
32

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Evaluation of an Architecture for Providing Mobile Web Services

Marc Jansen
Computer Science Institute

University of Applied Sciences Ruhr West
Bottrop, Germany

marc.jansen@hs-ruhrwest.de

Abstract—As the role of mobile devices as Web Service
consumers is widely accepted, already today a large number of
mobile applications consume Web Services in order to fulfill
their task. Still, no reasonable approach exists as yet, to allow
deploying Web Services on mobile devices and thus use these
kinds of devices as Web Service providers. In this paper, our
approach is presented that allows deploying Web Services on
mobile devices by the usage of well-known protocols and
standards. In order to achieve this, the presented approach
overcomes problems that usually occur when mobile devices
are used as service providers. Here, the description of an
implementation is presented, along with first performance tests
and an evaluation of the battery consumption that results in
using the presented approach. The performance test shows
that the described approach provides a reasonable way to
introduce Web Service provisioning for mobile devices, but the
results for the battery consumption provide some challenges
that need to be met, e.g., the determination and evaluation of
scenarios that benefit from using mobile Web Services. Last
but not least, this paper provides first ideas how complex
mobile scenarios can be evaluated in order to decide whether
they benefit from using mobile Web Services.

Keywords - mobile devices; Web Services; mobile Web
Service provider, battery consumption, scenario development.

I. INTRODUCTION
As already explained in [1], a need for a technology that

allows deploying Web Services on mobile devices is
necessary. In recent years, the number of reasonably
powerful mobile devices has increased dramatically.
According to [2], 216.2 million smartphones where just so
sold in Q1 2013 worldwide.

Figure 1. Distribution of different operating systems for smartphones in
2013.

On the other hand, this huge number of smartphones
represents a large number of heterogeneous devices with
respect to the operating systems smartphones are currently
using. According to [3], there were at least five different
operating systems for smartphones available on the market in
2010, and their distribution is shown in Figure 1. It thus
seems to be necessary to have a platform-independent
mechanism for the communication with services provided by
smartphones in order to not re-implement each service for
each of the mentioned operating systems.

Usually, Web Services are used in order to provide a
standardized and widely used methodology that is capable of
achieving a platform-independent way to provide services.
Unfortunately, in contrast to consuming Web Services on
mobile devices, providing Web Services on mobile devices
is not yet standardized due to several problems that occur
when a service runs on a mobile device. To change this was
one of the major motivations for the work described in this
paper. Providing a framework that allows to deploy
standardized Web Services on mobile devices provides big
advantages for a number of different mobile technologies,
e.g., in order to contextualize mobile users.

Therefore, this paper presents the description of a
framework that allows providing Web Services on mobile
devices. The outline of the paper is as follows: the next
section provides an overview of related work and the
motivation for the development of the described approach,
after which the scenario - together with the problems that
usually occur if Web Services should be provided by a
mobile device - is explained. The following section explains
the implementation of the framework in detail and the results
of a first performance test are presented. Afterwards, the
power consumption of the presented approach is evaluated
and discussed with respect to user acceptance and possible
types of scenarios that benefit from consuming Web Services
deployed to mobile devices. Furthermore, another section
provides first ideas about how different scenarios can be
determined and evaluated with respect to the question if
these scenarios would benefit by consuming Web Services
deployed to mobile devices. The paper is closed by a
conclusion and an outlook for further research questions.

II. MOTIVATION
The idea of providing Web Services on mobile devices

was probably presented first by IBM [4]. This work presents
a solution for a specific scenario where Web Services are
hosted on mobile devices. More general approaches for
providing Web Services on mobile devices are presented in

33

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] and [6]. In [7], another approach, focusing on the
optimization of the HTTP protocol for mobile Web Services
provisioning, is presented. Importantly, none of the
mentioned approaches manages to overcome certain
limitations of mobile devices, as demonstrated in the next
section.

The major difference between previous research and the
approach presented in this paper is that, to the best of our
knowledge, previous research focused very much on
bringing Web Services to mobile devices by implementing
server side functionality to the mobile device in question.
The approach presented here follows a different line: from a
technical and communication point of view, the mobile Web
Service provider communicates as a Web Service client with
a dynamically generated Web Service proxy. This approach
provides an advantage for overcoming certain problems with
mobile Web Services as described in the next section.
Furthermore, this approach does not rely on an efficient
server side implementation of Web Services on the mobile
device, and thus allows to implement a very lightweight
substitution to a common application server where a
common Web Service is running.

Since nothing comes for free, this approach has some
drawbacks as well, e.g., it implements a polling mechanism
that permanently polls for new service requests. Therefore,
this approach produces an overhead with respect to the
network communication and the computational power of the
mobile device. The computational overhead, though, can be
dramatically reduced by adjusting the priority of the polling
mechanism according to the priority of the provided Web
Service.

Another drawback of the presented approach is that it
relies on a publicly available proxy infrastructure for the part
of the framework that dynamically generates the Web
Service proxies. This drawback can be overcome if, for
example, mobile telecommunication companies provide this
kind of infrastructure centrally.

In contrast to the aforementioned approaches, the
approach presented in this paper differs with respect to one
major aspect: from a network technical point of view there is
no server instance installed on the mobile device. Therefore,
a certain Web Service client does not call the Web Service
on the mobile device directly but calls a centrally deployed
proxy. The Web Service running on the mobile device polls
in regular intervals for any new message requests of interest.
The sequence of the Web Service request from the client
point of view and from the Web Service point of view is
shown in the sequence diagram in Figure 2.

The exact sequence of the different messages and events
will be described in more detail later. Since especially
polling mechanisms cause certain drawbacks, one of the
major questions concerning the presented approach is the
question of benefits and drawbacks of the polling mechanism
and, in particular, whether the benefits justify the drawbacks.

One of the major problems of dealing with Web Services
on mobile devices is the fact that mobile devices often switch
between networks. Therefore, the Web Service running on a
mobile device is usually not available under a fixed address,
a fact that leads to a number of problems for the consumer of

a mobile Web Service: Besides the usual network switch, the
fact that mobile devices are usually not meant to provide
24/7 availability, but are designed towards providing the user
with the possibility to exploit certain services, e.g., phone
calls, short messages, writing and receiving emails, etc.,
yields the problem that mobile devices might get switched
off by the user. Hence, not only that the provided Web
Service might be available under different network
addresses, but it might not be available at all.

Figure 2. Sequence diagram of the Web Service requests in the presented
approach.

All these drawbacks can be solved by using the approach

presented here. By using the central proxy, the service
requests of a certain Web Service client can be stored and if
the mobile Web Service is running, it can pull for service
requests that are of interest to it. Since from a technical point
of view the Web Service provider only acts as a client to the
Web Service proxy, the potentially changing network
addresses of the mobile device does not pose a problem at
all.

In addition, one of the major drawbacks of the described
polling mechanism can be limited by adjusting the priority of
the Web Service running on the mobile device, resulting in a
lower frequency of the polling for the service request.

To conclude, in our opinion, the advantages of the
described mechanism justify the drawbacks that are inherent
to the approach.

III. SCENARIO DESCRIPTION
The major idea behind the implementation of the

middleware is to provide a Web Service proxy, according to
the proxy design pattern [8], in order to overcome certain
problems in mobile scenarios as described by [9]. One major
problem here is that mobile devices often switch networks,
e.g., at home the mobile phone might be connected to a Wi-
Fi network, at work the connection might be established
through another Wi-Fi network and on the way home from
work the mobile phone might be connected to a
GPRS/UMTS-network. Each of these different networks
provides different IP addresses and possibly different

34

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network scenarios. For example, it can be private IP
addresses with network address translation (NAT), where the
Web Services running on the device are not directly
accessible from the internet, or public IP addresses.

Frequently switching between IP addresses, and therefore
frequently changing IP addresses (as occurs especially with
mobile devices), might raise certain problems for the
provision of Web Services, since the client of a certain
service always needs to know the actual IP address at which
the service can be reached. More than that, within a private
network the provided Web Services are usually not reachable
at all from the internet. Therefore, the problem, from the
client point of view, is that the service is not always
accessible under the same (and constant) IP address. The
presented approach provides a solution to overcome this
problem, with the exception of the case when a device is
completely switched off. The switch off problem can be
overcome as well, in which case slight modifications to the
presented approach, together with an asynchronous call of
the Web Service, are necessary.

The approach presented here suggests solving these
problems by implementing a Web Service proxy that
dynamically creates a proxy for each Web Service that gets
deployed on a mobile device. The created proxy allows
receiving service requests as a representative to the actual
service and storing a service request along with the necessary
data. In the next step, the mobile Web Service provider
continuously polls for requests to its services, performs the
services and sends the result back to the dynamically
generated Web Service proxy. Receiving the result, the Web
Service proxy can send the result back to the client that
originally performed the service request.

IV. IMPLEMENTATION
The major goal of the work presented here is to provide a

solution to the described scenario. Therefore, we
implemented a middleware that allows the provision of Web
Services on mobile devices. Here, the standard protocols,
e.g., WSDL for the description of the Web Service interface,
SOAP/REST as the standard network protocol and http as
the usual transport protocol, are used such that there is no
additional effort on the client side for requesting a mobile
Web Service.

The following three sections provide a short introduction
to the services offered by the middleware, followed by a
description of the communication between the mobile Web
Service provider and the Web Service client/consumer. Last
but not least some details are presented about the Java based
implementation for the test scenario.

A. Use-Case Analysis
In order to achieve the goal of implementing a Web

Service proxy, an analysis of use-cases that this proxy will
have to support has been performed. The result of this
analysis is shown in Figure 3.

Relations in this Use-Case diagram reflect the interaction
between the different use cases or an actor and the use case.
From a technology point of view four different actors
participate in the scenario.

A.1 The Web Service Provider
Obviously, a provider for the mobile Web Service is necessary.
This is a piece of software running on the mobile device that
provides the Web Service itself. This piece of software can best be
compared with an application server hosting a Web Service in a
scenario where the Web Service is provided by a common server
system

Figure 3. Use-Case description of the developed middleware.

A.2 The Web Service Client
The second quite obvious actor is the consumer of the

Web Service: the Web Service client. This is a piece of
software running on the client side, performing requests to
the Web Service.
A.3 The Web Service Proxy

As already described, one of the major ideas of the
presented approach is to provide a proxy for the Web
Services provided by the mobile devices. Therefore, the Web
Service proxy is another actor that participates in the
scenario. The proxy represents a surrogate of the Web
Service provided by the mobile device. The basic function of
this proxy is to implement the same interface (same methods
with identical parameter lists and return values) as the Web
Service itself. Moreover, the methods provided by the proxy
(in order to register a service, de-register a service, etc.),
should be accessible via the standard network protocols of
Web Services and the description of the proxy interface
should also be available in WSDL (in the implementation
here the SOAP protocol was chosen). The proxys’ major task
is to receive client requests, store them in a database and wait
for the mobile Web Service to provide the result of the
service request. While in the traditional proxy pattern the
proxy would directly forward (push) the incoming service
requests to the Web Service, we have decided to just store
the requests in a database in order to allow the mobile Web
Services to pull the requests from the proxy. This change to

35

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the traditional proxy pattern basically allows handling
constantly changing network connections (as explained
before), since within this approach neither the Web Service
proxy nor the Web Service client need to know the actual IP
address of the mobile device that provides the actual Web
Service.
A.4 The Database

Fourth and last, the database is taken to be an actor of the
middleware. Usually, the database would more likely be
modeled as a system (and not as an actor), but for the sake of
clarity and consistency, we decided to model the database
also as an actor in the system. The major task of the database
is to store the necessary information about the service
request in order to allow the Web Service running on the
mobile device to perform the requested task, and to later-on
store the return values of the service request as well. By
storing also the return value, the Web Service proxy is able
to send the result back to the client that made the request.
This is necessary since the usage of the proxy is transparent
to the client, in the sense that the client is not aware that the
actual service request is not answered by the proxy, but by
the Web Service running on the mobile device. Therefore,
the Web Service proxy needs to send the result of the service
to the Web Service client, and not the mobile Web Service
itself.

Besides the four actors, a number of use-cases need to be
implemented in order to fully run the described scenario.
A.5 Service Registration

First of all, a mobile Web Service provider needs to be
able to register a service to be provided. Besides the Web
Service provider, the Web Service proxy and the database
are interacting within this use-case, too. The Web Service
proxy needs to dynamically implement the interface of the
mobile Web Service and the storage of the metadata
(basically the name of the method that should be called and
its parameter values) of the service requests. The database
needs to provide certain storage for the parameter values of
each method (in case of a relational database: a table) and the
according return values of the mobile Web Service.
A.6 Receive Service Requests

The second, quite obvious, use-case is that the mobile
Web Service provider needs to be able to receive service
requests. Besides the mobile Web Service provider, the Web
Service proxy participates in this use-case also, since this is
the instance that directly receives the requests from the Web
Service client and stores the necessary information in the
database.
A.7 Perform and Receive Service Requests

Two additional use-cases, namely, perform service
requests and receive service request results, participate in the
store service request metadata use-case.
A.8 Storing Service Metadata and Handling of Return
Values

Additionally, we have identified two other use-cases that
are necessary for the handling of the service request
metadata (store service request metadata) and the handling of
the return values (store service result). The first of these two
use-cases interacts with two actors: the Web Service proxy

and the database; the second one additionally interacts with
the Web Service Provider.

Beside the fact that the provision of these use-cases
allows the implementation of the described scenario, one of
the major advantages of this approach is that the Web
Service client only interacts with the performed service
request and receives corresponding answers from the service
request result use-case. Therefore, from a client point of
view, the request to a mobile Web Service is no more than a
usual service request. No additional effort is necessary on the
client side in order to receive results from a Web Service
running on a mobile device.

B. Communication between the mobile Web Service and
its clients

In order to explain the necessary communication for a
service request from the Web Service client to the mobile
Web Service provider, we modeled the communication flow
within the sequence diagram shown in Figure 4.

Within the sequence diagram we have modeled an object
life line for each of the actors, to be discussed later. First of
all, the mobile Web Service provider needs to register its
service with the Web Service proxy. As part of the service
registration process the Web Service proxy creates the
necessary data structure for storing the service requests in the
database.

After the mobile Web Service provider has registered its
service, it permanently polls the Web Service proxy for new
service requests. The Web Service proxy asks the database if
a new service request for the respective mobile Web Service
provider is available and if so, returns the request’s metadata
to the mobile Web Service provider. After receiving the
metadata of a new service request, the mobile Web Service
provider performs the service and sends the result of the
service to the Web Service proxy that directly stores the
result in the database.

From a client point of view, the Web Service client
simply calls the service provided by the Web Service proxy.
While receiving a new service request, the Web Service
proxy stores the necessary request metadata in the database.
Afterwards the Web Service proxy directly starts to poll the
database periodically for the result of the respective service
request. Once the mobile Web Service provider has finished
performing the request and has stored the result (via the Web
Service proxy) in the database, the Web Service provider is
able to send the result of the service request back to the
client.

C. A sample implementation
In order to test the described approach with respect to its

performance, we implemented the Web Service proxy in
Java. Additionally, the mobile Web Service provider was
implemented for Android. Here, we focused on an intuitive
and easy way for the implementation of the Web Service,
and have therefore, oriented ourselves by the JAX-WS (Java
API for XML-Based Web Services), as described in the Java
Specification Request 224 (JSR 224). The major idea,
adapted from JAX-WS, was that a Web Service can easily be

36

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implemented by the use of two different annotations: the
@MobileWebService annotation marks a class as a Web
Services and methods within this class can be marked as
method available through the mobile Web Service with the
@MobileWebMethod annotation.

With the help of these two annotations a simple mobile
Web Service, which only calculates given integer values, can
be implemented as follows:

@MobileWebService
public class TestService {

 @MobileWebMethod
 public int add(int a, int b) {
 return a + b;
 }

}

The basic relationships between the major classes of the
sample implementation are shown in Figure 5. For the sake
of simplicity and transparency, less important classes (and
methods of each class) have not been modeled. Basically, the
implementation consists of two packages. Package one is the
proxy package which is usually deployed on a server that is
reachable from the internet via a public IP address. Here, we
find one class that implements the necessary methods for the
registration of a new mobile Web Service, the permanent
polling from the mobile Web Service for the service request
metadata and the method that allows storing the result of the

service request in the database. All these methods are
reachable as Web Services themselves, so that the
communication between the instance running the mobile
Web Service and the Web Service proxy is completely Web
Service-based.

Figure 5. UML class diagram of major parts of the sample implementation.

In the provider package we find, as one of the major
classes, the MobileWebServiceRunner class to which the
mobile Web Service gets deployed. This class is basically
comparable to an application server in a common Web
Service environment, but with a dramatically lower footprint.
This lower footprint is extremely important to mobile
devices due to their usually limited resources. Additionally,
this package also provides the two formerly mentioned

Figure 4. The UML sequence diagram for the communication between a mobile Web Service and its client.

37

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

annotations that allow an easy marking of a class as a mobile
Web Service and, accordingly, a certain method of such a
class as a mobile Web Method. Last but not least, this
package also implements the ServiceRequestFetcher class.
This class inherits the java.lang.Thread class since its
responsibility is to permanently poll the Web Service
provider for new service requests.

V. PERFORMANCE TESTS
Since the communication is a little bit more complicated,

in comparison to a common Web Service call, one concern
of this approach is the question of its performance. In order
to get a first idea of how good or bad this implementation
behaves with respect to performance issues, we implemented
a simple performance test. Here, we focused only on the
evaluation of the transmission delay, since this seemed to be
the most critical parameter. Other parameters like the
number of lost packets, etc. were not taken into account yet.

A. Description of the test scenario
For the performance test and the sake of simplicity we

implemented a very simple mobile Web Service. This
service only calculates the sum of two given integers and
returns the respective value as the result. The major
advantage of such a simple mobile Web Service is that
almost the entire duration of the mobile Web Service call is
dedicated to the communication, and almost no amount of
the round-trip time is used for the calculation itself. Since the
communication is the complex part of the presented
approach, we assume that this method of performance testing
would provide the best overview about the communication
performance of the presented approach. In the test scenario a
common client (running on a common PC) had to put a
number of service requests to the mobile Web Service.

In order to compare the results against the performance
of common Web Service requests, we implemented the test
scenario also the other way around: we implemented a
common Web Service (running on a common server) and
called this Web Service from a mobile device. Here, the
basic idea was to use the same hard- and software-
environment with minimal changes and also to maintain the
same network environments in all of the tests.

In addition, we were interested in the communication
performance in different network settings. Therefore, we
performed the same tests in four different network settings.
For each of the tests the (mobile) Web Service and its
consumer where running:

• … in the same (Wi-Fi) network,
• … different networks, and the mobile device

was connected via Wi-Fi,
• … different networks, and the mobile device

was connected via UMTS
• … different networks, and the mobile device

was connected via GPRS
 We conducted eight different test cases: four for the

different network scenarios with a mobile Web Service
running on a mobile device and a Web Service client running

on a common PC, and four test cases where the Web Service
was running on a common Server and the client was running
on a mobile device. The test cases, in which the (mobile)
Web Service and the consumer were both connected to the
same network, were only conducted in order to receive
results with minimal latency.

In the test cases where the (mobile) Web Service
provider and the client were not connected to the same
network, the central components have been deployed to a
server running via Amazon Web Services (AWS), as a Cloud
Computing provider.

B. Test results
Within each of these eight test cases, one hundred service

calls were performed and the duration of each call was
measured.

The results for the mobile Web Service in the different
network scenarios are shown in Figure 6.

Figure 6. Results for the mobile Web Service in different network
scenarios.

As expected the performance for the mobile Web Service
requests are pretty good and pretty constant if the mobile
device is connected with a Wi-Fi network. The average time
if both, the mobile Web Service provider and the client, are
connected to the same Wi-Fi network, was M = 147.69ms
(SD = 76.00ms). Having the mobile Web Service provider
connected to a different, still Wi-Fi, network, the average
time for one service call calculates to M = 339.04ms (SD =
61.71ms).

Of course, we measured less performance of the service
calls when the mobile Web Service provider was connected
to a mobile network, the performance of the service calls was
lower. The results for the UMTS based network connection
of the mobile Web Service show an average of M =
827.55ms (SD = 250.35ms) for each service call, while the
results for the GPRS based network are even worse. Here,
the average for a single service call is M = 1355.96ms (SD =
986.38ms). As can be seen from the values for the standard
deviation, the performance of single service calls differs
dramatically as well, e.g., the minimum duration measured
within the UMTS scenario was MIN = 283ms and the
maximum was MAX = 2169ms. The results for the GPRS
based scenario are even worse, with a MIN = 142ms and
MAX = 5123ms.

38

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The task of the second step of the test was to compare the
performance results with the performance of a common Web
Service call. For that purpose we conducted the same test,
but this time the Web Service was not running on a mobile
device but on a common server, while the Web Service client
was running on a mobile device - again in the four different
network settings. The results of these tests are shown in
Figure 7. As demonstrated, the results are better from both
perspectives - the overall performance and the standard
deviation in the different network settings. A common Web
Service call, if the Web Service provider and the mobile
Web Service consumer are connected to the same Wi-Fi
network, has an average round-trip duration of M = 61.16ms
(SD = 301.36ms). When the Web Service client was
connected to a different (still Wi-Fi) network the average
performance was M = 156.71ms (SD = 15.24ms).

Figure 7. Results for the usual Web Service requests in the different
network scenarios.

Here, again, the values for the Web Service client

connected to a mobile network are somewhat lower. In the
case of the UMTS network, the average service call showed
a performance of M = 528.55ms (SD = 273.34ms), and the
results for the GPRS based network were even worse with an
average for each of the service calls of M = 1299.10ms (SD
= 658.75ms).

The next step was to compare the different results. The
major goal of this comparison was to get an idea of how
good the performance of the presented approach for mobile
Web Service requests is, in comparison to common Web
Service requests. Therefore, we calculated the difference in
the average performance of a single Web Service call in the
different scenarios first, and as a second step we calculated
the percentage of the performance difference in the different
scenarios. The results are shown in Table 1.

TABLE 1: COMPARISON OF THE COMMON WEB SERVICE
REQUESTS AND THE MOBILE WEB SERVICE REQUESTS
IN THE DIFFERENT NETWORK SCENARIOS

The table shows that, in comparison to common Web
Service requests, the performance of the presented approach
was not too good when the mobile Web Service was
connected to a Wi-Fi network. The results for the mobile
Web Service provider and the client connected to the same
network showed a performance overhead of 137.60 per cent,
and when the mobile Web Service was provided within a
different Wi-Fi network the performance overhead was about
116.35 per cent. But, if the mobile Web Service was
connected to a mobile network, the performance overhead
was not that dramatic anymore. In the case of the UMTS
network the overhead was limited to 56.57 per cent, and for
the GPRS based network the overhead was even lower at
4.38 per cent. Therefore, on the basis of our test results, it
can be said that the performance degredation seems to
decrease with the presented approach for mobile Web
Services (in comparison to common Web Services) in lower
quality networks, e.g. networks with lower bandwidth. This
could best be seen by the results for the GPRS based
network, where the actual overhead for the presented
approach was below 5 per cent.

VI. TESTS FOR BATTERY CONSUMPTION
Beside the technical performance of the described

solution, another very important aspect of the technical
implementation is the impact of the implementation for the
battery consumption of the mobile device. Already a lot
research in the area of energy consumption for Android
based devices has been conducted, e.g. [10], [11]. In general,
the battery consumption is still one of the critical aspects for
modern mobile devices. Users are still complaining about
devices that need to be recharged daily. Therefore, users are
for sure not interested in technical solutions that
unnecessarily exploit the battery life of their mobile devices.

In order to investigate the battery consumption of the
described technical implementation, a small testing scenario,
based on the ideas described in [12], was implemented. With
a set of five equal mobile devices (Android based mobile
phones) the following test procedure was implemented.

As described in [13] each and every service running on
the device might be the reason for a significantly higher
amount of power, and therefore battery consumption. In
order to test the effect that the described approach has on the
battery consumption, the following steps were conducted.

For the first step the battery of each device was
completely loaded and a little software was implemented that
measured the actual status of the battery each ten minutes.
This software allowed the measurement of the battery
consumption for each single device. Within the first step, no
other application (beside the usual operating system services)
was running on the devices and the device was connected to
the local wireless LAN.

In the second phase of the experiment, the described
solution for the provision of mobile Web Service was
deployed to the same devices and the battery of the devices
was completely loaded again. Still, the devices where
connected to the local wireless LAN. The proxy architecture
for the mobile Web Services was deployed to a server
running at the Amazon AWS Cloud system. A very simple

39

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mobile Web Service was deployed on each of the devices,
and the service polled every second for new service requests.
Here, the decision for a simple Web Service, that only
calculates the sum of two numbers, was taken, since this test
was designed in order to provide a first inside of the battery
consumption of the technology itself. Of course, the more
complex the deployed mobile Web Service gets, the more
battery it will consume. Therefore, the concentration on a
very simple service seemed reasonable for the results that the
performed test should bring. Again, with the help of the
software that allows the measurement of the battery status of
the mobile devices, the battery consumption was measured
every ten minutes.

The results show that the battery consumption differs of
course a little bit from device to device. Anyway, in average
the five mobile devices still had about 91.2% of their battery
capacity available after a twelve hours test run and the
consumption took, as it could be assumed also beforehand,
an almost linear degression.

The results for the second phase, in which the mobile
Web Service was deployed to each of the mobile devices
show also an almost linear degression of the battery power,
but in this case the devices had only 85.2% of their battery
load left after another twelve hours test run. The difference
becomes clearer by comparing only the average values, as
shown in Figure 8.

Figure 8. Comparison of the average values for the two different
phases.

Here it can be seen that the average power consumption

of the devices running the mobile Web Service with the
described approach, is bigger than for the devices that are not
running the mobile Web Service.

In order to check whether the difference between the
power consumption is statistically significant, a simple t-test
was conducted over the data provided by the experiment.
Therefore, the hypothesis was:

H0: Statistically the amount of power consumed by the

mobile Web Service deployed to each mobile device is
different from zero.

In order to test this hypothesis the difference between the
measured battery status for the experiment with and without
the mobile Web Service running on the mobile device was
calculated for every measuring point. Afterwards, with the
help of the average of the calculated differences, the standard
deviation, the number of measurements and the control value
(which is actually zero in this case, since the hypothesis was
chosen that the amount of consumed power is different from
zero), the according t-value was calculated. The results of
this test show significant values for n = 72 (the number of
measurements) and α = 0.01. Therefore, the hypothesis H0
can be seen as correct and we can assume that the deployed
mobile Web Service is using around 6% of additional
energy.

Having in mind that battery consumption is still a critical
issue for owners of mobile devices, the consumption of at
least additional 6% of their battery for a simple service with
a polling interval of about a second, does not seem to be
feasible.

On the other hand, the measured battery consumption
might also lead to the question what kind of scenarios can be
supported with the help of the described technology. Since
the results of the performed test show that there is a
significant amount of the battery consumed by the presented
technology, also if the deployed mobile Web Service is itself
not at all complex and the polling interval is just about each
second, the solution might probably be to identify scenarios
in which the polling interval for the provided services on the
mobile device is significantly longer than one second.

VII. DEVELOPMENT OF SCENARIOS THAT BENEFIT FROM
MOBILE WEB SERVICES

As already indicated in the previous section, beside the
technical feasibility of the described technical solution as
explained in this paper, the development of scenarios that
benefit from Web Services deployed to mobile devices is a
critical issue in order to make this technology a success.

Usually, Web Services are deployed on large servers in
data center environments in order to provide at least one of
the following three different benefits to the consumer of such
a Web Service:

• Access to large computing resources, e.g.

computational power or memory
• Access to large databases that cannot be stored

locally
• Access to data and/or procedures that are not

available locally

Obviously, the provision of Web Services on mobile

devices is not interesting for the first two scenarios, since
mobile devices do usually not provide enough power neither
with respect to computational power nor with respect to the
amount of the provided memory. Also, large databases are
usually not installed on mobile devices for similar reasons.

Therefore, the only possibility for reasonable approaches
in which scenarios might benefit from Web Services
deployed to mobile devices is the last one, in which these

40

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mobile Web Services either provide access to certain data
and/or procedures especially available on mobile devices.

Following this idea, one of the major advantages of
todays modern mobile devices is that they are more of a set
of sensors rather than a single device: looking at a modern
mobile phone, these devices usually encapsulate a GPS
sensor, a digital compass, an acceleration sensor, … Most of
these sensors allow to easily contextualize the user in his/her
current situation, e.g., the GPS sensor can be used in order to
determine the actual position of the user of the mobile
device, additionally the digital compass provides the
direction in which the user is probably looking currently.

Therefore, scenarios that on the one hand need to
contextualize a single user, e.g., supporting the user in
finding the fastest way to work or providing commercials for
goods the user can buy in a store close to his/her current
position and in his/her current viewpoint. On the other hand
these kinds of scenarios typically do not need poll
permanently for actual information, e.g., determine the actual
temperature at the current position of the user, are ideal
candidates to consume services provided by mobile devices.

Another type of scenarios in which the usage of mobile
Web Services seem reasonable, are scenarios that
concentrate more on procedures where the user of a mobile
device is actively integrated. Here, scenarios that need fast
feedback from users might benefit from reaching users that
are currently mobile, e.g., crowd sourcing [14]. Also a
combination of both ideas, like a short survey (consisting of
a very limited number of questions) send to a customer that
leaves a certain store about how he/she felt during his/her
stay in the store might provide a reasonable scenario for
mobile Web Services.

In order to determine and evaluate different scenarios
that might benefit from consuming mobile Web Services, the
sensitivity model, as described in [15], might provide a
reasonable approach in order to evaluate whether a certain
scenario benefits from using mobile Web Services. This
cybernetic based approach allows to evaluate different
parameters with respect to their effectiveness in order to
reach a certain goal, also if these parameters do interact with
each other. Since usually the different parameters that are
important for the success of a mobile application/service
interact with each other, this approach seems to provide a
good starting point for the evaluation of mobile Web
Services.

The basic steps that need to be performed in order to
provide a sensitivity model are:

• Description of the system: Here, the system

itself in which the services are provided, has to
be described.

• Determination of different variables: In this step
different variables of the system (with respect to
the currently evaluated service) are determined.

• Evaluation of relevance of the variables: Since
so far the different variables are only
determined, their relevance for the system has to
be evaluated in a separate step.

• Determination of the interaction of the different
variables: Here, for each of the variables a value
has to be determined, how much this variable
interacts with any other variable in the system.

• Clarification of the role of each variable: In this
step, a role is attached to each variable that
reflects e.g., how active and how critical this
variable is in the system.

With the help of this information, certain tests and

simulation can be run against the set of variables that reflect
their behavior in the system.

VIII. CONCLUSIONS AND FUTURE WORK
As demonstrated in this paper, todays’ modern and

powerful mobile devices can be used as Web Service
providers by using well-known and accepted standards and
protocols. The presented approach is capable of solving
some of the problems that usually occur while providing
Web Services on mobile devices, e.g., the problem of
constantly changing IP addresses. Furthermore, the overhead
that is inherent (resulting in a transmission delay) in the
presented approach does not seem to be a show stopper. As
shown, the performance in commonly available mobile
networks, like UMTS or GPRS, is comparable to common
Web Service requests.

It can, therefore, be concluded that the presented
approach provides an interesting alternative to the common
Web Service provisioning by using mobile devices that act
as a server also from a technical point of view. It eliminates
certain problems that usually occur if mobile devices provide
Web Service provider infrastructures, and the resulting
drawbacks from the performance point of view are
acceptable.

Having in mind the power that the presented approach
would provide for new approaches and scenarios, it could be
asserted that bringing Web Services to mobile devices will
probably become more important in the future and that we
will most likely see an increasing number of applications
making use of that kind of technology.

Anyway, as shown by the test of the battery consumption
of the presented approach, the provisioning of mobile Web
Services also provides a number of drawbacks. Here, it will
be important in the future to develop scenarios that on the
one hand actually benefit from using mobile Web Services
and on the other hand try to decrease the battery
consumption of the presented approach by lowering the
polling interval accordingly. Therefore, a complete new
understanding for Web Services needs to be established, with
respect to mobile Web Services. As discussed, mobile Web
Services do usually not provide additional computational
power, access to more memory or access to large databases,
but may provide access to data from personal sensors, e.g.,
for the contextualization of the user.

On the other hand, other technologies, like C2DM
(Cloud-to-Device-Management), an Android based
technology that allows to send activation commands to a
certain mobile device might help to further decrease the

41

International Journal on Advances in Internet Technology, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

battery consumption for the provisioning of mobile Web
Services.

As also discussed in the last section, the development of
scenarios that benefit from consuming mobile Web Services
also need a new approach that on the one hand reflect the
complexity for the evaluation of mobile scenarios in general
and on the other hand the different view on mobile Web
Services (in contrast to usual Web Services) as described
above.

The last two points, using other technologies like C2DM
and the development and evaluation of scenarios with
respect to using mobile Web Services, will be part of future
investigations and research.

ACKNOWLEDGMENT
This work was partly supported by an Amazon AWS

research grant.

REFERENCES

[1] M. Jansen, “About an Architecture That Allows to Become a

Mobile Web Service Provider”, In: Proceedings of the 7th
International Conference on Internet and Web Applications
and Services (ICIW 2012), pp. 90-96.

[2] IDC Worldwide Quarterly Mobile Phone Tracker (May 2013)
[3] B. Tudor, C. Pettey, “Gartner Says Worldwide Mobile Phone

Sales Grew 35 Percent in Third Quarter 2010”, Smartphone
Sales Increased 96 Percent, Gartner,
http://www.gartner.com/it/page.jsp?id=1466313, last visited
19.11.2011

[4] S. McFaddin, C. Narayanaswami, M. Raghunath, “Web
Services on Mobile Devices – Implementation and
Experience”, In: Proceedings of the 5th IEEE Workshop on
Mobile Computing Systems & Applications (WMCSA’03), pp.
100-109, Monterey, CA

[5] S. Srirama, M. Jarke, W. Prinz, “Mobile Web Service
Provisioning”, In: Proceedings of the Advanced International
Conference on Telecommunications and International

Conference on Internet and Web Applications and Services
(AICT/ICIW 2006), p. 120, Guadeloupe, French Caribbean

[6] F. AlShahwan, K. Moessner, “Providing SOAP Web Services
and REST Web Services from Mobile Hosts”, In: Fifth
International Conference on Internet and Web Applications
and Services (ICIW 2010), pp. 174-179.

[7] L. Li, W. Chou, “COFOCUS – Compact and Expanded Restful
Services for Mobile Environments”, In: Proceedings of the 7th
International Conference on Web Information Systems and
Technologies, pp. 51-60, Noordwijkerhout, The Netherlands

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Pattern
– Elements of Reusable Object-Oriented Software”, pp. 185-
195, Addison-Wesley.

[9] D. Svensson, “Assemblies of Pervasive Services. Dept. of
Computer Science,” Institutional Repository – Lund
University.

[10] T. Kundu, K. Paul, “Android on Mobile Devices – An Energy
Perspective”, In: Proceedings of the 10th IEEE International
Conference on Computer and Information Technology (CIT
2010)

[11] A. N. Moldovan, O. Ormond, G.-M. Muntean, “Energy
consumption analysis of video streaming to Android mobile
devices”, In: Proceedings of Network Operations and
Management Symposium (NOMS), IEEE

[12] F. Ding, F. Xia, W. Zhang, X. Zhao, C. Ma, “Monitoring
Energy Consumption of Smartphones”, In: Proceedings of the
1st International Workshop on Sensing, Networking, and
Computing with Smartphones

[13] A. Caroll, G. Heiser, “An analysis of power consumption in a
smartphone”; In: Proceedings of the 2010 Annual Technical
Conference on USENIX

[14] S. Roth, “The Diaspora as a Nation’s Capital: Crowdsourcing
Strategies for the Caucasus”, International Journal of
Transition and Innovation Systems 1(1), pp. 44-58.

[15] F. Vester, “The Art of interconnected thinking: Tools and
concepts for a new approach to tackling complexity”, pp. 149-
256, McB

