and higher level classes (contained in the Tahweed
APIs) that make implementing such a RPC interface much

easier and more structured. The developer can simply im-
plement a small set of classes and connect the exploration
actions (i.e., their RPCs) to the corresponding back-end code
needed to access the specific media content.

Each node of a media source is an instance of the
MediaSourceNode class, which provides a set of abstract
methods that need to be overridden in order to be used by
the client to fetch children nodes and multimedia resources.

Playable media source nodes provide an enumerable
sequence of content items, which will be played one after
the other by the media player. Each item of this stream is
an instance of the MediaElement class and can link to
any remote or local multimedia resource (including images,
audio files, and videos) through its URI.

Since every playable node includes a – possibly unlimited
– stream of multimedia elements, as mentioned in Section II
they can be used to create a linearized channel. An example
thereof can be a virtual TV channel built from multiple
separate videos, possibly encoded in different formats and
taken from different sources. Media source nodes can also
transform any feed of data into a linearized stream of
media. For instance, any feed containing links to images
(an RSS feed, possibly) can be represented as a stream of
pictures, which is then played back by the media player as
a slideshow.

C. Media library

The media library is the default home screen of the
openBOXware launcher, which represents the main user
interface to the platform’s multimedia exploring and stream-
ing capabilities: its primary function is to list all media
sources installed and available to the user, allowing him/her
to explore media sources’ contents, discover media channels,
and select the ones to watch.

Media sources are displayed in a grid in alphabetical
order, as shown in Figure 1. When the user decides to
select one particular media source, the openBOXware library
opens an AIDL connection to the respective service and starts
communicating with the service implementing the media
source (through the RPC interface described before). Media
source’s nodes are explored hierarchically: the history of the
exploration is kept in a stack and displayed on the left-hand
side of the media library grid, enabling the user to easily
understand his/her position in the media source’s structure
and to navigate back either by using the back button or by
clicking on the stacked ancestral nodes.

When the user clicks on the icon of an explorable node
the media library pushes it into the stack and displays its
children nodes. When he/she clicks on a playable node it
is passed on to the integrated media player, which attempts
to play back the contents of the node starting from the first
multimedia element.

Finally, the media library includes a link to the Android
marketplace with a shortcut that quickly filters out installable

48

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



media sources: the user can explore applications which are
available to download, install them, and get back to the
media library to make use of the new media sources and
of the multimedia resources they provide access to.

D. Media player

The media player (Figure 3) is the openBOXware com-
ponent that handles all multimedia playback requests by the
media library (and by other openBOXware applications): it
is implemented as a single activity sporting a simple user
interface and capable of playing back a variety of linearized
contents as described by media source nodes (instances
of MediaSourceNode) exposed by the media sources
installed on the device.

The player activity reacts to the
openboxware.mediaplayer.PLAY intent, which
signals the request for playback issued by another
application. The intent structure contains all the data
required by the media player to initiate the playback. In
case of media source nodes containing a single media
element, the intent contains directly the MediaElement
instance to be played back. In case of playable media
source nodes containing more elements, the intent contains
a so-called media source node identifier, which will be used
by the media player to open a connection to the original
media source, make a request for the node to playback via
RPC, and then start enumerating the multimedia resources
provided by the node. Each single media element returned
by the node is reproduced as part of a continuous linear
stream.

The media player determines the type of each media
element to play back. Videos and audio files are played back
using the default Android MediaPlayer component, while
pictures are displayed by a custom slideshow component.
Media identification relies on the metadata provided by
the developer of the media source, which include a MIME
type specification (i.e., a string formatted according to the
Multipurpose Internet Mail Extensions standard, which gives
a textual description of the content type of a file, such as
“text/html” or “video/x-h264”). If absent, the media player
will attempt to guess the nature of the media element (e.g.,
by checking the file extension in the element’s URI or by
other heuristics). When an unsupported (or unknown) media
element is passed to the media player, playback fails and the
media player attempts to skip it and go to the next element
of the media source node.

The media player activity does not display any additional
user interface elements, nor any buttons that enable the
user to control media playback. Instead, the player emits
a sequence of intents to the system notifying its current
status, time of playback, and other additional data (like
the name of the current media element which is being
played back). These data intents can be intercepted by
any other component of the system to keep track of the

player’s actions. Most notably these intents are used by the
control bar which, when shown, displays playback progress,
common playback controls, and other data directly to the
user (as shown in Figure 3).

On the other hand, the media player can also be controlled
by generating special intents which represent commands to
pause, resume, skip, or stop playback. By default, these
intents are sent by the control bar when the user clicks on
the corresponding control buttons, but they can also be used
by other applications and services that might need to interact
with the media player.

E. Sidebar

The sidebar (shown in Figure 4) is implemented as a
single instance activity which is displayed as a transparent
dialog, covering only a small side of the screen. Because of
limitations of the Android window manager, dialog activities
which do not cover the whole screen take the entire input
focus of the user. Thus, interaction with the underlying
fullscreen activity is either impossible or unreliable because
of its dependence on device-specific implementation choices.
This problem is partially mitigated by the fact that the most
common fullscreen activity, i.e., the media player, does not
provide any touch interface and all interactions usually pass
through either the remote control (via intents) or the control
bar (which is never displayed together with the sidebar).

The sidebar activity acts as a so-called widget host,
which can accommodate any number of external widgets
implemented by other applications installed on the system.
Widgets commonly used on Android devices include simple
front-ends to communication applications (e-mail readers,
contacts lists, incoming text message viewer, feed read-
ers, ...) and social networking clients (Twitter, Facebook,
LinkedIn, ...).

Widgets added to the sidebar are identified by a unique
appWidgetId that is used to grant persistence to the list of
hosted widgets, to store their display order as decided by the
end-user, and to handle removal. Widgets are automatically
updated by the Android system.

The sidebar provides simple control buttons that can be
used to add, move, or remove widgets either through the
touch screen or from a remote control.

F. OpenBOXware applications

Different classes of applications can be developed to target
the openBOXware environment, in order to make use of the
features of the framework or to integrate with the media
library. In particular, openBOXware supports four ways of
integrating third party add-ins.

Interactive applications (namely, fullscreen openBOX-
Ware applications) can be implemented as activities that will
run taking the whole device screen over and delivering an
immersive usage experience to the user. As mentioned in
Section II, these applications run one at a time, demand

49

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



exclusive focus from the user and can also rely on the media
capabilities of openBOXware to explore media resources or
demand media playback. Applications of this class will be
listed separately in the openBOXware applications list by
the launcher (they will be hidden from the standard Android
applications list of the openBOXware launcher and of other
Android launchers, by default).

Background applications, which usually play the ancillary
role of helper services to a fullscreen activity in order
either to periodically fetch updated data or to poll for some
resource, can be implemented as Android services. These
applications will also appear in the openBOXware appli-
cations list and can be explicitly launched in background
by the user. The control bar will also provide a graphical
interface that allows the user to interact with such back-
ground services, updating their configuration and eventually
terminating them. A background application can interact
with the openBOXware framework, explore media resources,
and invoke other fullscreen activities when needed.

Other applications that do not request the full focus of the
user and allow to glance at information without interrupting
the main usage experience can be implemented as standard
Android widgets. Widgets have limitations on how often
their code runs and how their interface is displayed, but they
can be included in so-called host applications. Creating a
widget allows the application to be hosted by the openBOX-
ware sidebar, enabling the user to display the application
while interacting with another fullscreen application (for
instance, the media player). Every widget can be hosted by
any widget host, for instance other Android launchers that
provide this functionality.

Finally, it is worth mentioning that media sources are
application as well. In particular, they are implemented like
standard Android services, but they implement a specific
interface that enables the media library (and in fact any other
application written using the openBOXware SDK) to access
the service and fetch informations about the available media
resources from the media source’s hierarchical resource tree.

Being implemented as standard Android activities and
services, openBOXware applications are able to react to
common Android intents. It is up to the developer to
include the default Android intents in their applications to
enable them to be launched through any Android launcher
instead of relying only on the openBOXware front-end. It is
worth noticing, however, that in this case the openBOXware
services might not be available.

In order to be listed and launched as open-
BOXware applications, activities must handle the
openboxware.gui.FULLSCREEN intent and should
extend the FullscreenActivity class included in
the SDK. This allows the application to easily access
all openBOXware features (e.g., raising the control bar,
displaying the sidebar, issuing commands to the media
player, or raising notifications, as described in Section

III-H3). Fullscreen activities also automatically handle their
own theme when launched, in order to match the look
of the platform and the size of the screen without any
additional effort for the developer.

Similarly, background services must handle the
openboxware.gui.BACKGROUND intent in order
to be listed among the openBOXware applications, and they
have to extend the BackgroundActivity class to gain
access to openBOXware features. In particular, this allows
them to be launched, monitored, configured, and stopped
by the openBOXware control bar.

As already mentioned, media sources handle the
openboxware.media.source.ACCESS intent and ex-
tend the MediaSource class, which implements the basic
AIDL which allows media source clients (like the media
library) to discover multimedia content through RPC calls
to the service. Media sources can also rely on the high-
level Tahweed multimedia API, which provides a structured
object-oriented wrapper around the imperative RPC con-
structs on which the Android inter-process communication
system is based.

While all Android applications have access to plat-
form’s context in order to query base services and man-
agers, openBOXware applications can also access their
OBWApplicationContext, which enables them to inte-
grate with the features of the platform and provides a mean
to easily share status and information between different
activities/services which are part of the same application.
In particular, this allows the developer to implement an
openBOXware application that supports all execution modes
(i.e., fullscreen, background, sidebar) and switches among
them without losing data and settings.

G. Control event injection

The control bar is implemented as a standard Activity
and communicates with the openBOXware back-end through
intents (e.g., as already mentioned, the media player signals
its state continuously using intents and can be controlled
by broadcasting other specific intents representing user’s
commands). The current implementation of the control bar
allows the user to interact with the openBOXware envi-
ronment both in a lean-forward stance, by using the touch
interface of the device, and in a lean-back stance, by using
a remote control to issue commands. Any Bluetooth remote
that is able to connect to the Android device can be used to
this purpose.

In order to maintain full compatibility with existing
Android devices, the decision was made not to implement
a custom Android build with system-wide changes. This
hinders the capability of openBOXware to provide deep
integration with a remote control promoted to a full-fledged
interaction device capable of injecting interface events to
Android applications other than the openBOXware launcher.
On the other hand, this kind of customization could be

50

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



provided in device-specific openBOXware distributions tar-
geting Android IP boxes.

H. Advanced features

1) Configurable media sources: Configurable media
sources are standard media sources that include a companion
openBOXware application. The media source and the con-
figuration application share the same Android application
package and thus also share a common space of isolated
storage on the device. This storage area is used to store
structured information (usually a SQLite database, a shared
preference structure, or simple files in any parsable format)
that can be altered by the application and read by the media
source in order to display custom contents based on queries
and preferences specified by the end-user.

A representative example of a configurable media source
is shown in Section IV.

2) Zapping: Any playable media source node can be
marked as pinnable in order to enable the zapping func-
tionality. In practice, this means that the media library is
allowed to store a reference to that particular node, i.e., to
pin it and associate it to a number. OpenBOXware lets the
end-user create a numbered set of preferred channels, which
he/she can play back quickly and easily by zapping to the
corresponding numbers. On the other hand, a pinnable node
requires the ancestral media source to be able to regenerate
that node and its complete state (which could require a
complex interaction with the back-end content provider).
This is done by generating an identifying code for the pinned
node (i.e., an arbitrarily complex string constructed by the
media source and containing all relevant information) that
can be parsed at any time (even on a different instance of
the same media source or after a full device reboot) in order
to regenerate the original media source node.

In practice, the launcher makes use of the zapping func-
tion by allowing the user to pin nodes when they are declared
as pinnable by the media source developer. When the user
executes a long-press on a pinnable node displayed in the
media library (holding the node for a couple of seconds), the
library displays an overlay that enables the user to select
a channel number for that particular node. Once the user
confirms the input, the node is pinned and associated with
that number.

Subsequently, whenever the end-user picks the channel
number using either the device or the numeric keys of the
remote control, the media library attempts to retrieve the
corresponding pinned node and use its identifying code to
restore the desired MediaSourceNode instance. The node
is then forwarded to the media player and directly played
back.

3) Notifications: Standard Android notifications can be
sent to the Android notification bar by any application
by instantiating a new notification and sending it to the
NotificationManager, which is part of the standard Android

Figure 9. Example of an openBOXware notification.

programming interface. The notification is then displayed in
the notification bar until it is dismissed by the user.

Since the Android notification bar is covered by the
openBOXware launcher by default, these notifications are
hidden to the user and cannot be easily accessed. While any
application can still make use of the default notifications
system, raised notifications will only be displayed once the
openBOXware launcher is terminated. If, on one hand, this
behavior is intentional in that it avoids notifications, which
usually interrupt the normal usage experience by prompting
for user’s attention, to detract from the lean-back usage
experience typical of openBOXware, on the other hand,
a less-obtrusive form of notifications are needed, to be
possibly consumed while watching multimedia contents.

OpenBOXware notifications can be displayed by
applications using the openBOXware APIs included
both in the FullscreenActivity and in the
BackgroundActivity base classes, instead of relying
on the default Android notification manager.

The notification request is taken over by the openBOX-
ware environment, which will display it by using a simple
notification overlay on one edge of the screen (see Figure 9),
while also forwarding the same notification to the underlying
default NotificationManager to ensure that the notification
can be read and acknowledged later, even if ignored while
on screen.

When the user reacts to an openBOXware notification
(by clicking or touching the overlay icon while displayed),
the system hides both the overlay notification and the
corresponding entry in the standard Android notification bar.
At the same time the notification raises a custom intent that
can be handled by the application.

IV. RELEASE

A. Public demonstration

A pre-alpha version of the openBOXware framework was
tested and publicly demonstrated on November 11, 2011 in
Urbino (Italy), using a living room setting installed in a
conference hall at the University of Urbino.

A HD TV set was connected to a Samsung Galaxy SII
smartphone running openBOXware, providing a replica of

51

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 10. The openBOXware test bed, including a TV set driven by an
Android smartphone controlled by a Bluetooth remote and several other
Android devices connected to the same WLAN.

the screen user interface (in its original display resolution)
through the HDMI port. The smartphone was placed close to
the TV and far away from the sofa in order to force the end-
user to rely on a remote control to issue commands (namely,
a Bluetooth Logitech diNovo Mini wireless keyboard that can
work both as a remote and as a wireless keyboard/mouse
input device). The smartphone was connected to the Internet
through a Wi-Fi router. Other Android devices (smartphones,
tablet PCs, and IP boxes) running openBOXware were
connected to the same WLAN for testing purposes. One
of the smartphones was also running an UPnP server in
the background. All devices were able to access Internet
resources, files shared by the UPnP server, and resources
stored on a HTTP server installed on a local computer
playing the role of a proxy of video contents from RAI
Radiotelevisione Italiana.

A schematic representation of the setting is provided in
Figure 10. The setup was used to demonstrate the usability
of openBOXware in a pure lean-back setting, to test the
multimedia playback capabilities of the devices involved,
and to show the key features of the platform by means of
representative use cases. A video log of a demo is available
at: http://youtube.com/watch?v=7RzdIiz1EQs.

Demonstrated features include: home screen navigation
(see video log at 2:49s), media source exploration of repre-
sentative media sources such as a Youtube channel, a UPnP
client, and a HTTP proxy of RAI streaming contents (at
4:18s), playback of a full HD video, control bar (at 5:28s,
with event injection from both the touch screen and the
remote control), sidebar (5:57s), channel shortcut assignment
and zapping (6:55s), multiple launch modes (8:10s) shown
on a simple Google News client supporting both full screen
and background execution modes, and configurable media
source samples, such as UPnP and Youtube clients (10:20s).

The experiments conducted on configurable media sources
are worth to be described in detail. Both the YouTube and the
UPnP media sources developed for testing purposes had their
own companion applications to be used to customize them

outside the media library (which in fact provides only an
interface for content consumption). The UPnP configuration
application (called “My UPnP”) showed the list of all
available UPnP servers on the current network and allowed
the user to pick a device (or a specific shared folder on
that device) to be made available within the UPnP media
source. Upon configuration, a node was added to the media
source tree which directly connected to that folder allowing
its contents to be played back by the media player.

Similarly, the Youtube configuration application (called
“My YouTube”) allowed the user to generate a set of custom
channels, each based on a custom search query. A “snow-
boarding” channel (with contents sorted by publication date)
was created and used during the demo.

Since both the configurable media sources used for testing
purposes supported pinnable media source nodes, numeric
shortcuts were added to the custom nodes in order to make
them look as linear channels.

As a final remark, both UPnP and YouTube channels were
dynamic in nature, in that the contents they granted access
to changed over time. In particular the UPnP channel, when
selected from the media library, connected to the UPnP
server to obtain the list of resources available at that partic-
ular time in the device/folder specified by the configuration
application. Similarly, the search criteria associated with the
custom YouTube channel were applied whenever the channel
was invoked. In both cases, the multimedia contents were
organized at runtime in a list of media elements and passed
to the media player for continuous playback.

This inherent update capability of the custom channels
was demonstrated during the demo by showing on the TV
screen the most recent snowboarding video on YouTube, and
the slideshow of the pictures taken during the presentation
with a smart phone running a UPnP server service.

B. Beta release

The openBOXware framework has been released on
March 1st, 2012 and can be installed on any Android de-
vice: https://play.google.com/store/apps/details?id=it.uniurb.
openboxware.launcher. The Google Play marketplace has
been populated with the core environment and some default
add-ins (sample media sources and applications) that can
be installed and integrated with the launcher. Stubs of
representative use cases will be also published to provide
a base for the development of other resources.

The current release is compatible with Android version
2.2.1 and superior (compatibility with Android ICS 4.0
has not been assessed yet) and it has been tested on a
variety of devices, including: Motorola Atrix smartphone,
based on nVidia Tegra 2 SoC (Dual ARM Cortex-A9, at
1 GHz), with 1 GB RAM, 4.0’ screen (540×960), running
Android 2.2; Asus Transformer TF101 tablet/notepad, based
on nVidia Tegra 2 SoC (Dual ARM Cortex-A9 at 1 GHz),
with 1 GB RAM, 10.1’ screen (1280×800), running Android

52

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



3.2; Samsung Galaxy SII smartphone, based on Exynos
SoC (Dual ARM Cortex-A9 at 1.228 GHz), with 1 GB
RAM, 4.3’ screen (480×800), running Android 2.3; and an
Android IP-box (http://www.artwaytech.com/goodpro.php?
id=266) based on Samsung PV210 SoC (Cortex A8 CPU
at 1 GHz), with 512 MB RAM, 2GB Flash memory, HDMI
video & Audio output, running Android 2.2.

V. CONCLUSIONS

The advent of digital broadcast television, the diffusion
of mobile broadband networks, the computational power of
smartphones, and the success of open application frame-
works have enabled the de facto convergence between mo-
bile devices and set-top boxes and between broadcast televi-
sion and online multimedia contents. Such a convergence has
been exploited so far to create a thriving market of connected
devices (including the so-called IP-boxes and smart-TVs)
and to enhance the usage experience of television viewers
(by making available additional IPTV and Internet TV
channels, and by granting Internet browsing capabilities to
any television set). Taking a different perspective, however,
the same enabling conditions could be exploited to enhance
usability and to reduce device diversity.

This is the starting point of this paper, further supported
by two observations: first, watching television is a much
more inclusive experience than browsing the Internet; sec-
ond, in spite of the proliferation of any sort of connected
devices, smartphones are the preferred ones with clear
competitive advantages which prevent them to be outstripped
in the near future.

This paper has introduced openBOXware for Android, an
application suite that can be easily installed in any Android
device (including a smartphone) to make it work as a set-top
box while also maintaining compatibility with all the appli-
cations installed in it. The openBOXware core encompasses
a launcher, designed to provide a lean-back usage experience
in order to take advantage of the personalized runtime
environment of the smartphone while watching television
in the comfort of a living room, and a SDK that can be
exploited to develop media sources and Android applications
compatible with a TV-like usage mode.

The paper has outlined the key features of openBOXware,
discussed the implementation choices, and presented repre-
sentative use cases. In particular, it has been shown that
openBOXware provides the opportunity of creating custom
TV channels made of linearized contents possibly taken from
heterogeneous sources (including local file systems, UPnP
servers, streaming servers, and HTTP servers). Custom chan-
nels can be associated with numeric short cuts in order to
make it possible to directly zap into them using a standard
remote control. This makes it possible for elders and kids
who are not used to browse the Internet to gain access to
online contents organized in personalized linear TV channels
by their family members.

OpenBOXware will be available on the Android market
since March 1, 2012.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the EU IST Seventh Framework Programme
([FP7/2007-2013]) under grant agreement n 25741, project
ULOOP (User-centric Wireless Local Loop), and from the
Italian ICT4University Programme, project U4U (University
for University). The authors would like to thank RAI Ra-
diotelevisione Italiana, BAX srl, and IMAB Group SpA for
taking part in the setup of the demo, as well as Beatrice
Bucciarelli and Lorenzo Bravi for their contribution to the
implementation of openBOXware.

REFERENCES

[1] L. Klopfenstein, S. Delpriori, G. Luchetti, E. Lattanzi, and
A. Bogliolo, “Making an Android Tablet Work as a Set-
Top Box,” in Proceedings of the International Conference
on Andvances in Future Internet, ser. AFIN-2011. IARIA,
2011, pp. 64–68.

[2] K. Mikkonen, “Exploring the creation of systemic value for
the customer in advanced multi-play,” Telecommunications
Policy, vol. 35, no. 2, pp. 185 – 201, 2011.

[3] L. Zhou, A. V. Vasilakos, L. T. Yang, and N. Xiong,
“Multimedia Communications over Next Generation Wireless
Networks,” EURASIP Journal on Wireless Communications
and Networking, 2010.

[4] Akamai, “Q3 2010 - The State of the Internet,” Akamai report,
2011.

[5] Cisco, “Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2010-2015,” Cisco White Paper, 2011.

[6] A. Holzer and J. Ondrus, “Mobile Application Market: A
Mobile Network Operators’ Perspective,” in Exploring the
Grand Challenges for Next Generation E-Business, ser. Lec-
ture Notes in Business Information Processing, W. Aalst et al.,
Eds. Springer Berlin Heidelberg, 2011, vol. 52, pp. 186–191.

[7] C. Maturana, A. Fernndez-Garca, and L. Iribarne, “An im-
plementation of a trading service for building open and inter-
operable dt component applications,” in Trends in Practical
Applications of Agents and Multiagent Systems, ser. Advances
in Intelligent and Soft Computing, J. Corchado et al., Eds.,
2011, vol. 90, pp. 127–135.

[8] A. Schroeder, “Introduction to MeeGo,” IEEE Pervasive
Computing, vol. 9, no. 4, pp. 4–7, 2011.

[9] D. Gavalas and D. Economou, “Development platforms for
mobile applications: Status and trends,” IEEE Software,
vol. 28, no. 1, pp. 77–86, 2011.

[10] E. Tsekleves, R. Whitham, K. Kondo, and A. Hill, “Inves-
tigating media use and the television user experience in the
home,” Entertainment Computing, 2011.

[11] M. Butler, “Android: Changing the Mobile Landscape,” IEEE
Pervasive Computing, vol. 10, no. 1, pp. 4–7, 2011.

53

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


