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Abstract—Automation systems are continuously growing in
scope and size. To keep them maintainable (despite their ever-
increasing complexity), structures, methodologies and technolo-
gies with the capability of responding to diverse and changing
requirements are required – a quality we call adaptive flexibil-
ity. After presenting highlights from a survey illustrating the
variety of requirements, this paper discusses two approaches
to supporting adaptive flexibility as well as the relationship
between them. The first is OPC Unified Architecture (UA),
a communications middleware standard. The second is the
Normalized Systems Theory, a formal approach to ensuring
systems evolvability. The paper intends to bridge the gap
between theory and practice by highlighting several aspects
of OPC UA that support adaptive flexibility, with this analysis
being based on the concepts of Normalized Systems as far as
possible.
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I. INTRODUCTION

Industrial communication has become a key technology
in modern industry. A continually growing number of man-
ufacturing companies desire, even require, totally integrated
systems. This integration should cover electronic automation
devices such as Programmable Logic Controllers (PLCs)
and microcontrollers as well as Human Machine Interfaces
(HMI) and supervision, trending, and alarm software ap-
plications, e.g., Supervisory Control and Data Acquisition
(SCADA) and Manufacturing Execution Systems (MES).
Industrial communication encompasses the entire range from
field device and controller to manufacturing operations man-
agement and Enterprise Resource Planning (ERP) applica-
tions.

Likewise, the past decade has seen a push towards the
integration of building services and building management.
Total integration in this field should not only cover Direct
Digital Control (DDC) and SCADA/Building Management
Systems (BMS), but also Computer Aided Facility Manage-
ment (CAFM) applications and HMI ranging from dedicated
panels and visitor guidance systems to webbased solutions
on tablets and smartphones.

Such “totally integrated systems” are not monolithic or de-
veloped from scratch, but consist of multiple (sub)systems –
such as those just mentioned – connected to form a (more or
less) coherent whole. Connecting independent subsystems,
which were developed independently, can be a veritable
challenge. On the other hand, exactly this separation into
independent subsystems is one of the best ways to deal with
the high overall complexity of an integrated system. Thus,
how a large system can be split into subsystems or modules
on the one hand and how these can be connected on the
other hand are topics worth exploring.

Modularity is the foundation for several desirable proper-
ties, including reusability as well as:
Scalability – the possibility to adapt the configuration of a

system in order to fulfil demanding requirements but not
be oversized for less demanding requirements,

Diversity – the freedom to choose between (and/or ac-
commodate) different implementations of a particular
function, and

Evolvability – the ability of a system to follow as require-
ments change with time, and stay maintainable.

These aspects are interrelated. For example, a system
which supports diversity with regard to a particular sub-
function will evolve more gracefully when another, inde-
pendently implemented, instance of this subfunction needs
to be merged into the system (consider, for example, adding
a second printer to a PC). In the following, we will refer to
all these aspects using the umbrella term adaptive flexibility
– the ability of a system to adapt to (changing or diverse)
requirements.

Adaptive flexibility is an essential quality since, generally
speaking, “one size fits all” solutions do not exist – or do
not really fit. There is a reason why so many specialized
kinds of systems have developed: in the world of industry
(and beyond), companies specialize in different tasks. These
different tasks come with specific technical requirements,
and companies approach them with different solutions. This
variety of requirements and approaches is illustrated by the
results of a survey we performed [1]. Requirements and
preferred approaches are also changing over time. Thus,
there is clearly a need for structures, methodologies and
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technologies that are capable of supporting customization
and change. Modularization is a key concept in this regard.
For maximum benefit in terms of adaptive flexibility, mod-
ules (or subsystems) must be decoupled as thoroughly as
possible. On the other hand, they must interoperate properly.
Both are considerable and well known challenges.

Adaptive flexibility and interoperability are commonly
considered valuable goals in software engineering practice.
Designers of methodologies and standards typically use an
intuitive approach to support these goals. OPC UA is a recent
communications middleware standard, which – as will be
shown below – incorporates several related design choices.
OPC initially stood for “OLE for Process Control”, but the
current OPC UA (Unified Architecture) specifications are no
longer based on OLE. OPC UA is also popular in practice:
two European developer and user conferences in 2012 and
2013 gathered around 150 attendees each. Taking another
angle, the Normalized Systems Theory (NST) [2] is an
example for a formal approach to support adaptive flexibility,
more precisely, evolvability. Its goal is to provide formal
rules on how to construct evolvable software programs,
instead of relying on heuristic knowledge for this purpose.
This theory was developed with software architectures for
business applications in mind, but has been successfully
applied to other domains such as industrial control and
business processes [3], [4].

This paper intends to bridge the gap between theory and
practice. It examines several aspects of OPC UA which
support adaptive flexibility. As far as possible, this analysis
is based on the concepts laid forth by NST. This makes our
evaluation of OPC UA more stringent by providing a theoret-
ical foundation. In addition, it illustrates NST concepts by
putting them in the context of a concrete implementation.
Given the substantial size of the OPC UA specifications
(over a thousand pages in total), this endeavour has to be
explorative in nature and limited to highlighting selected
aspects. The paper extends previous work which focused
on the above mentioned survey and on a recommender tool
relating OPC UA specification feature sets to requirements
[1]. Other previous work considered the application of NST
to automation systems from various angles: with respect to
couplings and dependencies between subsystems [5], the
design of evolvable, modular PLC programs [6], and the
separation of input/output and control functions in such
programs [7]. Together with insights on how some design
qualities heralded by NST were intuitively built into web
technology [8], this inspired the expanded discussion of the
relationship between OPC UA and NST concepts which can
be found in this paper.

First, OPC UA is introduced, including the profile mecha-
nism to support scalability. Then, NST and its goals are sum-
marized. Section IV discusses the results of our worldwide
survey, showing the wide variety in application requirements
and technologies. Section V considers how connecting ap-
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Figure 1. OPC UA transport [11]

plications via OPC UA middleware can increase adaptive
flexibility. NST makes certain stipulations regarding the in-
terface between modules. This section presents examples of
why some of these stipulations are satisfied, and how others
can be satisfied, when this interface is based on OPC UA.
Section VI examines which internal mechanisms of OPC
UA support adaptive flexibility, looking at these mechanisms
from a black box perspective. Finally, Section VII uses the
OPC UA stack and services as a backdrop and concrete
example to illustrate how finely system implementations
must be divided into modules according to NST. Section
VIII concludes the paper.

II. OPC UNIFIED ARCHITECTURE

The OPC Foundation started in the mid-1990s to pro-
mote cross-vendor interoperability for automation projects.
Initially, the OPC specifications were based on Distributed
Component Object Model (DCOM) as a communication
technology. DCOM is Microsoft’s proprietary technology
used for communication between software modules dis-
tributed across networked computers. The more recent stan-
dard family, OPC Unified Architecture (UA), is designed
to be more generic, abstract, technology independent and
platform agnostic [9], [10]. OPC UA is based on a cross-
platform Service Oriented Architecture (SOA) and includes
security mechanisms. Its two fundamental components are
mechanisms for data transport on one hand and data mod-
elling on the other hand.

The OPC UA specification contains abstract definitions of
OPC UA services for data communication on the application
level. Mapping these services to a concrete technology, the
transport mechanisms tackle platform independent commu-
nication while still allowing optimisation with regard to the
involved systems. Currently, OPC UA defines two transport
mappings that are used for establishing a connection between
an OPC UA client and server on the network level. UA/TCP
is fast and simple and SOAP/HTTP is firewall-friendly and
uses Web Services (WS). While communication between
industrial controllers or embedded systems may require
high performance and low overhead, business management
applications may need an easily parsed data format. As a
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Figure 2. OPC UA information model domains [12]

consequence, two data encoding schemes are defined, called
OPC UA Binary and OPC UA XML. Different compromises
are possible to find a good balance between security and
performance, depending on the application (Figure 1).

The objective of an OPC UA server is to present infor-
mation of an underlying (automation) process so that it can
be used to seamlessly integrate with other processes and
management systems. The exposed information represents
the current, and possibly the historic state and behaviour
of the underlying process. OPC UA defines rules and ba-
sic building blocks to expose such an information model.
Basically, an OPC UA information model is made up of
nodes and references that represent the relationship between
nodes. Nodes can contain both online data (instances) and
meta data (classes). OPC UA clients can browse through the
nodes of an OPC UA server via the references, and gather
data from and information about the underlying system.

The OPC Foundation provides dedicated OPC UA infor-
mation models to structure the legacy OPC specifications
(Figure 2). These information models support common tasks
of legacy OPC interfaces [13]. These legacy interfaces are
data access (DA), alarms and events (A&E), historical data
access (HDA) and commands (CMDs). By modelling them
with OPC UA, the transition from legacy systems to the new
OPC UA communication standard is made easier. In addi-
tion, the OPC Foundation encourages definitions of complex
data based on related industrial standards. Examples are IEC
61131-3 (PLC programming languages [14]), FDI (Field
Device Integration) with EDDL (Electronic Device Descrip-
tion Language) [15] and ISA 95 (integration of enterprise
and factory automation and control systems) [16]. Client
software can be conveniently written against these complex
data types. They also increase the potential of code re-use.

OPC UA is designed in a way that individual imple-
mentations do not need to support all features, but can be
downscaled to a limited scope if desired. At the same time,
advanced products which allow a high degree of freedom
will require the support of more sophisticated features. A
service based OPC UA implementation can be tailored to
be just as complex as needed for the underlying application.

Figure 3. OPC UA Profiles and ConformanceUnits [1]

Hence, what is needed is a way to describe (and test)
which features are supported by an OPC UA compliant
product. A specific set of features (e.g., a set of services
or a part of an information model) that can be tested as
a single entity is referred to as a ConformanceUnit. An
example of a ConformanceUnit is “Method Call”, containing
the call service that is used to call a method on an OPC UA
server. ConformanceUnits are further combined into Profiles.
An application (client or server) shall implement all of the
ConformanceUnits in a profile to be compliant with it. Some
profiles may contain optional ConformanceUnits, which in
turn may exist in more than one profile (Figure 3). Software
certificates contain information about the supported profiles.
OPC UA Clients and Servers can exchange these certificates
via services.

Up to now, more than 60 OPC UA Profiles have been re-
leased [17]. The number of released profiles is continuously
being extended by OPC Foundation working groups. It is
expected that, over time, also other organisations will take
part in this activity.

III. NORMALIZED SYSTEMS

In general, software gradually becomes unmaintainable
as features are added over time. The theory of Normalized
Systems (NST) [18] proposes an approach to counter this
effect. According to [2],

. . . Normalized Systems are (information) systems
that are stable with respect to a defined set of an-
ticipated changes, which requires that a bounded
set of those changes results in a bounded amount
of impacts to system primitives.

A. Software is aging

Let us consider the effort necessary to modify system S
according to a change requirement (e.g., to add a feature).
This requires an effort that depends on the change required
(Figure 4).

Following Parnas, software is aging [19]. There are two,
quite distinct, types of software aging. The first is caused
by the failure of the product’s owners to modify it to meet
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Figure 4. System evolution

changing needs; the second is the result of the changes that
are made. Lehman stated that this second cause of aging is
a decay of structure and formulated the law of increasing
complexity [20]:

As an evolving program is continually changed,
its complexity, reflecting deteriorating structure,
increases unless work is done to maintain or
reduce it.

Thus, the effort that must be spent on a change does not
only depend on the change required; in addition, it increases
with time. The authors of the Normalized Systems Theory
(NST) combine Lehman’s law of increasing complexity with
the assumption of unlimited systems evolution [3]:

The system evolves for an infinite amount of time,
and consequently the total number of requirements
and their dependencies will become unbounded.

They admit that, in practice, this assumption is an over-
statement for most commercial applications. However, it
provides a theoretic view on the evolvability issue, which
is independent of time. If we combine this assumption with
the law of Lehman, we see that, over time, the impact of
required changes will become unbounded in terms of the
effort to implement them.

It is challenging to determine the detailed cause of this
deterioration. Which new parts of the system contribute to
the effect described by this law? In other words, why does
adding a feature to the code cause more costs in the mature
stage of the lifecycle of a system than adding exactly the
same feature in the beginning stage of the project?

The challenge the authors of NST want to take is to
keep the impact of a change dependent on the nature of
the change itself, not on the size (or amount of changed or
added requirements) of the system. In other words, they want
to keep this impact bounded. The rather vague questions
like “Is this change causing more troubles than another?”
should be replaced by the fundamental question: “Is this
change causing an unbounded effect?”. The authors of NST
want to provide a deterministic and unambiguous yes/no
answer to this question, by evaluation whether one of the
NST theorems is violated or not.

Conversely to a change with bounded impact, changes
causing impacts that are dependent on the size of the system
are called combinatorial effects in NST. Systems where
changes do not cause combinatorial effects are called ‘sta-
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Figure 5. Cumulative change effort over time

ble.’ Normalized Systems are stable in this sense. Stability
can be seen as the requirement of a linear relation between
the cumulative changes and the growing size of the system
over time. Combinatorial effects or instabilities cause this
relation to become exponential (Figure 5). By eliminating
combinatorial effects, this relation can be kept linear for
an unlimited period of time, and an unlimited amount of
changes to the system. In other words, to achieve stability,
combinatorial effects must be removed from the system.

The shape of the Lehman curve in Figure 5 is a function
of the amount of combinatorial effects in the system, which
again depends on the tacit knowledge of the developers
and/or software architects. Since tacit knowledge cannot be
measured in exact numbers by definition, it is not possible
to give a mathematical definition of the shape of the Lehman
curve. However, the curve surely becomes flatter when
the experience or tacit knowledge of the developer rises.
Indeed, a well-performed maintenance activity or ‘re-write’
will reduce the combinatorial effects within the system or
subsystem (visible in Figure 6 as discontinuities along the
y-axis). In such a ‘re-write’ activity, no extra functional
requirements is added. Rather, the structure is improved in
a heuristic way, involving tacit knowledge.

There is a limit to improving the shape of the Lehman
curve by applying tacit knowledge. While the concepts of
NST are not completely new, they make existing heuristic,
“tacit” knowledge explicit. This way, it becomes possible to
group and apply the (formerly) tacit knowledge of several
experts, with the eventual result of reaching the goal of
bounded impact.

B. Anticipated changes

Listing up all functional requirements, including those
already present but not yet uncovered and those which may
come up in the future, is an overly ambitious endeavour.
Indeed, numerous system analysts have found that this task
is impossible in an ever changing technical and economical
environment. The authors of NST do not state they can
do better. Instead, they propose to make use of anticipated
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Figure 6. Reduction of cumulative effort by way of a rewrite [8]

changes. These changes are not directly associated to change
or feature requests expressed by customers or managers.
Instead, anticipated changes focus on elementary changes
to software primitives: action entities, which are modules
containing functionality, and data entities, which are sets of
tags or fields. In this way, NST does not focus on com-
plicated high-level changes as a whole, but on elementary
changes performed on data and action entities. Typically,
one real-life change corresponds to a number of elementary
changes.

The set of anticipated (elementary) changes is as follows:

• A new version of a data entity;
• An additional data entity;
• A new version of an action entity;
• An additional action entity.

System changes to meet “high-level requirements” that are
obtained by system analysts by traditional gathering tech-
niques (including interviews and use cases) [18] should be
converted to these abstract, elementary anticipated changes.
We were able to convert all high level changes to one or
more of these abstract anticipated changes in several case
studies [21], [6], [7].

As an example of breaking down a high-level change
into anticipated changes, consider a compressed air instal-
lation whose capacity must be increased. The installation
initially consists of a single compressor. The control code
for this compressor contains data fields like start and stop
commands, run or failure states, or manual/automatic states
and commands – a data entity – and the necessary logic to
implement the appropriate behaviour associated with these
data fields – an action entity.

• The change requires the addition of a second com-
pressor. This second compressor also requires control
code like the first one: this implies an instance of the
anticipated change “an additional action entity” and an

instance of the anticipated change “an additional data
entity.”

• When the new compressed air installation does not
reach the desired pressure after a configurable amount
of time with the original compressor only, the sec-
ond shall be started in cascade. Adding this cascade
logic implies an instance of the anticipated change
“an additional action entity.” To make sure the wear
and tear is equally divided between both compressors,
a permutation algorithm is implemented: at the first
run, the first compressor starts, and after the next
downtime the second compressor starts first – and
vice versa. This permutation logic again implies an
instance of the anticipated change “an additional action
entity,” but it also implies “an additional data entity,”
because the compressor which was started last has to
be remembered.

• A new version of the code module that calls the original
control module of the original compressor must be
created to ensure that both compressors, cascade and
permutation logic are encapsulated. This implies an
instance of the anticipated change “a new version of an
action entity” as well as an instance of the anticipated
change “a new version of a data entity”, because the
underlying new data has to be encapsulated as well.

• Finally, we need to ensure version transparency, which
means that both the old and the new version have to be
supported. Indeed, this logic might be used for several
compressed air installations, from which several co-
existing versions need to be maintained. This implies
an instance of the anticipated change ”a new version of
an action entity”.

C. Design theorems for Normalized Systems

The design theorems or principles of Normalized Systems,
i.e., systems that are stable with respect to the above set of
elementary changes, are:

1) Separation of concerns: An action entity can only
contain a single task in Normalized Systems.

This principle is focusing on how tasks are implemented
within processing functions. Every concern or task has to
be separated from other concerns – a concept with a long
tradition, including Dijkstra using the term in an essay he
wrote in 1974 [22]. In this way, one can focus on one aspect
at a time. Tasks are identified based on change drivers: a task
is something which is subject to an independent change.
Whenever two or more pieces of functionality in a module
can be anticipated to change independently of each other,
they must be reassigned to separate modules. Section VII
contains an example for a change driver to illustrate the
concept.

2) Data version transparency: Data entities that are
received as input or produced as output by action entities
need to exhibit version transparency in Normalized Systems.



17

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reducing component incompatibilities between current
and previous versions is a relevant research topic in soft-
ware engineering (see, e.g., [23]). The version transparency
theorems contribute towards addressing this challenge. Data
version transparency is related to how data structures are
passed to processing functions. The requirement of data
version transparency is fulfilled when data entities can
exist in multiple versions, without affecting the processing
functions that consume or produce them. In other words, an
old data entity should contain a version number, so that any
functionality in a module can recognize its ‘age’ and tolerate
that newer data fields are missing. Conversely, a new data
entity should keep the fields from older versions, so that
older action entities do not need to be aware of the newer
fields.

3) Action version transparency: Action entities that are
called by other action entities need to exhibit version trans-
parency in Normalized Systems.

This principle is focusing on how processing functions
are called by other processing functions. Action version
transparency is the property that action entities can have
multiple versions without affecting any of the other process-
ing functions which call this processing function. In other
words, when an older action entity calls a younger one, the
younger action entity should process the call as if it would
be as old as the calling action entity. Conversely, when
a younger action entity calls a older module, the younger
entity should expect a response corresponding to the older
version.

4) Separation of states: The calling of an action entity
by another action entity needs to exhibit state keeping in
Normalized Systems.

This principle is focusing on how calls between process-
ing functions are handled. The contribution of state keeping
to stability is based on the removal of coupling between
modules that is due to errors or exceptions. Per call, the
caller should maintain a separate data entity to track the
state of this call. When an action entity calls another action
entity, it should not block to wait for the response of the
called module, or even worse, block forever if the response is
not like expected. For example, when the response message
is of a newer version, which is unknown to an older calling
module, the calling module should treat the response as
‘unknown’, rather than being blocked until the expected
response arrives.

D. Versions vs. variants

The above discussion considers versions in the context of
“older” and “younger” data and action entities. However, this
principle can also be used to achieve a related property of
evolvability: support for diversity. Here again, modules are
related from a functional perspective; again, they are differ-
ent versions of the same core task. However, in the case of
diversity, these versions do not have a consecutive character.

Instead, they are more like alternative implementations of
the same task. As an example, consider different brands of
variable frequency drives having different tag names, tag
data types or slightly different functionality. In this context
of diversity, we suggest to consider “versions” as “variants”
instead.

E. Encapsulation of software entities

In Normalized Systems, the elementary action and data
entities are very small. On the level of applications, there
is a need for larger elements with more comprehensive
functionality. To achive this, the elementary entities can be
encapsulated. Different types of encapsulation are suggested
[21], including:

• Action Encapsulation: It is important to be aware of the
core functionality of a module. Following the separation
of concerns principle, this core functionality should
be separated from supporting functionality, because
the supporting functionality can evolve independently
from the core functionality and vice versa. Action
encapsulation ensures that the core functionality and
the supporting functionality are kept together, without
hampering the independent evolution of the composed
entities. One entity for the core task (core action
entity) is surrounded by entities for supporting tasks
(supporting action entities). Together, they can form an
action element.

• Data Encapsulation: The arguments of the individual
action entities within an action element, i.e., a number
of data entities, can be encapsulated as a data element
for use by the action element. The data corresponding
to the functionality of the action element must be
structured with regard to the action entities which the
action element contains. Any action entity can read all
data of all the other action entities, but, for each specific
set of data, there is only one action entity which is
allowed to modify it. In other words, an individual data
entity corresponds to an individual action entity with
regard to the permission to modify or manipulate the
data. All other data entities are, for this particular action
entity, read-only. In other words, the data containing a
data element is composed of data entities, which are
separated with regard to the permission to modify or
manipulate; still, all information relevant for the entire
action element is kept together in one place for reading.

Encapsulation can also be recursive: elements may in
turn contain elements. In addition to action entities and
data entities, NST defines flow entities, trigger entities
and connection entities. Encapsulation also applies here:
based on these entities, flow elements, trigger elements and
connection elements can be created. Flow entities combine
action entities into a sequence and act as a container for
the execution states of these action entities. Depending on
these states, trigger entities decide whether an action element
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Figure 7. PLC and SCADA de-coupled by a connection entity

has to be triggered. Connection entities and elements are
especially relevant in this paper and will be discussed below.

F. Connection encapsulation and migration

The separation of concerns principle imposes that the
use of an external technology in an action entity implies
an extra, separated task or construct, as it is possible that
the external technology will evolve differently from the
background technology environment of the action entity.

The concept of connection encapsulation allows the rep-
resentation of external systems in several co-existing ver-
sions, or even alternative technologies, without affecting
the Normalized System. As soon as there is no control
about the evolution of an external system from the view
of a Normalized System, such an external system has to be
treated as a separate concern. The connection between the
external system and the Normalized System is made by way
of a connection entity. In case of an update of the external
system, a new eonnection entity corresponding to the new
version is added. A connection element encapsulates these
connection entities and selects the one which represents the
appropriate version.

As an example, Figure 7 shows a connection entity placed
between a PLC and a SCADA system. De-coupling sub-
systems by using connection entities is an essential step to
applying NST in practice: The Normalized Systems Theory
promotes a high granularity of (sub)systems. It is certainly
a challenging task to make existing systems, which do
not have such a high granularity, comply with NST. For
these systems, there is a need for a migration path towards
Normalized Systems like we recognized in earlier work [8].

Modularity is in general accepted as a good engineering
practice [24]. Consequently, Lehman systems typically are
implemented respecting a form of modularity, albeit not
granular enough to comply with the separation of concerns
principle. Nevertheless, we emphasize that having a modular
(Lehman) system, constructed based on rather large modules
or subsystems, might be a valuable start of a migration
path towards the achievement of a NST. In such a scenario,

Figure 8. Migration from Lehman to Normalized subsystems [8]

one can concentrate on one single subsystem, which has an
amount of couplings with the other subsystems. The first
step in the migration scenario is to isolate this subsystem
by inserting connection entities into each individual coupling
(as illustrated in Figure 7). After isolating this subsystem,
one can independently further rewrite the subsystem step-
by-step towards removing all internal combinatorial effects,
while the connection entities prevent these internal combi-
natorial effects to have an impact on the other subsystems
‘outside’. Figure 8 visualizes this stepwise “fencing off” of
Lehman systems.

IV. REQUIREMENTS TRANSLATION

In order to understand where and how to apply adaptive
flexibility, it is important to understand the type of industrial
applications and how they evolve. We also need an indication
of the scalability requirements of those applications and the
diversity of the components used in modern day industrial
applications.

OPC UA profiles can be considered modular building
blocks from which OPC UA servers and clients can be
constructed. Typically certain OPC UA profiles, the ones
that provide the core functionality, will be used in almost
all servers and clients. Other profiles will only be used
for applications that require specific functionality provided
by these particular profiles. Knowing which profiles are
used for a certain type of application provides valuable
information regarding the situations in which adaptive flex-
ibility can be applied successfully. Currently, the choice of
OPC UA profiles is pragmatically made according to the
implementor’s knowledge of the OPC UA specifications and
the perceived requirements of the application. New concepts
of OPC UA, for example information modelling, redundancy
or events tend to be skipped by implementors due to a lack
of awareness of these profiles.
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Knowing the diversity, scalability and evolvability of
industrial applications is relevant to our research, but on
top of that it would be valuable to determine which OPC
UA profiles can be recommended for certain branches of
industry. Such a recommendation would give the application
architect and project manager a guideline to deciding which
profiles are most relevant to implement. This approach
follows the assumption that each industry sector requires
specific automation applications, resulting in a typical set of
automation technologies being used and, likewise, having
typical requirements on data communication within and be-
tween these technologies. Knowing which OPC UA profile
(or combination thereof) is designed to fulfil given commu-
nication requirements, it should be possible to recommend
a set of profiles based on the industry sector. For example,
the redundancy profiles can be recommended for sectors
like chemical industry, where high availability is important.
Traceability is important for the pharmaceutical sector, so
the Auditing profiles would be included in the recommended
profiles list.

A. Worldwide survey

We designed a survey [1] to validate this assumption. The
survey did not assume any detailed knowledge of OPC UA
profiles on the part of the respondents, but focused on gener-
alised questions regarding communication requirements that
would allow drawing conclusions about required profiles. To
make sure that these questions reflect the capabilities of the
available OPC UA profiles well, we consulted one of the lead
authors of the Profiles part of the OPC UA specifications for
expert advice.

By analysing the results of this survey we can distill
valuable information about the diversity of the applications
used in modern day industrial systems. The survey should
also give an indication of the requirements of scalability in
these types of applications. How the requirements evolve
over time cannot be seen from the survey results.

To address a representative number and kind of stakehold-
ers, the survey was distributed to OPC Foundation members
as well as companies that figure on the Foundation’s regular
mailing list and several other industry specific mailing lists
containing a wide variety of respondents in addition.

About 25,000 questionnaires were sent out, and a total of
719 responses were collected. The geographical distribution
of all respondents is shown in Figure 9. It largely matches
the geographical distribution of the OPC Foundation mem-
bers.

Respondents were asked to specify the industrial sectors
they are active in. Multiple answers were allowed. The
sectors which yielded 15% or more of responses are listed
in Table I. A significant number (10–15%) of respondents
reported activity in up to 8 different industrial sectors, and
still 5–10% are represented in up to 5 areas.

Table I
INDUSTRY SECTORS MOST RELEVANT TO RESPONDENTS [1]

Oil & Gas Production 18%
Oil & Gas Distribution 15%
Chemical 18%
Food & Beverage 16%
Power Distribution 16%
Power Generation 20%
Building Automation 19%
Automotive Industry 16%
Industrial Automation 38%
Process Automation 30%
IT 19%

Table II
TECHNOLOGIES IN USE BY RESPONDENTS [1]

ERP MES SCADA PLC PAC DCS TFM BMS DDC
30% 24% 66% 72% 29% 43% 9% 18% 13%

When looking at the technologies reported to be used
by respondents (Table II; DCS = Distributed Control Sys-
tem, PAC = Programmable Automation Controller, TFM =
Technical Facility Management), we see that respondents
clearly indicate PLC and SCADA as dominant automation
technologies. Other technologies are also reported to be used
extensively in combination with the dominant technologies.
This is an indication that a wide variety of systems and
subsystems are present in the companies questioned in this
survey. Also, quite general management tasks such as alarm,
event and user logging received high importance rankings
among respondents.

Thus, while there is apparently the need for support of
a diverse range of different systems, initial implementation
effort can be significantly reduced by focusing on these
technologies. Considering that many applications follow a
very basic pattern, many implementers will only need to
provide the so called Core Server profile, in combination
with one Transport profile.

We found some key trends and assumptions behind the
OPC UA technology that can be confirmed by the survey
results. For example, 432 interviewees stated to be manu-

Figure 9. OPC Foundation members and respondents by region [1]
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facturer of systems or products that use a communication
network. 59% use a field device network, and 37% use the
control network in a shared network set-up with the standard
computer network. This illustrates the high importance of
industrial data communications in general as well as the
drive towards combined communication networks and totally
integrated systems.

As far as the speed of communication is concerned,
communication within less than one second is required by
the majority (165/355) of PLC/PAC/DCS users. Also, the
time frame for delivering data in the control network is
typically short (15% say less than 1 ms; 55% say less
than one second). However, a substantial percentage of
PLC/PAC/DCS users (81/355) are satisfied with a delivery
of data/messages within less than one minute.

This shows that on one hand, demand for fast and effi-
cient transport as provided by UA-TCP UA-SC UA Binary
transport profile is significant. On the other hand, a market
segment exists where lower speed may well be acceptable if
compensated by other desirable properties such as firewall
friendly communication and an easily parsed data format,
which would for example be a key property of the SOAP-
HTTP WS-SC XML transport profile.

There is also a strong demand for security and robustness.
The top three security related issues among respondents
are authentication, restricted access and confidentiality of
transferred data; for availability, utilizing redundant servers
is seen as more relevant than deploying redundant clients.

Regarding operating systems and programming languages
in use by the respondents, a technology shift begins to
show. Though Windows is still the leading operating system
being deployed, a trend towards Linux can be observed.
Relevant programming languages are, in decreasing order of
importance, C/C++, C#.NET, VB.NET, and Java. The rise of
.NET indicates that DCOM is becoming a legacy technology.
The use of C#.NET and C/C++ is significantly higher than
the other languages (p < 0.001). Differences concerning
the use of the programming languages in different regions
are not significant (at a p-value of 0.05), which leads us to
conclude that the technology shift is happening worldwide.

To confirm the suspected dependencies between indus-
try sectors, automation technologies and communication
requirements, we applied logistic regression analysis [25] to
the survey results. In such an analysis, the estimates of the
weight of variables with regards to a specific use provides
an idea of the relevance of these variables. The results of
our analysis are described in the following.

We found the use of MES to be very high in the
food and beverage industry. PLC systems are being used
nearly everywhere except in power distribution and IT (with
negative estimates of -0.54 and -0.89, respectively). The
use of DCS systems is also very diverse, except in the
automotive industry, which instead shows a significant use
of PAC (at an estimate of 0.70). SCADA is present in

power generation, industrial automation, food/beverage and
oil production, with a negative estimate for the IT sector (-
0.64). Overall, PLC and SCADA are quite correlated (0.55).

Again, using logistic regression analysis, we found differ-
ences of preferences of programming languages with regard
to the type of automation technology in use. The majority
of Java users can be found among ERP, MES, SCADA and
TFM users (as confirmed by the Hosmer and Lemeshow
Goodness-of-Fit test). The majority of C#.NET users work,
in decreasing order, with MES, SCADA and ERP systems.
The majority of C users focus on SCADA, DDC and BMS
systems. The diversity of VB users is the biggest, they
work with PLC, SCADA, MES, DCS and ERP systems.
The selection of these technologies is based on the analysis
of maximum likelihood estimates of a simplified model with
an entry cutoff value of 0.15 and a stay cutoff value of 0.15.

Concerning the most common security issues, we found
a good fitting logistic regression model showing that ERP
users value rogue system detection, auditability of actions,
confidentiality of proprietary data and network intrusion
avoidance. PLC users have different priorities, with a focus
on auditability of actions, availability of systems, restricted
external access to proprietary data and network intrusion
avoidance. PAC users place a similar (but lower) priority
on network intrusion avoidance, availability of systems and
restricted external access. MES users assign high importance
to preventing the alteration of proprietary data, auditability
of actions, network intrusion detection and authentication of
users.

The users who need a very short time frame (less than
1 ms) for delivering data/messages via the control network
are mostly MES and PLC users. Those who need the fastest
message exchange via the computer network (less than one
second) are mostly PLC, MES and SCADA users.

We see that many companies use a lot of different
target technologies and have very diverse communication re-
quirements. There is no straightforward correlation between
the industry sectors when looking at these communication
requirements and technologies. A simple static set of recom-
mended profiles according to industry branches is therefore
not apparent. So, we abandoned the intention of making an
industry specific, static set of OPC UA profiles.

We can see that the activities of each company are very
diverse, almost independent of the industry sector. Each
company uses its own approach and mix of technologies,
tailored to its very diverse requirements. We focused on
finding new ways to provide a clear recommendation of
OPC UA profiles, taking into account the individual diverse
requirements of each company.

B. Role-based optimization strategy

After processing the survey and analysing the results, we
opted to approach the problem of translating requirements
into profiles in another way: an online tool to dynamically
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produce recommended sets of profiles on an individual,
user-by-user basis. The tool is based on the generalized
questions regarding communication requirements that reflect
the capabilities of the various OPC UA profiles that were
created for the survey. It is designed to easily accept new
or updated questions to reflect newly released profiles. This
agility is an additional advantage, as the definition of OPC
UA profiles by the OPC Foundation working groups is an
ongoing process.

Considering our initial goal of identifying which specific
sets of profiles would add the most value for a specific
company, we wanted to have the tool take into consideration
the economic dimension in addition to the technical one.
Each vendor has its own target market, with an assorted
set of customers and specific fields of application. While
many profiles might make sense from a technical point of
view (and thus may well all be requested by customers),
implementing some profiles will provide more commercial
benefits than implementing others. Vendors must meet the
challenge to find the balance between satisfying customer
requirements and return on investment for implementing
these profiles. To best support this decision, our tool should
therefore assign a priority to each recommended profile.
Also, it should be capable of linking an estimate of com-
mercial benefits based on development time and budget to
this prioritized list of recommended profiles. With this infor-
mation, end-users of the tool can more accurately envision
the development planning of a product even without detailed
knowledge of OPC UA technologies, as this knowledge is
embedded in the tool.

Thus, for getting the most relevant results, the implemen-
tation of the decision support tool takes into account norma-
tive constraints (i.e., it shall produce output that is consistent
with the OPC UA specifications), budget constraints and
maximum commercial benefit.

The decision support tool takes its input from three
sources, each representing a particular competence or role.
These inputs provide the functional parameters for the
decision support tool. When the experts have entered these
parameters, the end-user, who typically has little knowledge
of OPC UA profiles, can use the tool to help determine
the list of recommended profiles for their company and
application.

The first role is that of an OPC UA expert who is
determining the normative constraints. The main task of
the UA expert is to input a set of survey questions and
possible answers. Each answer is then linked to one or
more profiles. Using these relations a profile is produced
according to the answer given by a respondent to the
respective question. Besides, what we call static normative
constraints have been hardcoded into the software. Some
examples of these static normative constraints are that no
product can be built with only one profile and that an
application must at least support one of the core profiles, one

security profile and one transport profile. Another example
of a static normative constraint relates to nested profiles:
the basic profile must be implemented before an enhanced
profile can be implemented (e.g., Core Server can only be
implemented when SecurityPolicy - None has already been
implemented).

The second role is that of a software architect who
provides input regarding the development time required for
implementing a specific profile. The software architect must
have detailed knowledge of OPC UA profiles to do this. The
development time is put into the tool once per profile. The
end-user has to provide some additional parameters like the
cost of programming labour in their company, the preferred
programming language and an indication of the complexity
of the application behind the OPC UA interface to get the
total cost of implementation of a specific profile.

Third, the role of technical-commercial manager (sales /
business) is to estimate the commercial benefit of imple-
menting a specific profile. This commercial benefit can
be estimated and used as a parameter to manage the de-
velopment priority. Some of the commercial benefits can
be estimated by the results of our technology survey. As
mentioned, it should be noted that typically the technical-
commercial role does not have enough OPC UA knowledge
to estimate the benefit of a profile directly, which means that
they especially profit from decision support as described in
this section.

The tool was implemented and put online on a private
page. We contacted one of the main contributors of the OPC
UA specification part that defines the different profiles. He
would take on the role of OPC UA expert. We ourselves
also took on this role to come up with questions to which
the answer reflects what profiles are relevant. For some basic
profiles, the input of the tool is straightforward. For example,
a question about redundancy needs in a company:

Does your company use any of the following? (select the
ones that apply)

• Redundant servers
• Redundant clients
• Redundant communication devices
• Fault tolerant systems
• I don’t know
This question polls how much need there is for the

following profiles:
• Redundancy Switch Client Facet
• Redundant Client Facet
• Redundancy Transparent Server Facet
• Redundancy Visible Server Facet
With straightforward profiles questions, the answers given

by the respondent can be clearly linked to certain profiles.
The translation of basic requirements for communication
into a list of profiles that are recommended to be imple-
mented for the respondent was achieved by inputting these
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questions and answers into the tool. There is also a mecha-
nism implemented to assign priorities to the recommended
profiles. The profiles with a higher priority are considered
to be more important and more relevant to implement. So,
the first important goal that we set for the tool, delivering a
list of recommended profiles, is met.

Obtaining the cost of implementing a profile is one of the
aspects of the tool that proved very difficult. Implementation
is something specific to each company and a diverse set of
parameters determines that cost. For example, in a Lehman
system, adding a profile to a very simple application will
require less effort than adding a profile to a complex applica-
tion. Also, the programming language and possible libraries
used and the experience of the developers are parameters that
determine the economic impact of adding a certain profile.
The cost estimation feature was not added in this version of
the tool. For Lehman systems, it is by definition not possible
to predict the actual costs of adding a component. So, the
cost of adding a profile to an existing application, not written
according to NST, can only be an estimation. We decided
that the input provided by a software architect cannot result
in a cost estimation that is accurate enough to be valuable
information for the users of the tool.

While evaluating the usefulness of the tool, we ap-
proached several key people from the OPC Foundation
and several developers, integrators and managers. The first
testers of our tool reported a positive experience and saw po-
tential in its outcome. However, the fact that not all profiles
were included was reported as a problem. When validating
the tool further, it did not seem to have the anticipated
resonance and adoption in the OPC community. The tool
can provide valuable information about basic functionality,
but because of the diversity of the applications this version
of the tool can not provide conclusive results.

As an outcome of the work done analysing the results of
the survey and creating the tool, we can say that a large
diversity of components and sub-components can be seen
in industrial applications. We can also conclude that the
technologies used in the industry typically have to scale
well. To approach the problem of keeping these diverse
applications maintainable and scalable means focusing on
fundamental concepts and methodologies like adaptive flex-
ibility. Adaptive flexibility can be achieved by applying the
concepts known from NST, which have already been suc-
cessfully used in business software. For creating industrial
applications according to the principles of NST, OPC UA
technology can provide significant support.

V. OPC UA FOR CONNECTION ENCAPSULATION

OPC UA is dedicated to providing interoperable – in-
dustrial – communication. The real production or business
application functionality remains a subject of customized
implementation. Implementers of this functionality can use

OPC UA as an enabler to interoperate with other applica-
tions. From the perspective of these applications, OPC UA
can be seen as an external technology itself; also, it provides
access to other external vendor-specific or platform-specific
technologies. In other words, OPC UA is an excellent match
for the idea of separating technologies by way of separated
tasks, as indicated in the separation of concerns principle.
Again, consider Figure 7: OPC UA is excellently suited to
acting as the connection entity. This subsection focuses less
on the internal structure of OPC UA, but rather on the way
how an OPC UA interface can block combinatorial effects
and represent continuously evolving applications and/or data
sources.

Following Lehman’s law of increasing complexity, com-
plexity increases and maintainability decreases when the
size of a system grows. This is visualized in Figure 5.
System integrators typically do not build all components of
applications from scratch, but they use available commercial
products as a part of their solutions. They rarely have access
to the source code of these components, neither do they
have the resources available to rewrite them. Therefore, it
is not possible for them to make the entire solution comply
with the NST theorems. However, if they manage to isolate
the components from each other – or block combinatorial
effects from propagating between them –, they have a better
chance of staying close to the origin on the Lehman curve of
subsystems (Figure 5). In other words, they can reduce the
impact of combinatorial effects by keeping the size of the
subsystems small. This situation is similar to our proposed
migration scenario in Figure 8.

While OPC UA middleware could be implemented as a
Normalized System, this is not likely to occur soon. Despite
the fact that NST is derived from heuristic knowledge, it is
very unlikely that developers who are not aware and familiar
with it can implement a fully evolvable system. However,
OPC UA does separate applications, and block combinatorial
effects. Note that a distributed system, composed of a
diversity of applications, interconnected with OPC UA, is
actually not in conformance with the NST theorems, at least
not if we regard this distributed system as a whole – it is not
“fully normalized”. Still, OPC UA can be a valuable tool to
separate the subsystems. In other words, an OPC UA layer
can separate Lehman systems, while being a Lehman system
itself (and, thus, not complying with the NST theorems).

Consider, for example, an evolution scenario where two
smaller systems should be interconnected to form a larger
system. The larger system should support the diversity intro-
duced by integrating these two systems, while allowing each
of the original two systems to continue evolving indepen-
dently. Expanding on this example, consider that a module
of the first system should be reused in the second system – it
will be challenging to keep this module compatible with both
systems while they continue to evolve independently. We
think it is possible to meet this challenge when (sub)systems
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are based on OPC UA.

A. OPC UA as an integration bus

In the early nineties, the development efforts to access
automation data in devices increased while the market was
becoming more and more global. The number of different
bus systems, protocols and interfaces used to access au-
tomation data was called ‘uncountable’ [26]. In that period,
this access was typically based on so-called product-specific
drivers. In [27], a product-specific driver is defined as
follows:

Product-specific drivers describe software com-
ponents that have been developed for a specific
product. They are linked to this product so that
they cannot be used with products of other manu-
facturers. These drivers make available data in a
manufacturing-specific form.

When building solutions in a cross-vendor environment, the
‘uncountable’ number of product-specific drivers becomes
problematic. Addressing this problem was the main moti-
vation of the OPC Foundation task force (1994) to develop
a connectivity standard, which became the (classic) OPC
standard.

In [2], the use of a messaging or integration bus is
stated to be a manifestation of the separation of concerns
principle. Replacing product-specific drivers with an OPC
interface fulfils the purpose of an integration bus. In a cross-
vendor environment, accessing a vendor’s product through
a coupling using a product-specific driver can be seen as
a violation of the separation of concerns principle. Indeed,
when an amount of SCADA products are available on the
world market, the introduction of any new type of PLC (or
PLC access protocol) requires all these SCADA products to
be updated in order to be able to support this new type. As
the amount of available products increases, the impact of
this combinatorial effect becomes worse.

B. Version transparency in the address space

When two (sub)systems are connected via OPC UA, the
server arranges data related to its application functionality
in the OPC UA address space, where the client can access
it. Generally speaking, the OPC UA address space is a
collection of nodes and references between those nodes; in
simple cases, it takes the form of variable values arranged in
a tree structure. However, OPC UA supports advanced data
modelling in the address space, including complex objects,
method invocation, and type hierarchies.

A change in the server system does not affect how the
OPC UA interface works. Neither does it necessarily affect
where the client can find data from the server system on
this interface: the server need not reflect every change in
its address space. As long as the change is not relevant
to the part of the system exposed by the server, it will
be completely hidden from the client. This does not only

apply to changes due to system evolution over time, but
also to differences due to diversity. The standard information
models (for example, [14], [16]) further strengthen this
concept, making the representation of certain data vendor
independent.

The structure of an OPC UA address space is very flexible,
which allows various ways of supporting evolvability. We
can obtain version transparency by simply limiting the
changes we allow a server to make to its address space over
time: no nodes should be modified or deleted. Rather, the
evolution of an address space should be based on additions
only. This way, a client which is not aware of the change
can continue accessing older existing properties, attributes
and references and ignore the new information.

If necessary, the server could also place a new version
of its data in a new branch of its address space, while
continuing to maintain the information in the original branch
for non-agile clients, which will in turn continue to access
the data in the way they were developed. If the client is
more recent than the server in such a scenario, the “older”
server will inform the client that the branch holding the new
version does not exist in its address space by answering the
client request with the StatusCode BadInvalidArgument. In
addition, the server could also place information about the
versions it supports at a well-known place in its address
space, taking advantage of the flexible structure of the OPC
UA address space. Either way, both versions can coexist,
whether in-place or in separate parts of the address space.

The previous discussion assumes that the client disposes
of pre-configured information about which data to expect
where in the server address space. In use cases where
this does not apply, the standardized meta information in
the OPC UA information model can provide considerable
benefit. Object types allow a client to recognize instances of
entities in previously unknown places. In such a scenario,
type hierarchies enable diversity and version transparency.
For example, a client can interact with an unknown motor
controller as long as it conforms to a known supertype
(representing a basic motor controller interface). The client
can identify the instance in the address space by following
the HasTypeDefinition and HasSubtype references.

OPC UA also standardizes metadata related to address
space versions which a server has the option to expose. The
NodeVersion attribute of a Node changes when a node or
reference is added or deleted (for example, when a variable
node is added below an object node) or when the DataType
attribute of a variable or VariableType changes. Clients
should be aware of this change: in case of a deletion or
data type modification, they may otherwise obtain wrong
data. This can be prevented by continually checking the
NodeVersion for changes; however, such an approach is not
efficient in terms of communication. Therefore, OPC UA
specifies the ModelChangeEvent to inform clients that they
should expire their node cache and rebrowse the relevant
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part of the address space. Related to this mechanism are the
DataTypeVersion attribute, which gives information about
changes to the definition of data types with custom encod-
ing, and the SemanticChangeEvent for changes to Value
Attributes of Properties. These changes also need to be
monitored by the client, but are not covered by NodeVersion
and ModelChangeEvent, respectively.

Note that if the address space evolves in a version trans-
parent way, following the theorems of Normalized Systems,
the mechanisms outlined in the previous paragraph are not
required: since previous versions remain accessible to the
client, there is no need to be aware of model changes.
As a practical consideration, however, a process similar to
garbage collection will be needed in the long run in case
one wants to delete obsolete nodes, properties or attributes.
This process would need to be based on warranties that these
entities will no longer be used by any client.

Finally, OPC UA also allows accessing historical address
space. This is implemented on top of the Views concept,
which allows to present clients with subsets of the address
space tailored to a specific purpose (e.g., access to main-
tenance relevant data only). The ViewVersion parameter
in the Query services enables a client to browse previous
versions of the address space, including nodes which have in
the meantime been deleted. This allows accessing historical
variable data attached to such nodes, which would otherwise
no longer be reachable. While this mechanism does not
appear to be intended to enable access to current data via an
older interface (i.e., View) version, nothing would prevent
a server to update Variable Nodes in the historical address
space with current values and thus use this mechanism for
the purpose of version transparency.

C. Profiles and dependencies

The concept of modularity is most commonly associated
with the process of subdividing a system into several sub-
systems [28]. This decomposition allows modifications at
the level of a single subsystem instead of having to adapt
the whole system at once [24]. To achieve the ideal form of
modularity of a system, the underlying subsystems should be
loosely coupled and independent [29]. If some dependencies
are inevitable, they should be described and made explicit
for the user of the subsystem. This enables the user to
decide whether to satisfy the dependency or to not use the
subsystem.

As an example, consider a program which requires a
particular runtime library: you may decide to add the library
to your system, or you may rather use another program
if the required library would be in conflict with a library
version you have in use (and the library management in your
system cannot handle this situation). Another example, but
from a different application domain, would be a multiplexer
component to be placed on a new integrated circuit (IC): for

providing its logic function, it depends on the particular IC
manufacturing process it was designed for.

A subsystem behind an OPC UA interface is accessed
in the form of services provided over a network. The
dependencies, therefore, are:

1) A network stack (in the current specifications,
TCP/IP).

2) A library implementing the OPC UA protocol. With
OPC UA, this is usually comprised of a “stack” for
lower level functionality and an “SDK” (Software De-
velopment Kit) between this stack and the application.

3) Application logic to interact with the address space
(via the SDK: reading/writing values, update notifica-
tions, . . . ).

4) Application logic to map application data structures
into the address space.

The network connection between the OPC UA server and
client may be a machine-local loopback interface; a physical
network interface is required when server and client run on
different computers.

As already discussed in previous sections, the OPC UA
protocol is comprehensive and complex. The Stack, SDK
and application are free to only use a subset of it. De-
pendencies 2 and 3 in the list above therefore scale to the
requirements of the application. The OPC UA specification
groups related functionality into profiles. Profile implemen-
tations can be modules – units of functionality. Since it is
possible to select and implement only a subset of them, this
is a manifestation of the separation of concerns principle:
if they would not address separate concerns, one would be
forced to implement all of them.

It is possible for an OPC UA client and server to have
different sets of profiles implemented, but still be able
to communicate. This also means that a client or server
can have various communication partners that each support
a different profile subset. OPC UA contains mechanisms
to enable meaningful communication by selecting match-
ing profile subsets for both communication partners. The
mechanisms allow one subsystem (the client) to select the
best way to interact with another subsystem (the server),
based on which profiles each counterpart supports. This
is a manifestation of version transparency at the level of
communicating applications. It is also a way of exhibiting
diversity – supporting different versions at the same time.

One group of profiles concerns transport functionality,
with the ability to choose between UA/TCP or SOAP/HTTP,
OPC UA Binary or OPC UA XML, and various levels of
communication security (security policies). The client can
query the server for available endpoints before attempting to
establish a communication channel. Each of these endpoints
corresponds to a transport configuration; they will depend
on the capabilities of the server stack and SDK as well
as the server configuration (it may choose to not offer,
for example, insecure communication for policy reasons
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although stack and SDK would have the ability). The client
then checks which of the endpoints matches its capabilities
and preferences best and uses this endpoint to establish a
secure channel and session. This mechanism enables the
server to clearly document its requirements – for example,
in terms of acceptable connection security; the client can
decide to satisfy the resulting dependency by making the
necessary functionality available on its side (for example,
via an appropriate library) or decide to not use the server.

Once the session is established, the client has various
options how to interact with the server address space. The
OPC UA specifications require that a server always supports
the most basic set of operations, which are sufficient to
retrieve a list of related profiles implemented by the server
from a well-known place in its address space. Each of
these profiles corresponds to a set of services supported
by the server, for example, whether it supports alarms and
conditions or if it allows a client to modify the address space.
The profile documents which services can be invoked on the
server, and in which ways they can be invoked.

The client is not forced to use any of this “special”
functionality unless it chooses to. In case it does, matching
client profiles are described in part 7 of the OPC UA spec-
ifications, describing the dependencies in terms of protocol
functionality which the client must provide on its side to take
advantage of these server features. In addition, the client can
determine from the list of profiles supported by the server
which services it may invoke without receiving an error
message. To ensure that client and server stacks and SDKs
from different developers will communicate flawlessly as
long as they implement a compatible set of client and server
profiles, the OPC Foundation has established a compliance
and certification program for interoperability testing.

Profiles are identified by unique Uniform Resource Iden-
tifiers (URI). If the functionality associated with a profile is
modified in the future, the updated version will again receive
a unique URI, reflecting the new version. This means that
profile versions can coexist.

Thanks to the mechanisms and documentation described,
an OPC UA client can gather comprehensive information
about the dependencies which are caused by its wish to
communicate (or communicate efficiently) with a server. No
dependencies are hidden; the OPC UA server is a true “black
box” in the sense of [29]. It is fully specified in terms of
an outside view on its functionality; a client should never
have to examine how the server is implemented to be able
to use its services. The OPC Foundation also maintains a
“profile reporting” website [17] which is documenting the
functionality associated with profiles (again, in terms of OPC
UA services, not their implementation).

However, these mechanisms and documentation only
cover functionality related to the OPC UA interface. By
design, OPC UA profiles do not describe anything related
to the actual application functionality “behind” the OPC UA

interface (although standardized information models such as
[14] or [16] blur this distinction somewhat). An example
for such a dependency may be that the subsystem requires
periodic license payments to continue working.

As an example from another domain, [5] mentions manu-
facturer and type codes printed on ICs and calls for a website
to provide standardized information about well defined de-
pendencies – much in the way that it is possible to find a
datasheet describing an IC based on this type code. Such a
website could be similar in concept to the OPC Foundation
profile reporting website, but focus on functionality outside
the area of OPC UA; the OPC UA address space could easily
accommodate URIs pointing to “datasheets” about modules.

OPC UA leaves developers entirely free to handle depen-
dencies which may be introduced by certain data presented
in the address space. It also leaves them free to decide
how to add information about such dependencies to the
address space. However, it provides structures which can
prove useful in this context, such as the advanced data
modelling features already mentioned in the beginning of
this section. For example, consider the case that a server
(subsystem) is updated to expose a new widget. A client
(subsystem) can immediately access the input and output
data of this widget, but to use it efficiently, it must know
how these inputs and outputs work together – the widget
function. If the server adds type information to the widget
object, the client can recognize it as the kind of meta-data
which describes this function, and can decide whether to
bring in complementary functionality on its side to make
use of it. Still, the client will always remain in control of
the choice whether to satisfy the dependency or not use the
new widget.

VI. ADAPTIVE FLEXIBILITY IN OPC UA

While the previous section discussed the role of OPC
UA for de-coupling subsystems from the perspective of the
server and client applications, this section focuses on the
“internal mechanisms” of OPC UA. How do these mecha-
nisms, which are usually hidden from the server or client
application by the OPC UA SDK application programming
interface (API), support adaptive flexibility? Again, the view
taken is as far as possible a “black-box”, functional one,
independent of how the mechanisms described in the OPC
UA specifications are implemented.

A. Message passing

When (sub)systems are connected via OPC UA, all com-
munication between them uses message passing following
the request-response paradigm. Message passing requires
that a request is stored in a separated (message) memory.
Sender and receiver do not share a memory space; all passing
of values has to be by copy, not reference. For this reason,
message passing systems are also referred to as “shared
nothing” systems. This greatly reduces the possibility for
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undesired coupling to occur. Consider, for example, the
situation that a software module is linked with another
module which, by accident, contains a global variable of the
same name, but different meaning or purpose. Such a name
clash is impossible when these modules communicate via
OPC UA, because the two variables will necessarily exist in
separated memory spaces in this case. Moreover, the request-
response message paradigm is naturally asynchronous in
character. Unlike with a subroutine call within the same
memory space, the module invoking the service always
remains in control of its own program flow.

If implemented right, this basic principle ensures separa-
tion of states between the two subsystems and will block
combinatorial effects from propagating between them. To
this end, both the OPC UA middleware implementation
(stack and SDK) and the application module which is using
it for communication must react to these messages in a
robust manner: most importantly, they must not count on
the expected response to arrive promptly.

Let us consider this rule in further detail. First, the
response may not arrive promptly, but with a significant
delay, or it may not arrive at all. The subsystem must
always take this possibility into account, it must not block
unconditionally. Within OPC UA, timeouts for services and
lifetimes for shared state between client and server (e.g.,
a logical channel or session) are specified. These timeouts
can be negotiated between the communication partners to
address varying response time requirements.

Second, if a response arrives, it may not be the expected
one. It can also be an error message or an unknown response
– unknown maybe because the communication partner was
updated in the meantime. Such a situation must be handled
as gracefully as possible. The subsystem must not hang or
crash as a result.

Version transparency is a key quality in this context.
If version transparency is implemented, response messages
cannot be unexpected or unexpectedly absent – provided that
the communication channel is reliable and that the entity on
the other side is not malfunctioning. This is because with
version transparency, it is the responsibility of the caller to
only invoke the callee in ways that the callee can understand.
In other words, in a scenario of controlled evolution, the
caller must respect the version of the called entity. This is a
logical consequence of the fact that when a fundamentally
new requirement is added during the course of evolution of
a system, older entities by nature will not have the capability
to satisfy it. For example, a system designed to heat will not
necessarily be able to cool as well, and a labeler for square
boxes cannot label a round box.

However, an external system (such as one behind a
connection element based on an OPC UA interface) may
evolve in an uncontrolled way. It need not respect the version
transparency theorems; the change in the external system
may require our own system to adapt. This would cause

a combinatorial effect. The connection element must block
this combinatorial effect as far as possible, allowing us the
choice of not adapting our own system; instead, we may
want to display or log an error message saying the external
system is not responding like it should – without causing our
own system to crash or malfunction. The connection element
must therefore catch unexpected responses to achieve ver-
sion transparency. This is greatly facilitated by a mechanism
which allows the older communication partner to declare
that it does not understand or support a request, and give
this response in a way that the younger can recognize it
as such. For this purpose, OPC UA defines standardized
response StatusCodes and gives the option to add free-form
DiagnosticsInformation to further describe the reason of an
error status.

B. Technology mappings

Already back in 1972, Dijkstra recognized difference in
scale as a major source of our difficulties in programming
[30]. Moreover, a widespread underestimation of the specific
difficulties of size seems to be one of the major underlying
causes of software failure.

An important design goal for OPC UA was scalability
in terms of communication requirements. Small embedded
devices should be allowed to contain a very basic OPC UA
interface, while more powerful platforms (such as PC-based
systems) should be able to provide more complex functional-
ity. Considering their communication requirements, different
levels in the automation pyramid are best served by different
transport technologies. Communication on the level of ERP
applications requires intermittent transport of large amounts
of data at high data rates, while applications hosted in small
embedded devices typically require continuous transport of
small amounts of data with low latency (around 10 ms down
to 10 µs).

OPC UA is defined independent of a particular network
protocol and low-level encoding. It can be mapped to the
most appropriate transport corresponding to the needs of an
application. While this does not make it a full alternative
to fieldbus systems (as no special provisions are made for
time-deterministic communication), it certainly allows OPC
UA to scale over a large range of requirements.

Being able to choose between transports does not only
improve scalability. It also supports diversity: multiple trans-
ports may be able to fulfil a particular set of requirements.
And with requirements changing and solutions improving
over time, such an option to choose also introduces new
possibilities with regard to the property of evolvability.

In 1994, DCOM was a good base technology for OPC.
Over time, it became a limiting factor. DCOM was a vendor
dependent technology and restricted the choice of operating
system and programming language. Choosing a network pro-
tocol (and message encoding) as the basis already supports
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multi-platform and cross-programming-environment com-
munication better, since the concerns of sending a message
to the communication partner and acting upon this message
are separated. However, this still would not have allowed
diversity with respect to transports. Therefore, a further
step was taken: OPC UA was based on an abstract service
oriented architecture. Part 4 of the specifications specifies the
services in abstract terms, and Part 6 specifies the current
transport technology mappings. The API is not standardized,
giving the freedom to provide the modest appropriate solu-
tion for any programming language or framework.

The technology mappings do not only apply to com-
munication protocols and message encodings, but also to
security algorithms for encryption and authentication. By
decoupling the specification of the OPC UA services from
these implementation choices, as well as decoupling them
from the programming environment, the “what” and “how”
are very clearly separated. This manifestation of the separa-
tion of concerns principle is a very visible improvement in
the process from classic OPC towards OPC UA.

Thanks to it being based on abstract service definitions,
the stable core purpose of OPC UA – providing access
to values and events in another subsystem – is decoupled
from its more rapidly envolving technology environment.
The choice to standardize a number of technology map-
pings stems from the necessity to prevent a completely
fragmented landscape of implementations, which would not
be interoperable with each other. Within these standardized
technology mappings, profiles serve the purpose of selecting
compatible, complementary subsets of diverse functionality.
Finally, interoperability testing addresses the possibility of
different interpretations of the specifications.

C. Further improvements over OPC Classic

In comparison with the classic OPC specification, several
further improvements towards conformance with the princi-
ples of separation of concerns and version transparency can
be found in OPC UA. Some of them are highlighted in the
following.

First, one of the reasons why the authors of OPC UA
used the word ‘unified’ in the name of the standard is that
they unified previously different ways of accessing informa-
tion. Classic OPC defined independent specifications, each
covering a part of the functionality now provided by OPC
UA. These specifications each had slightly different ways of
doing the same thing, such as browsing the available data
tags. By offering a unified way of access to this information,
OPC UA provides increased reusability.

OPC UA clearly separates actions and objects. For ex-
ample, OPC Classic defined a special GetStatus method to
obtain status information about a server. In OPC UA, this
information is modeled as the server status variable, is placed
at a defined position in the server namespace, and can be
accessed with the read service or monitored for changes just

like any other variable node. This is clearly a manifestation
of separation of concerns.

Layering is explicitly mentioned in [2] as a manifestation
of the Separation of Concerns principle. In OPC UA, layer-
ing can be found in many places. For example, subscriptions
(to notifications for changing values in the address space) are
separated from an underlying session, and a session is sep-
arated from an underlying secure communication channel.
These entities maintain their own state, which is independent
of the state of the layers below them: subscriptions can
be transferred between sessions (which supports smooth
transfers between redundant clients or servers), and a session
can switch over to another secure channel without being
terminated (which enables transparent use of redundant
network links).

Another example of layering can be found in the way how
most OPC UA middleware is split from an implementation
point of view. Basic protocol functions are covered by the
OPC UA Stacks, which are made available by the OPC
Foundation for its members. On top of such a Stack, com-
mercial SDKs (Software Development Kits) are developed
and marketed by OPC UA expert companies. Using these
SDKs as a basis, developers create OPC UA client and/or
server applications.

Finally, the current transport mappings for OPC UA con-
tain a number of examples for action version transparency
support. The OPC UA TCP Hello and Ack messages, which
open every conversation between a client and a server using
this protocol, contain ProtocolVersion parameters, and the
server is required to accept newer protocol versions. The
OPC UA Secure Conversation OpenSecureChannel service
messages also include ClientProtocolVersion and ServerPro-
tocolVersion parameters. If the web service mappings are
used, SOAP as well as the WS-* standards encode the
protocol version in every message by way of specifiying
the XML namespace URI, which uniquely identifies the
version. HTTP headers also contains a version field. Using
this version information, the server can correctly interpret
messages from an older client, or reject the request in a
controlled manner if it has an unknown, more recent version.
HTTP/1.1 [31] also specifies the Upgrade header, which a
client can use to indicate to the server that it supports another
version of the protocol (or other protocols in general) which
it would like to use if the server finds this appropriate.

VII. NORMALIZED MODULES WITHIN OPC UA
MIDDLEWARE

As discussed in Section IV.B, we found it difficult to
obtain cost estimates for implementing individual OPC
UA profiles in an application program. Apparently, it is a
problem to obtain useful estimates of the development effort,
with or without the use of existing tools, in any programming
language or development environment. Why could none of
the experts, who we truly consider having acknowledged
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excellence in their domain, provide concrete answers to our
question?

The initial idea of the decision support tool included the
assumption that it is possible to estimate the development
effort or cost of implementing an individual OPC UA profile
in a reliable way – without considering the specific context
of such an effort. Estimating the cost of a software project
is already a difficult task when context information (such
as the current state of the software or the skills of the
available developers) is known, but we sought a generic
answer, independent of which other OPC UA profiles may
possibly already exist in a considered implementation, and
also independent of the size of the (existing) system.

This expectation is similar to what was expected from
system analysts and software architects for over decades,
i.e., listing up all the old, recent and future functional
requirements of a system. Doing so seems to include very
uncertain assumptions: in particular, the assumption that
all dependencies of a newly added or changed feature
are under control, are explicitly known, can be measured
and estimated. The exponential character of the curve in
Figure 5 illustrates that this assumption cannot be defended.
The precise slope of this curve for a system is impossible
to determine; therefore, it is impossible to give a precise
estimate for any given system size. It is for this reason
that the Normalized Systems Theory focuses on elementary,
anticipated changes instead (as introduced in Section III-B).

It can be safely assumed that the experts’ experience
only concerned Lehman-type systems of some kind. In such
a system, the development effort or cost of an OPC UA
profile is not only a function of the functional requirements
of the OPC UA profile itself, but also of the size of the
(existing) system, including dependencies and potentially
existing combinatorial effects. For a Normalized System, a
reliable cost estimate would be much easier to give.

In general, the Normalized Systems Theory calls for
radical separation of concerns and thus promotes a high
granularity of modular systems. Even if this goal cannot be
immediately attained, it will typically be a benefit to keep
modules small in order to keep the impact of changes low.
For purposes of illustration, the remainder of this section
therefore explores how finely an implementation of OPC
UA should be divided into modules to achieve separation of
concerns. Given that the actual application (and all program
logic to connect the OPC UA interface with it) is a separate
concern for sure, we will focus on units of functionality
defined in the OPC UA standard, which will usually be
implemented by a Stack and/or SDK.

When looking at the OPC UA profiles specifications, we
find four types of entities: profile categories, profiles, facets,
and conformance units. Profile categories have no meaning
in terms of software constructs, but only exist to structure the
specifications for the purpose of readability. They provide
major functional groupings, such as all profiles necessary

to implement a complete server or client. Likewise, the
distinction between facets and profiles has organizational
purposes: a facet refers to a profile which is expected to
make part of a larger profile. For the purposes of this
discussion, facets and profiles can be treated the same.

Profiles describe features of applications. We have already
identified profiles as a manifestation of the separation of
concerns principle in Section V.C. In other words, when
building an OPC UA application, it is possible to select
and implement (or not) each individual profile. The features
represented by OPC UA profiles are well separated and the
profiles make explicit for a communication partner which
features are supported and which are not. Profiles are the
smallest unit of coherent functionality from the perspective
of an OPC UA communication partner.

Profiles are comprised of ConformanceUnits. Confor-
mance units are the foundation of the OPC compliance
and certification program They are defined as a specific set
of features that can be tested as a single entity. OPC UA
Compliance testing activities include functionality testing,
behavior testing, interoperability testing, load testing and
performance testing. Conformance units are the smallest
entities in the OPC UA standard from the perspective of
compliance testing.

However, a ConformanceUnit can cover a group of ser-
vices, portions of services or information models by defini-
tion. And, actually, services are the smallest entities which
can be invoked by an OPC UA communication partner; with
profiles as the smallest unit of coherent functionality from
this perspective, they could be considered the smallest unit
of individual functionality from the perspective of an OPC
UA communication partner.

When examining how finely an implementation of OPC
UA should be divided into modules to achieve separation of
concerns, we must however take an “inside” instead of an
“outside” view. Up to now, we have been taking a functional,
or “black box” perspective. From this perspective, it is
described what a module does, i.e., what its function is.
Actually, functionality testing, which we mentioned in the
context of ConformanceUnits, is also called black box test-
ing: the test candidate is seen as one single black box – from
the “outside”. On the other hand, the constructional (or white
box) perspective describes the subsystems of which a system
consists, as well as the way in which these subsystems
collaborate in order to bring forth the function as described
in the black box perspective [29]. The Normalized Systems
Theory contains rules with relation to the functional content
of a module, the interaction between data and action entities,
and the mutual interaction of action entities. In other words,
it is concerned with the constructional perspective – the
“inside” of a module.

If we consider an OPC UA service from the constructional
perspective, i.e., from a developer’s point of view, we realize
that it requires some lower-level functionality. For example,
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the network packet containing a service request or response
has to be assembled (or disassembled), taking the correct
message encoding into account. The basic encoding structure
is the same for all services. For example, all messages
contain a header identifying it as an OPC UA message.
This common header is an example for a change driver as
introduced in Section III.C. When it changes (for example,
to reflect a new version of the OPC UA protocol), this affects
all service implementations. It must therefore be reassigned
to a separate module.

This example illustrates that it is a challenging goal to
reach the high granularity required for Normalized Systems.
A migration strategy focusing on selected interfaces and the
encapsulation of external systems offers a transitional path.

VIII. CONCLUSION AND OUTLOOK

Adaptive flexibility is an essential quality in modern
information and communication systems. In our survey, we
saw a great variety in requirements regarding industrial
communication all over industry. While we were able to
correlate OPC UA feature sets (i.e., profiles) with application
requirements easily, the survey did not yield a conclusive set
of profiles associated with any single field of application.

We consider OPC UA to be a highly valuable tool for
supporting scalability, diversity and evolvability – that is,
adaptive flexibility – in the domain of industrial communica-
tion and, in general, everywhere it can be used to de-couple
subsystems with compatible communication requirements.
When gauging OPC UA against the principles of Normalized
Systems Theory, this becomes even more evident.

We find that the considerable tacit heuristic knowledge
of the authors of OPC UA has lead to an amount of man-
ifestations of several fundamental principles of Normalized
Systems, such as separation of concerns. The user of OPC
UA takes advantage of these manifestations without even
being aware of them. OPC UA also does not prevent the
separation of states between subsystems it connects.

For the same reason, some of the manifestations discussed
may appear to be nothing but “established good program-
ming practice” to seasoned software developers, who possess
a significant amount of relevant tacit knowledge. The goal of
NST is to make this knowledge explicit, and the discussion
in this paper should also serve to illustrate the connection
between theorems and established practice. In addition, it
should be considered that embedded systems, including
industrial automation systems such as PLCs, trail behind
the forefront of software development to a varying, but
significant extent: in some of these environments, name
conflicts between global variables in modules are still an
everyday problem. In this sense, the drive of advanced
technologies such as OPC UA towards the embedded level
can certainly be considered a welcome evolution. First SDKs
for OPC UA on embedded systems are already commercially
available, but remain a relevant target of ongoing work.

We also identified some features within the OPC UA spec-
ifications which can support adaptive flexibility and system-
wide evolvability – both through their originally intended
use as well as for applying NST concepts. According to
personal communication, some of these features are still
rarely used by practicioners. In particular, this seems to
be true for the version attributes of the OPC UA objects.
We feel that raising awareness of these features among
practitioners, users and developers alike, could be beneficial
for the industry.

After all, towards a truly Normalized System, the princi-
ples of the theory must also be followed in any application
built on top of OPC UA. While OPC UA encourages
applying these principles by way of its design, it does
not enforce them. OPC UA stack, SDK and application
programmers must still do their part to prevent the system
from “hanging”.

Certainly, no stack, SDK or application program can
be expected to become a fully Normalized System soon.
Among other reasons, one faces the challenge of introducing
new paradigms to practitioners when deploying Normalized
Systems. Those who are not aware of NST theorems will
find it harder to read and debug “normalized” code. How-
ever, an OPC UA layer can separate Lehman systems while
being a Lehman system itself. OPC UA is an excellent
foundation for connection elements, which again can be the
base for a stepwise migration strategy towards Normalized
Systems.

Due to the complexity of the OPC UA specifications, their
evaluation in this single paper could not be complete. We
believe there is ample room for future work to further inves-
tigate and elaborate them against the light of NST. Also, a
deeper investigation of potential combinatorial effects could
contribute to improving the quality of OPC UA applications.
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ACRONYMS

A&E Alarms and Events
API Application Programming Interface
BMS Building Management System
CMD Commands
DA Data Access
DCOM Distributed Component Object Model
DCS Distributed Control System
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EDDL Electronic Device Description Language
ERP Enterprise Resource Planning
FDI Field Device Integration
HDA Historical Data Access
HMI Human Machine Interface
HTTP Hyper Text Transfer Protocol
IC Integrated Circtuit
IP Internet Protocol
MES Manufacturing Execution System
NST Normalized Systems Theory
OPC Open Productivity and Connectivity
PAC Programmable Automation Controller
PLC Programmable Logic Controller
SCADA Supervisory Control and Data Acquisition
SDK Software Development Kit
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
TFM Technical Facility Management
UA Unified Architecture
URI Uniform Resource Identifier
WS Web Service
XML eXtensible Markup Language
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