
141

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design and Implementation of an Online XML Compressor for Large XML Files

Tomasz Müldner
Jodrey School of Computer Science

Acadia University
Wolfville, B4P 2A9 NS, Canada

e-mail: Tomasz.muldner@acadiau.ca

Tyler Corbin
Jodrey School of Computer Science

Acadia University
Wolfville, B4P 2A9 NS, Canada

e-mail: 094658c@acadiau.ca

Jan Krzysztof Miziołek
IBI AL

University of Warsaw
Warsaw, Poland

e-mail: jkm@ibi.uw.edu.pl

Christopher Fry
Jodrey School of Computer Science

Acadia University
Wolfville, B4P 2A9 NS, Canada
e-mail: chrisfry99@gmail.com

Abstract—Network-based applications using XML experience
a performance penalty resulting from the verbose nature of
this data format. This paper presents a novel XML-conscious
compressor designed to alleviate these problems, using it for
online compression and decompression. Two versions of the
compressor were designed and implemented to find the most
optimal solution and they were compared with offline
compression/decompression. The tests show that for existing
files online compression is less efficient than offline
compression, however, online compression is superior for
streaming or when compared to offline compression combined
with sending the file through the network and subsequent
decompression.

Keywords-XML; compression; network performance.

I. INTRODUCTION
The eXtensible Markup Language (XML) [16] is the

most popular meta-language for the interchange and access
of data. In particular, XML has been adopted as one of the
main formats for online communications and Web
applications. However, XML's markup and resulting
verbose nature may increase the size of a dataset as much as
ten-fold. For XML-based network applications, network
bandwidth tends to become the bottleneck in the interchange
of information; therefore these applications will experience a
performance benefit from compressing XML data.

There has been considerable research on XML-conscious
compressors, which unlike general data compressors can
take advantage of the XML structure; see [2][3][4]. Most
recently, there has been research on queryable XML
compressors for which queries can be answered using lazy
decompression, i.e., decompressing as little as possible when
executing a specific query; see [5][6]. Also, there has been
research on updateable XML compressors, for which updates
can be saved without full decompression; see [7][8]. Online
XML compressors are typically defined as compressors,
which decompress chunks of compressed data whenever
possible rather than processing it offline when the entire
compressed file is available; see [9][10]. Clearly, for a
compressor to be online implies that only one pass through

the document is required to compress it. This class of
compressors is particularly useful for networked
applications, specifically on networks with limited
bandwidth. Numerous applications of XML use streams,
abstract representations of sources/sinks, where the sources
of data are dynamic and their contents are not known
beforehand, e.g., measurements or logging. The contents are
processed at run-time, either by XML Streaming Parsers,
such as SAX [17] or StAX [24] or by ordinary text
compressors such as GZIP [18]. Another approach is taken
by Efficient XML Interchange (EXI) format [25], a compact
representation of XML designed to reduce bandwidth
requirements while maintaining efficient use of various
resources such as memory and processing power
(implemented using EXIficient [27]). While Snyder [26]
determined that using EXI can double a bandwidth potential,
it should be noted that EXI is not a queryable compressor.

This paper presents an online compression algorithm
based on XSAQCT, an XML compressor developed by our
group, see [11]. There are other online compressors, e.g.,
TREECHOP [12], but XSAQCT has a number of distinctive
features, in particular it is queryable using lazy
decompression, updateable [7], supports the streaming of
data in a more compact representation than ordinary text
compressors, and finally the structure of the XSAQCTs
compression scheme allows a large reduction in processing
time through parallelization on multi-core machines [13].
Possible educational applications of XSAQCT are described
in [14]. Similar to TREECHOP, XSAQCT supports
compression where the decompressor’s output is the same as
the original input (i.e., the document is semantically
equivalent to the original document) or the output generates
a canonicalized [15] XML document. Design of an early
version of the compressor described in [1] did not support
XML documents with mixed contents, attributes, or cycles,
e.g., nodes with the consecutive children b, c and b. For
example, if in Figure 1 (a) the node t2 were actually a tag
node “c”, then there will be a cycle (for more on cycles, see
[11]). This paper presents a design and implementation of
the new version, which removes all these limitations and

142

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

supports arbitrary XML files. In addition, this paper presents
the implementation and results of tests on 11 sample XML
documents aimed to evaluate the design and implementation.

Contributions. Design, implementation and test results

of two versions of the novel online XML compressor,
XSAQCT are presented. These two versions are tested and
compared with: (1) Send-and-Compress, i.e., sending a
single XML file D over the network from node N1 to node
N2 and then compressing offline in N2; and (2) Compress-
and-Send, i.e., compressing D offline on N1 and sending to
N2. Recall from [1] that online XSAQCT not only
decompresses the data whenever enough data is available,
but it also compresses online, which is essential for the case
of a network node N1 receiving streamed XML data from
one or more sources, which are to be stored in a compressed
form. The tests show that for existing files online
compression is less efficient than offline compression.
However, online compression in its natural environment
(e.g., streaming) is a more space efficient and faster
technique.

This paper is organized as follows. Section II gives a
short introduction to the design and functionality of the
previous offline version of XSAQCT, and Section III
describes its current extension, i.e., online XSAQCT. Section
IV is on characteristics of the test suite used in this paper,
and Section V provides the description of the
implementation and testing results. Section VI describes
applications of XSAQCT for online communication, and
finally, Section VII provides conclusions and describes
future work.

II. OUTLINE OF OFFLINE XSAQCT
For the sake of completeness, we briefly recall here a

description of offline XSAQCT; for more details, see
[11][7]. Given an XML document D, we perform a single
SAX (specifically using Xerces, [17]) traversal of D to
encode it, thereby creating an annotated tree TA,D, in which
all similar paths (i.e., paths that are identical, possibly with
the exception of the last component, which is the data value)
are merged into a single path and each node is annotated
with a sequence of integers; see Fig. 1. When the annotated
tree is being created, data values are output to the appropriate
data containers. Next, TA,D is compressed by writing its
annotations to one container and finally all containers are
compressed using selected back-end compressors, e.g., GZIP
[18]. While GZIP was chosen (because HTTP standard uses
it), another suitable data compressor can be used as a back-
end compressor.

Note that if there was another node labeled “c” in Fig. 2
c) then the document D2 would have a cycle.

III. ONLINE XSAQCT
In this section, we present our online algorithms.

A. Notations and Terminology
In this paper, XML documents may have mixed contents,

assuming “full mixed content”, i.e., there exists a text child
separating any two siblings, and there are text children
respectively before the first child and after the last child.

 (a) (b)

Figure 1. XML document D (a), the annotated tree TA,D (b)

143

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (a) (b)

(c)

Figure 2. XML document D1 (a), the annotated tree for D1 (b), another XML document D2 (c)

Example of full mixed contents is shown in Fig. 1 (a)
and its annotated tree is shown in Fig. 1 (b). The use of full
mixed contents is required; otherwise an annotated tree
would not uniquely represent every XML document. For
example, for the XML document D1 from part (a) and D2
from part (c), the annotated tree shown in part (b) of Fig. 2
is the same. Common occurrences of nodes that do not
exhibit the full mixed content property are elements that use
font-style tags, e.g.,

 Bold TextOther Text. Note
that to achieve full mixed content, the sending node may
have to insert empty text (consisting only of ASCII zero)
whenever the text is missing; the receiving end outputting
the decompressed file will neglect such empty texts.
In Fig. 2 (c), there would be an empty text between the two
occurrences of “b”.

The skeleton tree TD denotes the tree labeled by tag
names (with no annotations) and ANN denotes the sequence
of all annotations. Annotations for a node of TA,D may be
stored with this node, or the node may store a (logical)
pointer to ANN (e.g., the offset within ANN). In the
annotated tree, for each node n the text for all similar paths
ending with n is stored as the leftmost child of n (strictly
speaking a container for all texts, separated by ASCII zero);
see Fig. 1 (b).

We assume that an annotated tree TA,D is implemented
so that following functions are available:
-‐ Node add_RC(Node n, Tag p, annotation a)

creates and returns a new rightmost child of n with the
tag p and the annotation a;

-‐ void add_Text(Node n, Text t) adds text t to the
leftmost child of n (creating it if necessary)

-‐ Node create_Root(Tag p) creates a new root with tag p;
-‐ Node get_LC(Node n) returns the leftmost child of n;
-‐ Node get_RS(Node n) returns the right sibling of n;
-‐ bool function is_Text(Node n) returns true iff n is a

special tree node to store text;
-‐ Node get_Parent(n) returns the parent of n;
-‐ Node get_Tag(n) returns the tag of n;
-‐ Text get_Text(n) returns the text child of leaf node n.

In addition, we assume that a data structure Path stores
tags or text value, with the operations append_Node(Path p,
Node n) which appends n to the path p, append_Text(Path
p, Text t) which appends text T to the path p,
clear_Path(Path p) which sets the path p to empty, and
set_Path(Path p, int k) which stores k as the first element of
p. Finally, we use the following notations:

a(n) annotation of the node n
a(n)+=j increase the last annotation of n by j

144

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a(n)+=“,0” add “, 0” to the annotation of n,
 e.g., if a(n)=[1] then it becomes [1,0]

[0a(m),1] if a(m) is [1], then [0a(m),1] is
 [0,1] otherwise [0a(m),1] is
 [0,…,0, 1] where 0a(m) is the sum of all
 annotations in a(m), minus 1; e.g., if
 a(m) = [2,1], then [0a(m),1] is [0, 0, 1].

B. Online Compression
This section describes two algorithms used for online

compression, starting with a general description.
SN denotes a sending node and RN denotes a receiving

node. SN and RN communicate using message passing;
here SN is a producer using send(packet), RN is a consumer
using receive(packet), where a packet is defined as a
collection of data used for one processing branch (a series
of data of the form:[annotation operation, text operation]);
finally, synchronization is taken care of by these
procedures. SN parses XML and sends packets to RN,
which first creates an annotated tree (as described below)
and then follows the compression process from XSAQCT
[11]. To reduce the overload of sending tag names, the
parser creates a dictionary of tags, which is built
incrementally by SN and RN. Specifically, for a new tag T,
which has not been encountered yet, SN adds T to the
dictionary and sends to RN the packet containing the tag
and its key in the dictionary. Then, RN uses this packet to
update its dictionary, while for an existing packet only the
key is sent. As a result, RN can create an annotated tree
labeled by indices rather than tags. For the sake of
readability the description provided in this paper shows
sending and receiving tags rather than indices but our
implementation operates on indices.

1. Basic Algorithm: The online compression is performed
by two procedures, respectively executed by SN and by RN.

The pseudo-code for procedure SN_send_compress() is
shown as if it was a recursive procedure running on the
XML tree, but in the actual implementation the tree is not
created in memory, instead an event-based SAX [17] parser
implements the actions of SN_send_compress().When
SN_send_compress() is called, it sends a packet of the form
(-1, the path of the leftmost path rooted at the root of the
tree), and at this time the value of the “current node” c is set
to nk; then this procedure is called recursively.

int k = -1; Path p;
// initially stores only the tag of the root
// of the XML tree
void SN_send_compress(Node n) {

c = LC(n); // must be text, possibly empty
append_Path(p, get_Text(c));
c = RS(c);
while(c != 0) {

if(is_Text(c)) {
append_Path(get_Text(c));
c = RS(c);
if(c==0) break;

}
append_Node(p, get_Tag(c));
SN_send_compress(c);
k++;
c=RS(c);

}
set_Path(p, k);
send(p);
clear_Path(p);
k=0;

} // SN_send_compress()

145

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Example 1: Compression.

 (a) SN_send_compress()
For the XML file from Fig. 1 (a), we show the trace of the
execution and packets (numbered p1, p2,…) sent by
SN_send_compress(). Packets sent are shown in bold.

void RN_receive_compress() {
bool flag; Node m; Text t;
Node c; // current node
receive(k, p1,…,pN , t);
if(k==-1) { // initialization, the path received starts

// with a node (the root), create the tree
c = create_Root(p1);
add_Text(c, p2);
for(i=3; i<N; i+=2) {

c = Add_RC(c, pi, [1]);
add_Text(c, p(i+1));

}
}
while (true) { // until the final packet

receive(k, p1,…,pN , t);
// the path received starts with a text
if(k == -2)

return; // done
//move current based on the value of c
for(i=1; i<=k; ++i) // set the current

c = get_Parent(c);
add_Text(c, p1);
//check every tag in the received path
for(i=2; i<=N; i+=2) {

flag = false;
for (m= RS(LC(c)); m <> 0; m= RS(m))

if(get_Tag(m) == pi) {
a(m)+=1;
c = m;
flag = true;
for (every non-text child m of c)

a(m) += “,0”;
add_Text(c, pi+1);
break;

} // end of if and of inner for
if(!flag) {

c = add_RC(c, pi, [0a(c),1]);
add_Text(c, pi+1);

}
} // for i=1…

} // while(true)
} // RN_receive_compress()

SN(a): // SN denotes: SN_send_compress
p={a}

c=t1
p={a, t1}
c=b

 p={a, t1,b}
SN(b):

c=t4
p={a, t1, b, t4}
c=d
p={a, t1, b, t4, d}
SN(d):

c=t8
p={a, t1, b, t4, d, t8}
c=0
p1:{-1, a, t1, b, t4, d, t8}

p={}
c=t5

 p={t5}
c=0
p2: {1, t5}

p={}
c=t2
p={t2}
c=b
p={t2, b}
SN(b):

c=t6
 p={t2, b, t6}

c=e
 p={t2, b, t6, e}

SN(e):
c=t9
p={t2, b, t6, e, t9}
c=0

 p3={1, t2, b, t6, e, t9}
p={}
c=t7

 p={t7}
c=0

 p4={1, t7}
p={}
c=t3

 p={t3}
c=0

 p5={1, t3}
// end of trace

146

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(b) RN_receive_compress()
Fig. 3 shows the state of the annotated tree after each packet
has been processed by RN_receive_compress(), (un-
annotated nodes have annotation [1]). Note that the last
state shows the same annotated tree as in Fig. 1 (b).

2. Improved Algorithm: This algorithm is similar to
algorithm 1), but it removes some overhead of sending
some packets. According to the Basic Algorithm, for
Example 2 the packets sent would start with the following
packets (\0 is required to denote end of packet):

1. {-1, a, t1, b, t2, c, t3, \0}
2. {1, t4, d, t5, \0}
3. {1, t6, e, t7, \0}
4. {1, t8, f, t9, \0}

and the occurrence of consecutive leaf nodes cause at
minimum six bytes of overhead with the "1" and "\0" bytes.
The Improved Algorithm removes that overhead by
encoding the packets to be:

1. {-1, a, t1, b, t2 c, t3, \0}
2. {-2, 3, t4, d, t5 e, t7, t8, f, t9}

where the value of -2 is a special action indicator (similar to
what -1 represents in “root node”). One issue not mentioned
before is that the packets are encoded in a preorder fashion,
implying that the online algorithms have a secondary
functionality and through the use of a stack, they can be
used to rebuild the original XML file D as opposed to an
annotated tree TD. This is beneficial because it allows a
streaming node to pipe XML data directly into a WWW
application. Note that there are some boundary cases that
need to be considered; for example, consider the following
XML fragments:

<a>
 text
 ...
 text
<a>

which are mostly long sequences of leaf nodes. If one
parent has say 10,000 such leaf nodes, each with their own
text data, then a substantial buffering would be required.

C. Online Decompression
The sending node SN is assumed to be able to decompress
all annotations, restore the skeleton tree and send it to RN,
then re-annotate it as well as run a procedure
SN_send_decompress(AnnotationTreeNode) shown below.
As far as the receiving node RN is concerned, it runs a
procedure RN_restore_decompress(SkeletonTreeNode)
shown below. RN implements the “AA”, an abstract data
type, which stores sequences of annotations with the
following operations (initially, the annotations for every
node are un-initialized):
-‐ void AA_delete(Node n) removes the first element of

the annotations for n;
-‐ void AA_store(Node n, sequence of integers seq) stores

seq as the annotations for n;
-‐ void AA_init(Node n) initializes the annotations for n;
-‐ bool AA_isInit(Node n) returns true iff the annotation

for n has been initialized;
-‐ int AA_getFirst(Node n) returns the first element from

the annotations for n;
-‐ AA_get_Text(Node n, binary b) where b contains a

compressed text, performs the following actions: b is
decompressed, stored into a container, and then the
iteration AA_nextTextIter(Node n) is started, this
iteration returns the next text in the container;

-‐ bool AA_hasReceivedText(Node n) returns true iff the
text for n has been received.

Initialization

SN restores the skeleton tree TD and then the annotated tree
TA,D (but it does not decompress text containers), finally it
sends the skeleton tree to RN, which receives it.

After the initialization, SN runs the procedure
SN_send_decompress(AnnotationTreeNode).

 (a) (b) (c)

147

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (d) (e)

Figure 3. Packets sent by SN_send_compress: (a) p1:{-1, a,t1,b,t4,d,t8}, (b) p2: {1,t5}, (c) p3={1,t2,b,t6,e,t9}, (d) p4={1,t7}. (e) p5={1,t3

For RN, the following code is executed:

output(Document Headings)
output("<" + tag(root of TD) + ">")
RN_restore_decompress(root of TD)
output("</" + tag(root of TD) + ">")
output(Document Trailings)

where RN_restore_decompress() is shown below.

Example 2: Decompression.

For the XML file from Fig. 1 (a), Fig. 4 (a) shows its
annotated tree and Fig. 4 (b) shows the initial state of the
skeleton tree. Table I shows the trace the execution of
SN_send_decompress() denoted below as SN() and
RN_restore_decompress() denoted below as RN(). T1,..,T4
denote text containers.

IV. CHARACTERISTICS OF THE TEST SUITE
Our experiments used the following 11 files listed here

in the order of their sizes (from 5,685.77 GB to 159 KB).
Specifically, we use enwiki-latest-stub-articles.xml (from
[19]), 1gig.xml (a randomly generated XML file, using
xmlgen [20]), enwikibooks-20061201-pages-articles.xml,
dblp.xml, SwissProt.xml, enwikinews-20061201-pages-
articles.xml, lineitem.xml, shakespeare.xml, uwm.xml (all
from the Wratislavia corpus [21]), baseball.xml (from [22]),
and macbeth.xml (from [23]).

Performance of various algorithms tested in this paper
depend on the characteristics of an XML file, such as the
size, the number of tags and attributes, the number of unique
paths, the distribution of data among the paths and their
respective sizes (in Kbytes). Table II provides an overview
of these characteristics, where reserved characters are
defined as all the static characters defined in the XML
grammar (e.g., <, >, /). As it can be seen from Table II, files
used for testing greatly vary in various characteristics and in
general provide an appropriate test suite. In addition, this
suite is designed to simulate streaming, as Send-and-
Compress would not be an optimal because it would require
buffering all of the data internally before sending.

SN_send_decompress(AnnotationTreeNode f) {
for (every child c of f)

if(isText(c)) send(c, text of c);
// sends the entire text container,
else {

send(ANN(c));
SN_send_decompress(c);

}
} // SN_send_decompress()

RN_restore_decompress(SkeletonTreeNode f) {
c = LC(f); //must be text
if (!AA_hasReceivedText(c)) AA_getText(c);
Text t = AA_nextTextIter(c); // it shouldn’t happen
 // that we reached the end of iteration before this call
if(!empty_text(t)) output(t);
c=RS(c);
while(c<>0) {

if (!AA_isInit(c)) {
receive(ann);
AA_init(c); AA_store(c,ann);

}
while (AA_getFirst(c) > 0) {

output("<" + tag(c) + ">");
RN_restore_decompress(c);
a(c)+=-1;
output("</" + tag(c) + ">");
output(AA_nextTextIter(LC(f)));

} // inner while
AA_delete(c);
c=RS(c);

} //outer while
} // RN_restore_decompress()

148

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (a) (b)

Figure 4. (a) Annotated tree TA,D, (b) skeleton tree TD

Note that two Wikipedia files (enwiki-books and
enwiki-news) have their own schema specifications for
rendering to a webpage. However, for the largest
Wikipedia XML file (enwiki-latest-stub-articles.xml), for
the "text" tag, there is a reference to 112KB of text data,
whereas in enwiki-books and enwiki-news that tag would
contain all of that data rather than a reference. One
common characteristic, not shown in the Table II, is that
the height of the XML document, i.e., the length of the
longest path from the root of the tree to the leaf, never
exceeds six. In other words, XML files used here are often
wide but never high, and our design is suited for such files.
It should be noted that this is typical of most XML
documents used for everyday life and for the Wratislavia
corpus [21], used by most researchers for testing their
compressors; however, one can construct atypical XML
documents with a large height. Another important
characteristic is the number of unique paths in each XML
file, which determines how many text containers will be
created in the annotated tree. For the test suite used, this
number varies from 19 to 548.

Fig. 5 provides a visualization of these characteristics
using fractions, e.g., “node tags” represents the
percentage of these tags when compared with the entire
document (in this figure, some values are too small to be
shown). The total sizes of element names and attribute
names, calculated as a percentage of the total size, vary
respectively from 64.5% to 3.71% and from 8.5% to 0%,
and determine how much can be saved using the
dictionary for the sender and the receiver. The total sizes
of element values and attributes values, i.e., all text
values, vary respectively from 93.4% to 10.9% and from
12% to 0%, and determine which data sizes can be
reduced, and which cannot. Finally, the total size of
reserved characters varies from 20.5% to 3.2%. Fig. 6
shows a comparison of the amount of reducible data, i.e.,
the amount of overhead through node tags, attribute tags,
reserved characters, structure data, etc., in comparison to

the amount of text data (denoted by ELB, our estimated
lower bound). The accumulation of text data is defined as
the estimated lower bound because regardless of the
compression scheme applied to the XML structure, this
data must be sent to the recipient node. It defines the
amount of overhead we are dealing with in comparison to
actual data. In general, from this figure and more accurate
calculations, one can find out that the ratio of ELB over
other reducible data varies from 10% to 89%.

Table III provides sizes of the test files compressed
respectively with offline XSAQCT and GZIP,
compression ratios are calculated as the size of the
compressed file over the size of the original file, and
finally a comparison of XSAQCT with GZIP is performed
by dividing XSAQCT’s compression ratio by the GZIP
compression ratio (therefore, values less than one indicate
that XSAQCT’s compression is better). From Table III, it
can be seen that in all cases the XSAQCT’s compression
ratios are better than those for GZIP.The "text" tag in
enwiki-latest-stub-articles.xml looks as follows:

<page>
 <title>Agriculture</title>
 <ns>0</ns>
 <id>627</id>
 <revision>
 <id>493785573</id>
 <timestamp>2012-0522T06:48:15Z</timestamp>
 <contributor>
 <username>FrescoBot</username>
 <id>9021902</id>
 </contributor>
 <minor/>
 <comment>Bot:[[User:FrescoBot/Section
 wikilinks|fixing section wikilinks]]</comment>
 <text id="496854391" bytes="112070" />
 <sha1>ozdbwwwn9r6if5sz0gcu1558jkrs6</sha1>
 </revision>
 </page>

149

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. TRACE OF THE EXECUTION OF SN_SEND_DECOMPRESS()

SN(a) RN(a) Output
 //initially <a>
c= T1; send(T1) c=T1; receive(t1,t2,t3), t= t1 t1
c=b[2]; send([2]) c=b, receive[2]; c=b[2]
SN(b) RN(b)
 c=T2, send(T2) f=b; c=T2, receive(t4,t5,t6,t7), t=t4 t4
 c=d[1,0], send([1,0] c=d, receive([1,0]), c=d[1,0] <d>
 SN(d) RN(d)
 c=T3, send(T3) c=T3, receive(t8), t=t8, return t8
 c=d[0,0], c=d[0] </d>
 c=0, return t5
 c=e[0,1], send([0,1]) c=e, receive([0,1]), c=e[0,1]
 SN(e) c=e[1], c=0
 c=b[2], c=b[1], c=0, return
 c=T4 c=b[1] t2
 RN(b)
 c=T2, t=t6, c=d[0], c=d[], c=e[1] t6
 RN(e) <e>
 send(T4) c=T4, receive(T4), t=t9 t9
 c=0, return
 c=0 c=e[0], c=e[] </e>
 Return c=0, return t7
 Return c=b[0], c=b[],return
 return t3
 //at the end

TABLE II. SOME CHARACTERISTICS OF FILES FROM THE TEST SUITE (SIZES ARE IN BYTES)

File Node Tags Attribute
Tags Reserved Attribute

Text Text Values Total

enwiki-latest-stub-articles 1,549,965,749 114,862,558 925,621,022 263,920,333 3,011,045,032 5,865,414,694

1gig 185,893,521 25,554,558 92,699,718 46,661,400 815,377,949 1,166,187,146
enwikibooks-20061201-pages-

articles 5,791,956 392,912 2,845,193 441,905 146,789,119 156,261,085

Dblp 38,958,602 1,361,043 18,278,604 7,682,331 67,571,145 133,851,725

SwissProt 30,361,262 9,824,703 23,644,591 13,877,139 37,112,515 114,820,210
enwikinews-20061201-pages-

articles 3,186,100 221,345 1,485,980 196,858 41,316,971 46,407,254

Lineitem 20,820,560 2 5,114,884 8 6,299,843 32,235,297

Shakespeare 1,808,406 0 898,463 0 4,941,139 7,648,008

Uwm 963,400 24 333,676 72 1,040,357 2,337,529

Baseball 454,720 0 141,530 0 73,032 669,282

Macbeth 40,052 0 19,888 0 103,149 163,089

150

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Characteristics of the XML suite

Figure 6. The comparison of reducible and non-reducible data

TABLE III. SIZES (IN MB) AND COMPRESSION RATIOS USING OFFLINE XSAQCT

File XSAQCT Compression
ratio GZIP Compression ratio XSAQCT compared to GZIP

enwiki-latest-stub-articles 678,268.57 0.1164 931,249.52 0.1599 0.7283

1gig 321,525.55 0.2808 375,695.46 0.3282 0.9743
enwikibooks-20061201-pages-

articles 43,475.50 0.2848 44,621.68 0.2923 0.7921

Dblp 18,941.69 0.1449 23,912.73 0.1829 0.5394

SwissProt 7,448.27 0.0664 13,808.91 0.1232 0.9676

enwikinews-20061201-pages-articles 12,322.58 0.2718 12,735.6 0.2809 0.4928

Lineitem 1,401.13 0.0445 2,843.06 0.0903 0.8836

Shakespeare 1,846.92 0.2473 2,090.27 0.2799 0.6298

Uwm 99.44 0.0436 157.90 0.0692 0.6988

Baseball 45.57 0.0694 65.20 0.0994 0.9299

Macbeth 42.37 0.2661 45.56 0.2861 0.8558

151

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS
This section starts with a brief description of the

implementation and testing environment, followed by the
implementation details. Then, it provides data transfers and
timing results of experiments carried out in this environment
to evaluate the effectiveness of online compression and
decompression.

A. Implementation and Testing Environment
For the implementation language, Java version 1.7.0_05

was used. GZIP [18] was used as the back-end compressor
for XASQCT (e.g., compressing the annotation lists and text
containers) and in some experiments, for wrapping the
sockets I/O stream (to be described later in this paper).

The following three computers were used for testing: (1)
an Apple Mac box, here referred to as “SmallMac”, with
2.66 GHZ, i7 processor, 8GB 1067 MHz DDR3 RAM,
SATA2 SSD; (2) another Apple box, here referred to as
“BigMac”, an eight-core with 2.8GHz Quad-Core Intel Xeon
chips (Harpertown/Penryn) processors and 12MB of L2
cache per processor; and (3) a Linux box, here referred to as
“XPS”, with Intel Duo Core processor, 2.40 GHZ, 4GB 1067
MHz DDR3 RAM, and 7200 RPM HDD. The experiments
were carried out on LAN using nodes N1 (XPS) and N2
(SmallMac) and N1 and N2 located one hop away. For the
sake of completeness note that a 100 Mbit switch connects
XPS and SmallMac. Tests were also carried out for sending
data from XPS to BigMac and vice versa. The XPS’s upload
rate is 150 KB/s and BigMac’s upload rate is 2.5 MB/s. The
XPS has a 2.5 MB/s download rate. The routing times
between the XPS and BIGMAC, over the Internet (using
traceroute) were:

 All tag names are encoded as variable sized integers
depending on the number of unique elements in our
synchronous dictionary. For example, the following
approach could be used in determining the encoding:

if (elementDictionary.size() < 127)
//code is a byte

else if (elementDictionary.size() < 32767)
//code is a short

else // resort to integer
Values 127 and 32767 (or 2(8-1)-1 and 2(2*8 – 1)) – 1) are

used because the most significant bit in each encoding is
used for handling attribute elements, e.g., if the bit is set, a
specific tag includes an attribute added encoding.

For sending annotations, which are possibly very long
sequences of non-negative integer values, one modification
can be made to the algorithm to improve performance.

There are several possibilities as to how annotation data can
be sent from the sending node to the receiving node: (1)
sending annotations ANN(n) for each tag node n as this
node is encountered during the online decompression; (2)
sending the entire sequence ANN of all annotations after
decompressing has been completed; and (3) sending ANN
compressed (compressing ANN(n) would be useless as
these sequences may be short and so the compression may
actually be detrimental). For the case of sending all
annotations, let us recall from [11] that based on the parents
annotation summation, one can figure out the number of
integers required for each child, and this is how XSAQCT
stores the annotations. It appears that sending compressed
annotations should be advantageous and to decide on which
option should be chosen, and to test this claim a series of
experiments to find out the size of data was carried out. The
results are provided in Table IV, in which “uncompressedI”
and “uncompressedV” denote respectively sending all data
(including annotations) encoded as Integers or Variable
Length Integers, and “compressed” means sending all data,
including compressed annotations. Based on results from
Table IV, compressed annotations encoded as Variable
Length Integers (determining the variable length can be
stored during the parsing/compressing procedure) are sent
on a per-node basis. Finally, note that “Per Node
Uncompressed” is not the same as “All Annotations
Uncompressed” because of the concept of clean nodes (all
annotations are equal to‘1’) dirty nodes (all remaining
nodes). Thus, annotations for clean nodes do not have to be
stored; rather nodes are qualified as clean or dirty.

B. Data Transfers and Timing Results
 The implementation was tested for offline and online
XSAQCT. Four algorithms were compared: (1) Send-and-
Compress, denoted below by SC, sending a single XML file
D over the network from node N1 to node N2 and then
compressing offline in N2; (2) Compress-and-Send, denoted
below by CS, compressing D offline on N1 and sending to
N2; (3) compressing D using online XSAQCT with the basic
algorithm; and (4) compressing D using online XSAQCT
with the improved algorithms (both online algorithms were
described in Section III B2, in all tables these algorithms are
denoted respectively by Online (1) and Online (2)). The sizes
of data transferred for each algorithm were computed using
both the RAW mode (data sent uncompressed) and the
COMPRESS mode (data sent compressed with GZIP).
 Each timing test was repeated three times and all tables
show the average times (in seconds) for compression and for
decompression, respectively.
 There are two possible transmission scenarios: saturated
and unsaturated. If the transmission is unsaturated, i.e., the
maximum transfer rate is greater than the maximum
receiving and then the processing rate, the receiver will never
have to block, i.e., wait for data.

1 dd-wrt : 2949.275 ms 0.290 ms 0.193 ms;
2 modem : 55.319 ms 28.205 ms 19.802 ms;
3 hop 1 : 9.809 ms 9.440 ms 26.398 ms;
4 hop 2 : 9.684 ms 11.549 ms 9.547 ms;
5 firewall : 11.608 ms 11.091 ms 11.307 ms;
6 destination :11.655 ms 10.395 ms 9.621 ms.

152

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. OVERHEAD OF SENDING ANNOTATIONS

File Per node
uncompressedI

Per node
compressedI

Per node
uncompressedV

Per node
compressedV

All annotations
uncompressed

All annotations
compressed

enwiki-latest-stub-articles 1,126,519,254 691,503,851 794,899,751 691,164,783 1,126,519,14
7 691,503,851

1gig 373,697,822 328,214,230 337,804,153 327,762,877 373,696,652 328,214,230
enwikibooks-20061201-

pages-articles 45,654,608 44,324,089 44,771,053 44,505,494 45,654,524 44,518,913

Dblp 62,291,449 19,433,781 30,420,794 19,218,025 62,291,170 19,396,295

SwissProt 30,485,489 7,663,524 13,175,233 7,469,093 30,484,796 7,627,024
enwikinews-20061201-

pages-articles 13,191,594 12,614,494 12,749,145 12,613,409 13,191,510 12,618,319

Lineitem 1,434,856 1,432,365 1,434,860 1,434,880 1,434,791 1,434,759

Shakespeare 2,995,612 1,896,990 2,140,288 1,881,201 2,995,456 1,891,251

Uwm 135,414 101,556 109,031 101,497 298,563 101,826

Baseball 298,620 49,554 100,157 44,296 135,322 46,660

Macbeth 64,452 43,652 47,993 43,575 64,354 43,389

 If the transmission is saturated, the receiving node
sometimes has to wait for data to process, and so it will
sometimes block. Timing is more important for the
unsaturated transmission, whereas data transfer is more
important for the saturated one. However, the results for
latter type of transmission fall in line with what was
described in section I.
 To test various kinds of environments, we created the
three experiments: XPS -> (1) BigMac was heavily
saturated: (2) BigMac -> XPS was semi-saturated, and (3)
LAN was unsaturated.
 In our future work, we will try to develop a saturation
metric, e.g., Saturation estimate = amount of time on IO wait

queue / total amount of processing time (the higher the
number, the more network-dependent the processing is).
 Tables V and VI provide RAW and GZIP data transfer
results, respectively. These two tables show that the offline
compression CS is always the most space-efficient
algorithm, i.e., it transfers the least amount of data. Note,
however, that for the GZIP mode the differences between the
online algorithms and the offline algorithms are less
profound. To explain the reason for these results, note that in
a RAW mode, using CS, text and annotations are always
compressed, while in online compression the packets
(specifically text data) are not compressed.

TABLE V. RAW DATA TRANSFER RESULTS (IN BYTES)

File File Size CS SC Online (1) Online (2)

enwiki-latest-stub-articles 5,961,966,106 694,547,020 5,961,966,106 4,124,439,288 4,055,267,064

1gig 1,172,322,551 329,242,185 1,172,322,551 947,901,973 937,671,984

enwikibooks-20061201-
pages-articles 156,300,597 44,518,962 156,300,597 143,338,449 143,316,025

dblp 133,862,399 19,396,313 133,862,399 92,448,731 87,775,673

SwissProt 114,820,211 7,627,047 114,820,211 70,294,919 66,572,952

enwikinews-20061201-
pages-articles 46,418,850 12,618,367 46,418,850 41,775,533 41,746,933

lineitem 32,235,298 1,434,781 32,235,298 11,294,640 9,609,740

shakespeare 7,647,996 1,891,276 7,647,996 5,774,201 5,617,525

uwm 2,337,523 101,843 2,337,523 1,337,690 1,311,656

baseball 671,924 46,682 671,924 212,536 163,496

macbeth 163,077 43,410 163,077 121,776 118,196

153

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. GZIP DATA TRANSFER RESULTS (IN BYTES)

File File Size CS SC Online (1) Online (2)

enwiki-latest-stub-articles 953,599,509 694,547,020 953,599,509 886,753,284 886,449,292

1gig 384,712,148 329,242,185 384,712,148 371,180,220 371,174,799

enwikibooks-20061201-
pages-articles 45,692,602 44,518,962 45,692,602 45,070,832 45,064,449

dblp 24,486,638 19,396,313 24,486,638 22,718,443 22,661,594

SwissProt 14,140,327 7,627,047 14,140,327 12,328,793 12,308,808

enwikinews-20061201-
pages-articles 13,041,266 12,618,367 13,041,266 12,817,088 12,815,965

lineitem 2,911,297 1,434,781 2,911,297 2,331,926 2,197,236

shakespeare 2,140,436 1,891,276 2,140,436 2,020,343 2,033,234

uwm 161,692 101,843 161,692 142,912 141,733

baseball 66,769 46,682 66,769 54,109 48,225

macbeth 46,658 43,410 46,658 44,450 44,809

Therefore, comparing these ways of compressing data is
not quite fair (the difference in amount of data that has to be
transferred shows this.) Our future work will consider a way
to deal with this issue by not compressing the annotation and
text containers in RAW mode.

For all algorithms in GZIP mode, all data for Online (1),
Online(2) and SC are compressed. These results are not
surprising because offline and online algorithms have several
distinctively different features. Specifically, in terms of
document scope, online XSAQCT has a scope local to a path
and it is forced to interleave more data thereby increasing the

amount of information entropy and reducing the compression
ratio. At the same time, offline XSAQCT has a scope of an
entire file (and similar data can be compartmentalized by
using the container methodology and compressed at a lower
rate).

The remaining part of this section discusses timing
results. Table VII provides the LAN-based (unsaturated)
compression timing results using the RAW mode. For each
file, the most efficient timing of the online algorithm is
shown in bold face, the most efficient timing of the offline
algorithm is shown in italics.

TABLE VII. LAN-BASED RAW COMPRESSION TIMING RESULTS

File CS SC Online (1) Online (2)

enwiki-latest-stub-articles 431.713 583.283 1514.077 1490.39

1gig 124.715 159.527 335.796 296.67

enwikibooks-20061201-pages-articles 15.774 18.418 32.749 31.478

dblp 12.533 14.136 33.282 32.544

SwissProt 9.415 10.57 31.077 29.705

enwikinews-20061201-pages-articles 4.945 5.084 9.688 9.477

lineitem 2.711 2.923 7.899 7.804

shakespeare 1.708 1.464 2.886 2.539

uwm 0.889 0.367 1.405 1.025

baseball 0.991 0.414 1.276 0.959

macbeth 0.416 0.231 0.428 0.402

154

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII. COMPARISON OF LAN-BASED RAW COMPRESSION TIMING RESULTS

File SC vs. Online (1) SC vs. Online (2) CS vs. Online (1) CS vs. Online (2)

enwiki-latest-stub-articles 3.5071 3.4523 2.5958 2.5552

1gig 2.6925 2.3788 2.1049 1.8597

enwikibooks-20061201-pages-articles 2.0761 1.9956 1.7781 1.7091

dblp 2.6555 2.5967 2.3544 2.3022

SwissProt 3.3008 3.1551 2.9401 2.8103

enwikinews-20061201-pages-articles 1.9592 1.9165 1.9056 1.8641

lineitem 2.9137 2.8786 2.7024 2.6699

shakespeare 1.6897 1.4865 1.9713 1.7343

uwm 1.5804 1.1530 3.8283 2.7929

baseball 1.2876 0.9677 3.0821 2.3164

macbeth 1.0288 0.9663 1.8528 1.7403

TABLE IX. LAN-BASED GZIP COMPRESSION TIMING RESULTS

File SC CS Online (1) Online (2)

enwiki-latest-stub-articles 442.281 578.697 1333.298 1322.663

1gig 135.782 159.901 287.905 286.292

enwikibooks-20061201-pages-articles 17.186 18.006 31.93 30.5

dblp 13.159 14.098 31.649 31.092

SwissProt 9.993 10.631 28.565 28

enwikinews-20061201-pages-articles 5.294 5.271 9.938 9.159

lineitem 2.942 2.706 7.714 7.306

shakespeare 1.736 1.38 2.91 2.618

uwm 0.864 0.372 1.383 1.039

baseball 0.998 0.454 1.169 1.07

macbeth 0.42 0.302 0.476 0.388

TABLE X. COMPARISON OF LAN-BASED GZIP COMPRESSION TIMING RESULTS

File SC vs. Online (1) SC vs. Online (2) CS vs. Online (1) CS vs. Online (2)

enwiki-latest-stub-articles 3.0146 2.9905 2.3040 2.2856

1gig 2.1203 2.1085 1.8005 1.7904

enwikibooks-20061201-pages-articles 1.8579 1.7747 1.7733 1.6939

dblp 2.4051 2.3628 2.2449 2.2054

SwissProt 2.8585 2.7864 2.6870 2.6191

enwikinews-20061201-pages-articles 1.8772 1.7301 1.8854 1.7376

lineitem 2.6220 2.4833 2.8507 2.6999

shakespeare 1.6763 1.5081 2.1087 1.8971

uwm 1.6007 1.2025 3.7177 2.7930

baseball 1.1713 1.0721 2.5749 2.3568

macbeth 1.1333 0.9238 1.5762 1.2848

155

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XI. COMPARISON OF XPS-BIGMAC RAW COMPRESSION TIMING RESULTS

File CS vs. Online (1) CS vs. Online (2) SC vs. Online (1) SC vs. Online (2)

1gig 2.7629 2.7256 0.8510 0.8395

enwikibooks-20061201-pages-articles 2.9429 3.0194 0.9093 0.9329

dblp 3.8989 3.9489 0.6381 0.6463

SwissProt 7.5003 7.4432 0.6228 0.6180

enwikinews-20061201-pages-articles 3.2949 3.2647 0.9502 0.9415

lineitem 6.0347 5.2047 0.3320 0.2864

shakespeare 2.8017 2.4821 0.8275 0.7331

uwm 5.9046 5.8614 0.4975 0.4939

baseball 1.2254 1.2269 0.4229 0.4234

macbeth 1.5505 1.1284 1.1118 0.8092

TABLE XII. COMPARISON OF XPS-BIGMAC GZIP COMPRESSION TIMING RESULTS

File CS vs. Online (1) CS vs. Online (2) SC vs. Online (1) SC vs. Online (2)

enwiki-latest-stub-articles 1.4705 1.3260 1.1789 1.0630

1gig 1.0699 1.0682 0.9738 0.9723

enwikibooks-20061201-pages-articles 0.9470 0.8740 0.9209 0.8499

dblp 1.0905 1.0019 0.9606 0.8825

SwissProt 1.2103 1.1432 0.7632 0.7209

enwikinews-20061201-pages-articles 0.9099 0.8622 0.8745 0.8286

lineitem 1.3191 1.1031 0.7305 0.6109

shakespeare 0.8870 0.8963 0.8230 0.8316

uwm 0.8489 0.8435 1.1849 1.1773

baseball 0.7132 0.7421 1.5320 1.5940

macbeth 0.8433 0.8762 1.5504 1.6110

TABLE XIII. COMPARISON OF BIGMAC-XPS RAW COMPRESSION TIMING RESULTS

File CS vs. Online (1) CS vs. Online (2) SC vs. Online (1) SC vs. Online (2)

enwiki-latest-stub-articles 1.0844 0.9798 1.1119 1.0046

1gig 1.6375 1.5859 0.8379 0.8115

enwikibooks-20061201-pages-articles 1.8667 1.8947 0.9188 0.9326

dblp 1.8849 1.7962 0.6987 0.6658

SwissProt 2.3250 2.3710 0.6353 0.6479

enwikinews-20061201-pages-articles 1.4902 0.8523 1.5875 0.9080

lineitem 2.1719 2.2143 0.5404 0.5509

shakespeare 1.2205 1.2135 0.7730 0.7685

uwm 0.9653 0.9784 0.9734 0.9867

baseball 1.8118 0.9524 1.8691 0.9826

macbeth 0.7094 0.7117 1.4904 1.4952

156

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XIV. COMPARISON OF BIGMAC-XPS GZIP COMPRESSION TIMING RESULTS

File CS vs. Online (1) CS vs. Online (2) SC vs. Online (1) SC vs. Online (2)

enwiki-latest-stub-articles 2.1716 2.0828 2.6257 2.5184

1gig 1.0640 1.0607 0.9467 0.9437

enwikibooks-20061201-pages-articles 0.6199 0.6194 0.9985 0.9976

dblp 0.5847 0.5442 1.1176 1.0403

SwissProt 0.7437 0.7366 1.2010 1.1894

enwikinews-20061201-pages-articles 0.6035 0.5981 0.9672 0.9585

lineitem 1.0138 0.9686 1.3551 1.2947

shakespeare 0.6804 0.6356 0.9356 0.8740

uwm 0.8685 0.8200 0.8685 0.8200

baseball 0.7255 0.7098 0.7255 0.7098

macbeth 0.7083 0.7083 0.7083 0.7083

 These results show that for the first seven largest files CS
is more efficient than SC, while Online(2) is always more
efficient than Online (1). A comparison of timing results for
the offline and online algorithms is provided in Table VIII,
where “X vs. Y” gives the ratio of the timing result of Y
divided by the timing result of X; therefore the value greater
than one indicates that X is more efficient than Y. These
results indicate that offline algorithms are more efficient than
online algorithms.

Table IX is similar to Table VII, but it provides the LAN-
based compression timing results using the GZIP mode.
These results confirm that for the first seven largest files CS
is the most efficient algorithm, while for the remaining four
smaller files, SC is the most efficient. A comparison of the
four algorithms is provided in Table X, using the same
technique as in Table VIII. Results from this table confirm
that both offline algorithms are less time-efficient than the
online algorithms.

Besides LAN-based tests, two other sets of tests (using
the RAW and the GZIP mode) were performed respectively
sending data from XPS to BigMac (with 150 KB/s download
rate) and sending data from BigMac to XPS (with 2.5 MB/s
upload rate). For the former case, the results for the largest
(over 5G in size) enwiki-latest-stub-articles.xml file in the
RAW mode are not provided because it takes too much time
to transfer data. Results provided in Tables XI and XII
indicate that for sending data from XPS to BigMac,
Online(2) is faster than SC, but the offline algorithm CS is
the fastest of the four algorithms. Tables XIII and XIV are
similar to Tables XI and XII, but they provide comparison
of the timing results for sending data from BigMac to XPS,
respectively using the RAW and GZIP mode. Results from
these tables are similar to previous results and show that
offline algorithms are faster than online algorithms. Now, we
describe decompression. Here, the client rebuilds the XML
file and the server sends the compressed representation.
Therefore, timing results may be disproportionate, because
the client has to decompress every text container and then
rebuild the document. However, in a client-server paradigm,

where a server may be answering many clients’ requests, in
our future work this disproportionality may prove to be
more beneficial.

Table XV provides LAN-based decompression timing
results using the RAW and GZIP mode. While our
algorithms are not very fast comparing to decompression of
GZIP-ed file, they always send less data than just using
GZIP (see Tables III, V and VI), which is another argument
for using XML-based compression techniques. Tables XVI
and XVII provide similar results to the results from Table
XV, but for sending data between BigMac and XPS (missing
row in Table XVII indicates that decompression of the
corresponding files was taking too much time). Results from
these tables are consistent with other results and show that in
non-low-bandwidth situations, online decompression is slow
in comparison to just decompressing an ordinary GZIP-ed
file. In low bandwidth situations, the added compression
proves to overcome the disparity in processing times.

The remaining part of this section describes results of
tests aimed to compare both versions of online algorithms
with the algorithm referred to as SCU, which performs the
offline compression, then it sends the compressed file and
finally the receiver performs the offline decompression.

Tables XVIII to XXIII provide respectively RAW and
GZIP results of tests. Table XVIII shows that online
algorithms are best (with Online(2) being marginally a
winner). Note, however, that Online(1) and Online (2) are
very similar and “marginally better” falls into the margin of
error.

Table XIX shows that base (sending GZIP as is) is the
best because data is being sent so fast that there is no point in
running an extra algorithm on it (recall from the first
paragraph in this paper “low bandwidth networks”).

Table XX shows that SCU is the best, because
decompression time is less than time to send online (in raw
mode, the amount of data one has to send is very large in
comparison to SCU). To understand results from the
remaining tables, it is useful to recall the Tables V and VI
showing the amount of data to transfer.

157

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XV. LAN-BASED DECOMPRESSION TIMING RESULTS (IN S)

File RAW GZIP Server Client

enwiki-latest-stub-articles 594.018 217.179 1542.516 347.794

1gig 114.79 84.579 201.277 185.177

enwikibooks-20061201-pages-articles 14.643 10.741 19.951 11.186

dblp 12.704 6.197 41.191 18.847

SwissProt 9.978 3.453 32.294 7.009

enwikinews-20061201-pages-articles 3.996 2.731 7.284 3.724

lineitem 2.797 1.039 5.947 0.425

shakespeare 0.663 0.51 0.217 0.814

uwm 0.224 0.075 0.548 0.111

baseball 0.07 0.027 0.43 0.184

macbeth 0.048 0.124 0.216 0.07

TABLE XVI. BIGMAC TO XPS -BASED DECOMPRESSION TIMING RESULTS

File RAW GZIP Server Client

enwiki-latest-stub-articles 2543.355 406.214 1588.146 444.263

1gig 499.474 179.658 260.695 244.751

enwikibooks-20061201-pages-articles 64.419 20.938 26.542 18.478

dblp 55.493 12.37 39.658 18.096

SwissProt 48.8778 9.03 31.338 7.429

enwikinews-20061201-pages-articles 18.875 5.148 8.657 5.37

lineitem 13.044 1.356 6.141 0.768

shakespeare 2.987 1.295 2.333 0.932

uwm 0.702 0.114 0.586 0.141

baseball 0.252 0.084 0.417 0.149

macbeth 0.316 0.069 0.226 0.065

TABLE XVII. XPS TO BIGMAC -BASED DECOMPRESSION TIMING RESULTS

File RAW GZIP Server Client

1gig 6349.561 2413.013 2076.258 2040.6

enwikibooks-20061201-pages-articles 1027.346 281.652 246.217 232.465

dblp 840.802 147.557 158.461 103.082

SwissProt 730.773 84.544 102.709 40.591

enwikinews-20061201-pages-articles 288.547 78.493 71.056 64.388

lineitem 201.886 15.837 22.677 6.226

shakespeare 47.243 10.156 12.508 8.629

uwm 15.82 0.058 1.785 0.301

baseball 4.672 0.028 0.776 0.187

macbeth 1.131 0.015 0.355 0.073

158

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Tables XXI and XXII show that online algorithms are
best, because decompression time is greater than time to
send the extra data. Table XXIII shows that for enwiki-
latest-stub-articles.xml file, the base algorithm is the best
(otherwise, online algorithms are the best). The reason for

this result is that this file is very “text heavy” and for
creating packets, text data has to be encoded and buffered.
The internal libraries used for this encoding is quite
memory/computationally expensive resulting in slow-downs.
Our future work will deal with these shortcomings.

TABLE XVIII. LAN-BASED COMPARISON USING SCU OF RAW TIMING RESULTS

File Online(1) Online(2) SCU Base (sending as is)

enwiki-latest-stub-articles 403.7920 402.9060 2645.9100 594.0180

1gig 115.7440 115.1730 281.7290 114.7900

enwikibooks-20061201-pages-articles 14.1610 14.4710 26.0260 14.6430

dblp 9.7080 8.5060 37.6960 12.7040

SwissProt 8.0270 7.1300 35.2200 9.9780

enwikinews-20061201-pages-articles 4.2470 4.5280 8.7070 3.9960

lineitem 1.9380 1.7380 7.7970 2.7970

shakespeare 1.1030 1.2610 2.8070 0.6630

uwm 0.7790 0.7860 1.1120 0.2240

baseball 0.6660 0.6000 1.4000 0.0700

macbeth 0.3090 0.4060 0.4020 0.0480

TABLE XIX. LAN-BASED COMPARISON USING SCU OF GZIP TIMING RESULTS

File Online(1) Online(2) SCU BASE (sending GZIP-ed)

enwiki-latest-stub-articles 468.5560 459.3120 2645.9100 217.1790

1gig 118.8480 117.0300 281.7290 84.5790

enwikibooks-20061201-pages-articles 15.2410 15.1560 26.0260 10.7410

dblp 12.3800 12.8280 37.6960 6.1970

SwissProt 10.6750 8.7150 35.2200 3.4530

enwikinews-20061201-pages-articles 4.3790 4.6250 8.7070 2.7310

lineitem 2.7780 2.3230 7.7970 1.0390

shakespeare 1.4140 1.4540 2.8070 0.5100

uwm 0.7640 0.7800 1.1120 0.0750

baseball 0.5810 0.5040 1.4000 0.0270

macbeth 0.3360 0.3240 0.4020 0.1240

TABLE XX. XPS-BIGMAC-BASED COMPARISON USING SCU OF RAW TIMING RESULTS

File Online(1) Online(2) SCU Base (sending as is)

1gig 5337.4770 5224.8040 2578.4710 6349.5610

dblp 801.7320 789.7230 349.1410 1027.3460

SwissProt 517.5450 480.0680 214.6720 840.8020

enwikinews-20061201-pages-articles 382.7000 362.6890 134.6920 730.7730

lineitem 228.2950 234.8440 99.0010 288.5470

shakespeare 59.9060 50.8520 30.3240 201.8860

uwm 6.7080 5.8030 3.2170 15.8200

baseball 0.6810 0.6200 1.6600 4.6720

macbeth 0.3350 0.2770 0.8030 1.1310

159

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XXI. XPS-BIGMAC-BASED COMPARISON USING SCU OF GZIP TIMING RESULTS

File Online(1) Online(2) SCU BASE (sending GZIP-ed)

enwiki-latest-stub-articles 5811.5030 5729.5110 7747.8340 5951.0740

1gig 2186.6430 2169.7950 2578.4710 2413.0130

enwikibooks-20061201-pages-articles 271.0320 246.7336 349.1410 281.6520

dblp 133.3010 125.6450 214.6720 147.5570

SwissProt 69.4780 68.8730 134.6920 84.5440

enwikinews-20061201-pages-articles 70.5520 68.0460 99.0010 78.4930

lineitem 13.1660 10.7800 30.3240 15.8370

shakespeare 10.6080 10.5420 22.3760 10.1560

uwm 1.0240 1.0130 3.2170 0.0580

baseball 0.7710 0.7320 1.6600 0.0280

macbeth 0.3100 0.2950 0.8030 0.0150

TABLE XXII. BIGMAC-XPS-BASED USING SCU COMPARISON OF RAW TIMING RESULTS

File Online(1) Online(2) SCU Base (sending as is)

enwiki-latest-stub-articles 1703.8838 1691.5070 2710.9930 2543.3550

1gig 381.8510 377.2150 391.7770 499.4740

enwikibooks-20061201-pages-articles 59.0470 57.0220 41.7830 64.4190

dblp 37.9620 36.1100 47.7650 55.4930

SwissProt 28.9790 27.5730 38.4140 48.8778

enwikinews-20061201-pages-articles 17.1140 17.0990 12.6370 18.8750

lineitem 4.6600 3.9560 8.1360 13.0440

shakespeare 2.6050 2.2130 2.9730 2.9870

uwm 0.6210 0.6190 0.9630 0.7020

baseball 0.4240 0.4280 0.8420 0.2520

macbeth 0.2150 0.2140 0.3400 0.3160

TABLE XXIII. BIGMAC-XPS -BASED USING SCU COMPARISON OF GZIP TIMING RESULTS

File Online(1) Online(2) SCU Base (sending GZIP-ed)

enwiki-latest-stub-articles 692.1700 637.3570 2710.9930 406.2140

1gig 173.8370 167.4110 391.7770 179.6580

enwikibooks-20061201-pages-articles 22.2400 20.8570 41.7830 20.9380

dblp 17.1090 16.2570 47.7650 12.3700

SwissProt 12.1040 11.5370 38.4140 9.0300

enwikinews-20061201-pages-articles 6.3650 5.9300 12.6370 5.1480

lineitem 3.1150 2.7520 8.1360 1.3560

shakespeare 1.8560 1.4790 2.9730 1.2950

uwm 0.6000 0.6030 0.9630 0.1140

baseball 0.4770 0.4440 0.8420 0.0840

macbeth 0.2390 0.2520 0.3400 0.0690

160

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Applications

VI. EXAMPLES OF APPLICATIONS

For the sake of completeness, here we recall from [1] an
example of an application. Consider Fig. 7, in which the
network node N1 produces XML data to be sent to the
network node N2, where they are compressed online by
XSAQCT and then they can be queried by N3. This data can
also be decompressed online by XSAQCT and sent to a new
network node N4, which can either store this uncompressed
data, or pipe it into any WWW application.

VII. CONCLUSION AND FUTURE WORK

This paper presented XSAQCT, an online XML
compressor/decompressor. The original hypothesis was that
the online compression will be more efficient than the offline
compression because for the online some actions may be
performed "in parallel", i.e., when N1 sends to N2 online, N2
will start decompressing as soon as it gets a chunk of data
and at the same time N1 will be sending the next chunk.

The problem with this claim was the dependence on
network bandwidth. In low bandwidth situations, several
issues might invalidate it because in case of producing data
faster than transferring it, all modern operating systems will

intentionally block the process because internal network
buffers are full, or cannot accommodate the required data.

This paper provided a brief outline of the implementation
and results of tests to evaluate the effectiveness of online
XSAQCT; specifically amounts of data transfers and
compression and decompression times (in s).

The tests show that for high bandwidth network, and for
existing files the online compression is less efficient than the
offline compression. However, the online compression is
superior when compared to offline compression combined
with sending the file through the network and subsequent
decompression. In addition, the online compression is useful
for streaming, i.e., when (potentially generated) XML data is
streamed from another network node.

Note that timing results are less important than actual
compression ratios because characteristics of the different
hardware and operating system may affect timing results as
packets are sent through the networking stack.

In our future work, we will attempt a development of a
formalization of conditions (which do not factor in
processing loads) under which one type of compression
would perform better than the other: Let X be the Offline
Compression Time, Y be Offline Compressed Size, Z be the
Online Compressed Size, and U be the Upload Rate.
Assuming that the Online Compression Time is 0 (because
there is no waiting period to send data, let T(Offline) = (X +
(Y/U)), T(Online) = (Z/U), and R = T(Offline) / T(Online).
Based on the value of R, one can define (with a pretty high
accuracy) the conditions required for online compression to
be better than offline compression and vice-versa.

We will also design, implement and test other versions of
the online compression by mimicking the SAX parser on the
receiving end, rather than sending full information about the
nodes (here by mimicking, we mean sending bit-encoded
SAX events). Therefore, instead of using a byte, or a
variable-length byte encoding, we will investigate working
on the bit level.

We will also test different ways of compressing data, and
annotations specifically, instead of using ordinary GZIP, we
will use BZIP, LZMA, Golomb, and Delta Encoding
combined with GZIP. The latter type of compression may be
beneficial as typically annotation lists are not a list of
random numbers and there is some inherent pattern to them.
Instead of using a static dictionary, we will use a more
adaptive approach (e.g., a frequency based dictionary) to
achieve higher compression rates. Also the future version
will add more querying and updating facilities. The
complexity of our algorithms will be analyzed, including
their footprint.

Finally, we will add parallelization to the online
compressor, based on our earlier work reported in [13].

ACKNOWLEDGMENT
The authors would like to thank anonymous reviewers

for their helpful comments.

161

International Journal on Advances in Internet Technology, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] T. Müldner, J. K. Miziołek, and C. Fry, “Online Internet

Communication Using an XML Compressor,” The Seventh
International Conference on Internet and Web Applications
and Services, ICIW 2012, Stuttgart, Germany, 2012, pp. 131-
136.

[2] H. Liefke and D. Suciu, “XMill: an efficient compressor for
XML data,” Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas,
Texas, United States, 2000, pp. 153–164.

[3] P. Tolani and J. Haritsa, “XGRIND: a query-friendly XML
compressor,” Proc. of 18th IEEE Intl. Conf. on Data
Engineering (ICDE), San Jose, USA, February 2002, pp. 225-
234.

[4] A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu,
and A. Pugliese, “XQueC: pushing queries to compressed
XML data,” Proceedings of the 29th international conference
on Very large data bases - Volume 29, Berlin, Germany, 2003,
pp. 1065–1068.

[5] P. Skibiński and J. Swacha, “Combining efficient XML
compression with query processing,” Advances in Databases
and Information Systems, 2007, pp. 330–342.

[6] Y. Lin, Y. Zhang, Q. Li, and J. Yang, “Supporting Efficient
Query Processing on Compressed XML Files,” SAC '05
Proceedings of the 2005 ACM symposium on Applied
computing, Santa Fe, New Mexico, pp. 660-665.

 [7] T. Müldner, C. Fry, J. K. Miziołek, and T. Corbin, “Updates
of Compressed Dynamic XML Documents,” The Eighth
International Network Conference (INC2010), Heidelberg,
Germany, July 2010, pp. 315–324.

[8] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld,
“Updating XML,” Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, Santa
Barbara, California, United States, 2001, pp. 413–424.

[9] S. Sakr, “An Experimental Investigation of XML
Compression Tools,” CoRR, vol. abs/0806.0075, 2008.

[10] T. Müldner, G. Leighton, and J. Diamond, “Using XML
Compression for WWW Communication,” IADIS
International Conference WWW/Internet 2005, Lisbon,
Portugal, October 2005, pp. 459–466.

[11] T. Müldner, C. Fry, J. K. Miziołek, and S. Durno, “XSAQCT:
XML Queryable Compressor,” Balisage: The Markup
Conference, Montréal, Canada (August 2009, DOI
10.4242/BalisageVol3.Muldner01 Montréal, Canada, 2009.

[12] G. Leighton, T. Müldner, and J. Diamond, “TREECHOP: A
Tree-based Query-able Compressor for XML,” The Ninth

Canadian Workshop on Information Theory, Montréal,
Canada, June 2005, pp. 115-118.

[13] T. Müldner, C. Fry, T. Corbin, and J. K. Miziołek,
“Parallelization of an XML Data Compressor on Multi-cores,”
Torun, Poland, 2011, PPAM 2, volume 7204 of Lecture Notes
in Computer Science, Springer, (2011), pp. 101-110.

[14] T. Müldner, J. K. Miziołek, and C. Fry, “Updateable
Educational Applications based on Compressed XML
Documents,” Proceedings of the 3rd International Conference
on Computer Supported Education, Volume 1,
Noordwijkerhout, Netherlands, 6-8 May, 2011, pp. 369–371.

[15] W3C, Canonical XML. http://www.w3.org/TR/xml-c14n,
retrieved on July 20, 2012.

[16] W3C Extensible Markup Language (XML) 1.0 (Fifth
Edition), http://www.w3.org/TR/REC-xml/, retrieved on July
20, 2012. 2012.

[17] “Xerces,” http://xerces.apache.org/xerces-j/, retrieved on July
20, 2012.

[18] The GZIP home page. http://www.gzip.org/, retrieved on July
20, 2012.

[19] enwiki-latest-stub-articles.xml.
http://dumps.wikimedia.org/enwiki/latest/, retrieved on July
20, 2012.

[20] "xmlgen - The Benchmark Data Generator". http://www.xml-
benchmark.org/generator.html.

[21] Wratislavia XML Corpus. http: //www.ii.uni.wroc.pl/
\extasciitildeinikep/research/Wratislavia, retrieved on July 20,
2012.

[22] Baseball.xml. http: //rassyndrome.webs.com/ CC/
 Baseball.xml. retrieved on July 20, 2012.
[23] Macbeth.xml. http: //www.ibiblio.org/xml/examples/
 shakespeare/macbeth.xml, retrieved on July 20, 2012
[24] "STAX Parsing. Streaming XML API". http:

//java.sun.com/webservices/reference/tutorials/jaxp/html/stax.h
tml#bnbdx, retrieved on July 20, 2012

[25] Efficient {XML} Interchange {(EXI)} Format 1.0,
http://www.w3.org/TR/exi/, retrieved on October 2012

[26] S. Snyder, "Efficient XML Interchange (EXI) Compression
and performance benefits: Development, Implementation and
Evaluation Naval Postgraduate School, Monterey, California,
Masters Thesis 2010. http://www.dtic.mil/cgi-
bin/GetTRDoc?AD= ADA518679, retrieved on October 2012

[27] exificient, http://exificient.sourceforge.net, retrieved on
October 2012.

