
170

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On How to Provision Virtual Circuits for
Network-Redirected Large-Sized, High-Rate Flows

Zhenzhen Yan, Malathi Veeraraghavan
Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA, USA

Email: {zy4d,mvee}@virginia.edu

Chris Tracy, Chin Guok
Energy Sciences Network (ESnet)

LBNL
Berkeley, CA, USA

Email: {ctracy,chin}@es.net

Abstract—To reduce the impact of large-sized, high-rate (α)
transfers on real-time flows, a Hybrid Network Traffic Engi-
neering System (HNTES) was proposed in earlier work. HNTES
is an intra-domain solution that enables the automatic identifi-
cation of α flows at a provider network’s ingress routers, and
redirects these flows to traffic-engineered QoS-controlled virtual
circuits. The purpose of this work is to determine the best QoS
mechanisms for the virtual circuits used in this application. Our
findings are that a no-policing, two-queues solution with weighted
fair queueing and priority queueing is both sufficient and the
best for this application. It allows for the dual goals of reduced
delay/jitter in real-time flows, and high-throughput for the α
flows, to be met.

Keywords—policing; scheduling; high-speed networks; traffic-
engineering; virtual-circuit networks

I. INTRODUCTION

This paper is an extended version of a published conference
paper [1]. It describes a set of experiments that were conducted
to determine the best Quality-of-Service (QoS) mechanisms to
apply while redirecting large-sized high-rate flows to virtual
circuits within provider networks.

To move large datasets, scientists typically invest in high-
end computing systems that can source and sink data to/from
their disk systems at high speeds. These transfers are referred
to as α flows as they dominate other flows [2]. They also cause
increased burstiness, which in turn impacts delay-sensitive
real-time audio/video flows. In prior work [3], we proposed
an overall architecture for an intra-domain traffic engineering
system called Hybrid Network Traffic Engineering System
(HNTES) that performs two tasks: (i) analyzes NetFlow re-
ports offline to identify α flows, and (ii) configures the ingress
routers for future α-flow redirection to traffic-engineered
Quality-of-Service (QoS)-controlled paths. The prior paper [3]
then focused on the first aspect, and analyzed NetFlow data
obtained from live ESnet routers for the period May to Nov.
2011. The analysis showed that since α flows require high-
end computing systems to source/sink data at high speeds,
these systems are typically assigned static global public IP
addresses, and repeated α flows are observed between the
same pairs of hosts. Therefore, source and destination address
prefixes of observed α flows can be used to configure firewall
filter rules at ingress routers for future α-flow redirection. The
effectiveness of such an offline α-flow identification scheme

was evaluated with the collected NetFlow data and found to be
94%, i.e., a majority of bytes sent in bursts by α flows would
have been successfully isolated had such a traffic engineering
system been deployed [3].

The work presented here focuses on the second aspect
of HNTES by addressing the question of how to achieve
α-flow redirection and isolation to traffic-engineered paths.
Specifically, service providers such as ESnet [4] are interested
in actively selecting traffic-engineered paths for α-flows, and
using QoS mechanisms to isolate these flows. With virtual-
circuit technologies, such as MultiProtocol Label Switching
(MPLS), ESnet and other research and education network
providers, such as Internet2, GEANT [5], and JGN-X [6], offer
a dynamic circuit service. An On-Demand Secure Circuits
and Advance Reservation System (OSCARS) Inter-Domain
Controller (IDC) [7] is used for circuit scheduling and pro-
visioning.

The basic interface to the IDC requires an application to
specify the circuit rate, duration, start time, and the endpoints
in its advance-reservation request. The specified rate is used
both for (i) path computation in the call-admission/circuit-
scheduling phase and (ii) policing traffic in the data plane.
If the application requests a high rate for the circuit, the
request could be rejected by the OSCARS IDC due to a
lack of resources. On the other hand, if the request is for
a relatively low rate (such as 1 Gbps), then the policing
mechanism could become a limiting factor to the throughput
of α flows, preventing TCP from increasing its sending rate.

The purpose of this paper is to evaluate the effects of
different scheduling and policing mechanisms to achieve two
goals: (i) reduce delay and jitter of real-time sensitive flows
that share the same interfaces as α flows, and (ii) achieve high
throughput for α-flow transfers.

Our key findings are as follows: (i) With the current widely
deployed best-effort IP-routed service, which uses first-come-
first-serve (FCFS) packet scheduling on egress interfaces of
routers, the presence of an α flow can increase the delay and
jitter experienced by audio/video flows. (ii) This influence
can be eliminated by configuring two virtual queues at the
contending interface and redirecting identified α flows to
one queue (α queue), while all other flows are directed to
a second queue (β queue). (iii) The policer should not be



171

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

configured to direct out-of-profile packets of an α TCP flow
to a different queue from its in-profile packets. When packets
of the same TCP flow are served from different queues,
packets can arrive out of sequence at the receiver. Out-of-
sequence arrivals triggers TCP’s fast retransmit/fast recovery
congestion algorithm, which causes the TCP sender to lower
its sending rate resulting in degraded throughput. (iv) An
alternative approach to dealing with out-of-profile packets is to
probabilistically drop a few packets using Weighted Random
Early Detection (WRED), and to buffer the remaining out-of-
profile packets in the same queue as the in-profile packets. This
prevents the out-of-sequence problem and results in a smaller
drop in α-flow throughput when compared to the separate-
queues approach. (v) The no-policing scheme is preferred to
the policing/WRED scheme because HNTES redirects α flows
within a provider’s network, which means that these flows
will typically run TCP and are not rate-limited to the circuit
rate. If an end application requested a circuit explicitly, then
it can be expected to use traffic control mechanisms, such as
Linux tc, to limit the sending rate. But with HNTES, the
end application is not involved in the circuit setup phase, and
therefore the applications are likely to be running unfettered
TCP. Under these conditions, when buffer occupancy builds
up, packets will be deliberately dropped in the policing/WRED
scheme, leading to poor performance. Furthermore, if there are
two simultaneous α flows, the probability of buffer buildups
increases, which in turn increases the dropped-packet rate
and lowers throughput. This recommendation of using a no-
policing only scheme for α flows does not prevent the ap-
plication of other QoS mechanisms to real-time flows after
they have been separated out from α flows. (vi) The negatives
of partitioning rate/buffer space resources between two queues
were studied. Our conclusions are that close network monitor-
ing is required to dynamically adjust the rate/buffer space split
between the two queues as traffic changes, and the probability
of unidentified α flows should be reduced whenever possible
to avoid these flows from becoming directed to the β queue.

Section II provides background and reviews related work.
Section III describes the experiments we conducted on a
high-speed testbed to evaluate different combinations of QoS
mechanisms and parameter values to achieve our dual goals
of reduced delay/jitter for real-time flows and high throughput
for α flows. Our conclusions are presented in Section IV.

II. BACKGROUND AND RELATED WORK

The first three topics, historical perspective, a hybrid net-
work traffic engineering system, and QoS support in state-of-
the-art routers, provide the reader with relevant background
information. The last topic, QoS mechanisms applied to TCP
flows, covers related work.

Historical perspective: In the nineties, when Asynchronous
Transfer Mode (ATM) [8] and Integrated Services (IntServ)
[9] technologies were developed, virtual circuit (VC) services
were considered for delay-sensitive multimedia flows. How-
ever, these solutions are not scalable to large numbers of flows

because of the challenges in implementing QoS mechanisms
such as policing and scheduling on a per-flow basis. Instead,
a solution of overprovisioning connectionless IP networks
has been affordable so far. Overprovisioning prevents router-
buffer buildups and thus ensures low delay/jitter for real-time
audio/video flows. While this solution works well most of the
time, there are occasional periods when a single large dataset
transfer is able to ramp up to a very high rate and adversely
affect other traffic [10]. Such transfers, which are referred to
as α flows, occur when the amount of data being moved is
large, and the end-to-end sustained rate is high.

In the last ten years, there has been an emergent interest in
using VCs but for α-flow transfers not multimedia flows. As
noted in Section I, service providers are interested in routing
these α flows to traffic-engineered, QoS-controlled paths. The
scalability issue is less of a problem here since the number of
α flows is much smaller than of that of real-time audio-video
flows. It is interesting to observe this “flip” in the type of
applications being considered for virtual-circuit services, i.e.,
from real-time multimedia flows to file-transfer flows.

Hybrid Network Traffic Engineering System (HNTES):
Ideally if end-user applications such as GridFTP [11] alerted
the provider networks en route between the source and
destination before starting a high-rate, large-sized dataset
transfer, these networks could perform path-selection and
direct the resulting TCP flow(s) to traffic-engineered, QoS-
controlled paths. However, most end-user applications do not
have this capability, and furthermore inter-domain signaling
to establish such paths requires significant standardization
efforts. Meanwhile, providers have recognized that intra-
domain traffic-engineering is sufficient if α flows can be
automatically identified at the ingress routers. Deployment
of such a traffic-engineering system lies within the control
of individual provider networks, making it a more attractive
solution. Therefore, the first step in our work was to determine
whether such automatic α flow identification is feasible or not.

In our prior work [3], we started with a hypothesis that
computers capable of sourcing/sinking data at high rates are
typically allocated static public IP addresses, and α flows
between pairs of these computers occur repeatedly as the
same users initiate dataset transfers. This hypothesis was true
for ESnet traffic. Therefore, HNTES can determine source-
destination IP address prefixes by analyzing NetFlow reports
of completed α flows and use these address prefixes to set
firewall filters to redirect future α flows. Our heuristic was
simple: if a NetFlow report for a flow showed that more than
H bytes (set to 1 GB) were sent within a fixed time interval (set
to 1 min), we classified the flow as an α flow. This NetFlow
data analysis is envisioned to be carried out offline on say a
nightly basis for all ingress routers to update the firewall filters.
If no flows are observed for a particular source-destination
address prefix within an aging interval (set to 30 days), then
the firewall filter entry is removed. The effectiveness of this
scheme was evaluated through an analysis of 7 months of
NetFlow data obtained from an ESnet router. For this data set,



172

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

94% (82%) of bytes generated by α flows in bursts would
have been identified correctly and isolated had /24 (/32) based
prefix IDs been used in the firewall filters.

QoS support in routers: Multiple policing, scheduling and
traffic shaping mechanisms have been implemented in today’s
routers. While new mechanisms such as Flow-Aware Net-
working (FAN) [12] are being developed, in this section, we
review the particular mechanisms used in ESnet routers, and
hence in our experiments. For scheduling, two mechanisms are
used: Weighted Fair Queueing (WFQ) and Priority Queueing
(PQ) [13]. With WFQ, multiple traffic classes are defined, and
corresponding virtual queues are created on egress interfaces.
Bandwidth can be strictly partitioned or shared among the
virtual queues. WFQ is combined with PQ as explained later.
On the ingress-side, policing is used to ensure that a flow
does not exceed its assigned rate (set by the IDC during call
admission). For example, in a single-rate two-color (token
bucket) scheme, the average rate (which is the rate specified
to the IDC in the circuit request) is set to equal the generation
rate of tokens, and a maximum burst-size is used to limit the
number of tokens in the bucket. The policer marks packets
as in-profile or out-of-profile. Three different actions can be
configured: (i) discard out-of-profile packets immediately, (ii)
classify out-of-profile packets as belonging to a Scavenger
Service (SS) class, and direct these packets to an SS
virtual queue, or (iii) drop out-of-profile packets according to
a WRED profile, but store remaining out-of-profile packets in
the same queue as in-profile packets. For example, the drop
rate for out-of-profile packets can be configured to increase
linearly from 0 to 100 for corresponding levels of queue
occupancy.

QoS mechanisms applied to TCP flows: Many QoS pro-
visioning algorithms that involve some form of active queue
management (AQM) have been studied [14]–[18]. Some of
the simpler algorithms have been implemented in today’s
routers, such as RED [14] and WRED [16], while other
algorithms, such as Approximate Fair Dropping (AFD) [18],
have been shown to provide better fairness. An analysis
of the configuration scripts used in core and edge routers
of ESnet shows that these AQM related algorithms are not
enabled. This is likely due to the commonly adopted policy
of overprovisioning (an Internet2 memorandum [19] states a
policy of operating links at 20% occupancy). Nevertheless,
providers have recognized that in spite of the headroom, an
occasional α flow can spike to a significant fraction of link
capacity (e.g., our GridFTP log analysis showed average flow
throughput of over 4 Gbps across 10-Gbps paths [10]). When
the flow throughput averaged across its lifetime is 4 Gbps,
there can be short intervals in which the flow rate spiked to
values close to link capacity.

III. EXPERIMENTS

A set of experiments were designed and executed to deter-
mine the best combination of QoS mechanisms with corre-
sponding parameter settings in order to achieve our dual goals

of reduced delay/jitter for real-time traffic and high throughput
for α flows. For the first goal, we formulated a hypothesis as
follows: a scheduling-only no-policing scheme that isolates
α-flow packets into a separate virtual queue is sufficient to
keep non-α flow delay/jitter low. For the second goal, we
experimented with different QoS mechanisms and parameter
settings.

Experiment 1 was designed to understand the two modes
for sharing link rate (strictly partitioned and work conversing),
and to determine the router buffer size. Experiment 2 tests the
above-stated hypothesis for the first goal. Experiments 3 and 4
studied two different mechanisms, using a separate scavenger-
service (SS) queue vs. using WRED, for handling the out-of-
profile packets identified by ingress-side policing, and com-
pared results with a no-policing approach. We concluded that
the WRED scheme was better, but it was outperformed by the
no-policing scheme. Experiment 5 was designed to check if
the policing/WRED scheme had a fairness advantage over the
no-policing scheme. We found that since neither of the two
policed α flows honored their assigned rates (which should be
expected for HNTES-redirected flows), under the no-policing
scheme the TCP flows adjusted their sending rates and had no
packet losses, while the deliberate packet losses introduced
in the policing/WRED scheme lowered throughput for both
flows, and furthermore resulted in lower fairness because of a
difference in RTTs, even though this difference was small.
In Experiment 6, we characterized the the impact of QoS
provisioning under changing traffic conditions, and compared
two versions of TCP: Reno and H-TCP. In the presence of
an α flow that uses up its whole α-queue rate allocation,
if the background traffic is more than the rate allocated to
the β queue, the latter will suffer from more losses than if
there had been no partitioning of resources between the two
queues. This implies a need for closer monitoring of traffic
and dynamic reconfiguration of the rate/buffer allocations to
the two queues. However, since two rare events, an α flow and
an increased background load, have to occur simultaneously,
the probability of this scenario is low. H-TCP is better than
Reno for high-speed transfers, but from the perspective of the
impact on other flows, we did not see a significant difference in
our tested scenarios. Experiment 7 was designed to study the
effects of an unidentified α flow being directed to the β queue.
Here again, if there was no simultaneous α flow directed to
the α queue when the unidentified α flow appeared, then the
impact will be the same as without partitioning. However, if
this combination of rare events occurs jointly, then given that
the β queue has only a partition of the total interface rate/buffer
space, the impact on delay-sensitive flows will be greater than
if there had been no partitioning.

Section III-A describes the experimental setup, the experi-
mental methodology, and certain router configurations that are
common to all the experiments. The remaining subsections
describe the seven experiments.



173

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Experiment setup.

A. Experimental setup

The experimental network setup is shown in Figure 1. It
was called the Long Island MAN (LIMAN) testbed, and was
supported by ESnet as a DOE-funded testbed for networking
research. The high-performance hosts, W1 (West 1), E1 (East
1), and E2 (East 2), were Intel Xeon Nehalem E5530 models
(2.4GHz CPU, 24GB memory) and ran Linux version 2.6.33.
The application hosts, WA (West App-host) and EA (East App-
host), were Intel Dual 2.5GHz Xeon model and ran Linux
2.6.18. The routers, WR (West Router) and ER (East Router),
were Juniper MX80’s running Junos version 10.2. The link
rates were 10 Gbps from the high-performance hosts to the
routers, 1 Gbps from the application hosts to the routers, and
10 Gbps between the routers.

Host W1 and router WR were physically located in New York
City, while the East-side hosts and routers, and host E2, were
physically located in the Brookhaven National Laboratory
(BNL) in Long Island, New York. Host E2 was connected to
router WR via a circuit provisioned across the Infinera systems
of the underlying optical network as shown in Figure 1.

Each experiment consists of four steps: (i) plan the ap-

plications required to test a particular QoS mechanism, (ii)
configure routers to execute the selected QoS mechanisms
with corresponding parameter settings based on the planned
application flows, (iii) execute applications on end hosts to
create different types of flows through the routers, and (iv)
obtain measurements for various characteristics, e.g., through-
put, packet loss, and delay, from the end-host applications as
well as from packet counters in the routers.

A preliminary set of experiments were conducted to deter-
mine the specific manner in which the egress-side link capacity
was shared among multiple virtual queues. Theoretically, the
transmitter can be strictly partitioned or shared in a work-
conserving manner. If strictly partitioned, then even if there
are no packets waiting in one virtual queue, the transmitter
will not serve packets waiting in another queue. In this mode,
each queue is served at the exact fractional rate assigned to
it. In contrast, in the work-conserving mode the transmitter
will serve additional packets from a virtual queue that is
experiencing a higher arrival rate than its assigned rate if there
are no packets to serve from the other virtual queues. The
buffer is always strictly partitioned between the virtual queues
in the routers used in our experiments.

Figure 2 illustrates how a combination of QoS mechanisms
was used in our experiments. First, incoming packets are
classified into multiple classes based on pre-configured firewall
filters, e.g., α-flow packets are identified by the source-
destination IP address prefixes and classified into the α class.
Second, packets in some of these classes are directly sent to
corresponding egress-side virtual queues, while flows corre-
sponding to other classes are subject to policing. A single-
rate token bucket scheme is applied. If an arriving packet
finds a token in the bucket, it is marked as being in-profile;
otherwise, it is marked as being out-of-profile. Third, for some
policed flows, in-profile and out-of-profile packets are sent to
separate egress-side virtual queues, while packets from other
policed flows are subject to WRED before being buffered in a
single virtual queue. On the egress-side, each virtual queue is
assigned a priority level, a fractional allocation (expressed as a
percentage) of link capacity, and a fractional allocation of the

Figure 2. Illustration of QoS mechanisms in a router.



174

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

buffer. As noted in the previous paragraph the buffer allocation
is strictly partitioned while the transmitter is shared in work-
conserving mode. Fourth, the WFQ scheduler decides whether
a virtual “queue is in-profile or not,” by comparing the rate
allocated to the queue and the rate at which packets have been
served out of the queue. Finally, the PQ scheduler selects the
queue from which to serve packets using their assigned priority
levels, but to avoid starvation of low-priority queues, as soon
as a large enough number of packets are served from a high-
priority queue to cause the status of the queue to transition to
out-of-profile, the PQ scheduler switches to the next queue in
the priority ordering. When all queues become out-of-profile,
it starts serving packets again in priority order. It is interesting
that while the policer is flagging packets as in-profile or out-
of-profile on a per-flow basis, the WFQ scheduler is marking
queues as being in-profile or out-of-profile.

B. Experiment 1

1) Purpose and execution: The goals of this experiment
were to (i) determine the router buffer size, (ii) determine
the default mode used in the routers for link capacity (rate)
sharing (between the two options of strict partitioning and
work-conserving), and (iii) compare these two modes. Corre-
spondingly, three scenarios were tested with different router
configurations. To control rate and buffer allocations, the
router software required the configuration of a virtual queue
on the egress interface, even if it was just a single queue to
which all flows were directed. In scenario 1, by modifying the
buffer allocation for the virtual queue, router buffer size was
determined. In scenario 2, by modifying the rate allocation, the
default mode for capacity sharing was determined. Finally, in
scenario 3, the router was explicitly configured to operate in
the two different modes for comparison.

As per our execution methodology, the first step was to
plan applications. For the first two scenarios, we planned
to use two UDP flows created by the nuttcp application,
and a “ping” flow to send repeated echo-request messages
and receive responses. The purpose of the ping flow was to
measure round-trip delays. While other applications could be
used to emulate delay-sensitive flows, we chose a simple ping
flow as it was sufficient for our needs. The UDP flow was used
to fill up the router buffer. Only one UDP flow was required
for the third scenario. Hosts W1 and E2 were used to generate
the two UDP flows, both of which were destined to host E1.
Different hosts were used to achieve high transfer rates. The
ping flow sent messages from host WA to host EA. Therefore,
contention for buffer and bandwidth resources occurrred on
the link from router WR to router ER.

Our next step was to configure the routers. A single virtual
queue was configured on the output interface from WR to
ER, and all application flows were directed to this queue. In
scenario 1, the whole link capacity was assigned to the virtual
queue, but the buffer allocation was changed from 20% to
100%. In scenario 2, the assigned rate was varied from 1%
to 100%, while the buffer allocation was set to 100%, and in

scenario 3, the rate and buffer allocations were set to 20%,
and the capacity sharing mode was explicitly configured.

Next, we executed the experiments corresponding to the sce-
narios. For the first two scenarios, each nuttcp application
was initiated with the sending rate set to 7 Gbps, resulting in a
total incoming rate of 14 Gbps in order to fill up the buffer of
the 10 Gbps WR-to-ER interface. Due to the resulting packet
losses, nuttcp at the receiving host E1 reported rates of
approximately 5 Gbps for each UDP flow. In scenario 3, the
sending rate of the single UDP flow was set to 3 Gbps. This
was sufficient given the 20% rate allocation to the configured
virtual queue on the WR-to-ER link in this scenario. In all
three scenarios, the UDP flows and ping flow were run for 60
seconds.

Finally, for the first and third scenarios, round-trip time
(delay) measurements were obtained from the ping application
on the WA host. For the second scenario, router counters for
outgoing packets on the WR-to-ER link were read in order
to find the number of packets transmitted within 60 seconds
under different rate allocations.

2) Results and discussion:

Router buffer size: The ping packet delay measured in
scenario 1 is plotted against the ping packet number, which is
effectively the same as time, in Figure 3. With increasing time,
the ping delay increases gradually because the nuttcp UDP
packets start filling the buffer partition allocated to the virtual
queue on the WR-to-ER interface. The minimum ping delay
(2.1 ms) was observed when there were no UDP flows, i.e.,
there was no background traffic. The maximum delay (102
ms) was observed when the buffer allocation for the virtual
queue was 100%.

In the various plots of Figure 3, the buffer allocations for
the virtual queue are indicated. When the buffer allocation
was limited to 20%, the delay was only 22.2 ms, while when
the buffer allocation was set to 100%, the ping delay was
higher because the whole buffer had filled up. Recall that the
aggregate arrival rate of packets destined for the WR-to-ER link
was 14 Gbps, while the outgoing link rate was only 10 Gbps.

Based on these observations, the buffer size for the WR-to-
ER egress interface can be computed as follows:

10 Gbps× (102− 2.1) ms = 125 MB (1)

Default mode for link capacity sharing: From the experi-
ments conducted in Scenario 2, the router counters for the WR-
to-ER were recorded, and are shown in Table I. The reported
packets were almost the same for all values of the link capacity
allocation. Recall that the buffer allocation was set to 100%
for this scenario. In other words, even if only a 1% rate
was assigned to the virtual queue in which packets from all
three flows were held, the virtual queue was served at 100%
capacity. This result verifies that the default mode of operation
for the tested router is the work-conserving mode.

Comparison of the two rate sharing modes: Two rate
sharing strategies, strictly partitioned and work conserving,



175

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Experiment 1 scenario 1 results: Ping delay for different buffer
allocations (rate allocation was 100%).

Figure 4. Experiment 1 scenario 3: Results comparing the two rate sharing
modes (rate and buffer allocation was 20%).

were compared in Scenario 3. Figure 4 shows the ping
delay results under these two configurations. In the strictly
partitioned configuration, ping delays built up to 102 ms.
Recall that for scenario 3, the virtual queue rate and buffer
allocations were set to 20%, which was confirmed as follows:

R =
125 MB × 0.2

(102− 2.1) ms
= 2 Gbps (2)

Under the work-conserving configuration, ping delay was
only 2.1 ms (the round-trip time with no background traffic).
Recall that the UDP flow sending rate was 3 Gbps in this
scenario, while the rate allocation was only 2 Gbps. Yet there
was no queue buildup in the buffer, which means the egress
interface was served at a rate greater than 3 Gbps. Thus, in
the work-conserving mode, virtual queues that have packets
are served with excess capacity, if any.

C. Experiment 2

1) Purpose and execution: The goals of this experiment
were to (i) determine whether α flows have adverse effects on
real-time flows, and (ii) determine whether a scheduling-only
no-policing solution of α-flow isolation to a separate virtual
queue is sufficient to meet the first goal of keeping non-α flow
delay/jitter low.

The first step was to plan a set of applications. We decided
to use four nuttcp TCP flows and a ping flow. The TCP
version used was H-TCP [20] because it is the recommended
option to create high-speed (α) flows [21]. Two of the TCP
flows carried data from host E2 toward host W1, while the
other two TCP flows were from E1 to W1. The ping flow
was from EA to W1. Therefore, in this experiment, contention
for buffer and bandwidth resources occurred on the link from
router WR to host W1. Although the high-performance host
W1 was the common receiver for all flows, there was no
contention for CPU resources at W1 because the operating
system automatically scheduled the five receiving processes
to different cores.

The second step was to configure the routers. For compari-
son purposes, this experiment required two configurations: (i)
1-queue: a single virtual queue was defined on the egress
interface from WR to W1, and all flows were directed to this
queue, and (ii) 2-queues: two virtual queues (α queue and
β queue) were configured on the egress interface from WR to
W1, and WFQ scheduling was enabled with the following rate
(and buffer) allocations: 95% for α queue and 5% for β queue.
The priority levels of the α and β virtual queues were set to
medium-high and medium-low, respectively. In the 2-queues
configuration, two additional steps were required. A firewall
filter was created in router WR to identify packets from TCP
(α) flows using their source and destination IP addresses. A

TABLE I. EXPERIMENT 1 SCENARIO 2: PACKET COUNTER VALUES OBSERVED AT ROUTER WR FOR ITS WR-TO-ER INTERFACE.

Link rate allocation 1% 20% 40% 60% 80% 100%
Number of packets transmitted on
the WR-to-ER link 51924370 51536097 52755553 52669911 52786301 52637553



176

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Experiment 2: Top graph shows the delays experienced in the ping
flow under 1-queue and 2-queues configurations; bottom graph shows the
aggregate TCP flow throughput.

class-of-service configuration command was used to classify
these packets as belonging to the α class and to direct packets
from these flows to the α queue on the egress interface from
WR to W1. By default, all other packets were directed to the
β queue, which means that packets from the ping flow were
sent to the β queue.

In the third step, the applications were executed as follows.
The four TCP flow execution intervals were: (0, 200), (20,
160), (40, 140), and (60, 120), respectively, while the ping
flow was executed from 0 to 200 seconds.

Finally, throughput measurements as reported by each
nuttcp sender were collected, as were the delays reported
by the ping application.

2) Results and discussion: The top graph in Figure 5
illustrates that the scheduling-only no-policing solution of
configuring two virtual queues on the shared egress interface
and separating out the α flows into their own virtual queue
leads to reduced packet delay/jitter for the β flow. In the 1-
queue configuration, the mean ping delay was 60.4 ms, and
the standard deviation was 29.3 ms, while in the 2-queues
configuration, the mean ping delay was only 2.3 ms, with a
standard deviation of 0.3 ms.

In the 2-queues case, since the rate of the ping flow was
much lower than the 5% allocated rate for the β queue, the β
queue was in-profile, and hence the ping-application packets
were served immediately without incurring any queueing
delays.

The bottom graph in Figure 5 shows the aggregate through-
put of the four TCP flows. A comparison of this throughput
graph with the top ping-delay graph shows the following:

(i) when the aggregate TCP throughput increased from 9.4
Gbps to 10.7 Gbps at time 22, and the ping delay increased
from 3 ms to 82 ms. The nuttcp application reports average
throughput on a per-sec basis. Therefore, while the total
instantaneous throughput cannot exceed 10 Gbps (link rate),
the sum of the per-sec average throughput values for the
four TCP flows sometimes exceeds 10 Gbps, (ii) when the
aggregate TCP throughput dropped from 10.6 Gbps to 9.3
Gbps at time 49, the ping delay dropped from 92 ms to 22
ms, correspondingly, and (ii) throughput drops at 85, 121, 141,
and 161 sec coincided with ping-delay drops.

D. Experiment 3

1) Purpose and execution: The goals of this experiment
were to (i) compare a 2-queues configuration (scheduling-only,
no-policing) with a 3-queues configuration (scheduling and
policing), and (ii) compare multiple 3-queues configurations
with different parameter settings.

As per our execution methodology, the first step was to plan
applications. To study the behavior of the QoS mechanisms,
one nuttcp TCP flow and one nuttcp UDP flow (back-
ground traffic) were planned. The UDP flow carried data from
host E2 toward host W1, while the TCP flow was from E1 to
W1. Contention for buffer and bandwidth resources occurred
on the link from router WR to host W1.

In the second step, the router WR was configured with the
following QoS mechanisms. The 2-queues configuration was
the same as in Experiment 2 (no-policing), except that both
queues were given equal weight in sharing the rate and buffer
(50% each). For the 3-queues configurations, the allocations
for the three queues (α, β, and SS) to which in-profile TCP-
flow packets, UDP and ping packets, and out-of-profile TCP-
flow packets, were directed, respectively, are shown in Table II.
The priority levels of these three virtual queues were medium-
high, medium-low, and low respectively. The policer was
configured to direct in-profile TCP-flow packets (≤ 1 Gbps
and burst-size ≤ 31 KB) to the α queue, and out-of-profile
packets to the SS queue.

In the third step, experiment execution, the UDP flow rate
was varied from 0 Gbps to 3 Gbps in a particular on-off pattern
as shown in the top graph of Figure 6, and the TCP flow was
executed for the whole 200 sec. Finally, the same performance
metrics were collected as in Experiment 2.

2) Results and discussion: Figure 6 shows the TCP
throughput under the four configurations (one 2-queues and
three 3-queues) for different rates of the background UDP
flow. When the UDP flow rate was non-zero, since some
of the plots overlap, we have summarized the mean TCP-
flow throughput in Table II. When there was no background
UDP traffic, the throughput of the TCP flow was around 9.1
Gbps for all four configurations as seen in the first row of
Table II. As the background traffic load was increased, the
throughput of the TCP flow in all the 3-queues configurations
dropped more rapidly than in the 2-queues configuration, e.g.,
when the background UDP-flow rate was 3 Gbps, the TCP
throughput was in the 300-610 Mbps range for the 3-queues



177

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Experiment 3: The x-axis is time measured in seconds; the top graph
shows the on-off mode in which the UDP rate was varied; the lower graph
shows the TCP flow throughput under the four configurations.

TABLE II. EXPERIMENT 3: α-FLOW THROUGHPUT UNDER DIFFER-
ENT BACKGROUND LOADS (UDP RATE) AND QOS CONFIGURA-
TIONS.

UDP
rate

α-flow throughput (Gbps)

(Gbps) Percentages for 2-queues (α, β) and
3-queues (α, β, SS) configurations

(50,50) (49,50,1) (30,50,20) (10,30,60)
0 9.12 9.09 9.07 9.12
0.5 8.92 6.62 6.06 6.83
1 8.43 5.22 5 2.12
1.5 7.94 3.78 3.67 2.82
2 7.44 2.7 1.93 0.92
2.5 6.95 0.33 1.38 0.69
3 6.46 0.34 0.38 0.61

configurations, while the TCP throughput was 6.5 Gbps for
the 2-queues scenario (see last row of Table II).

In addition to explaining the first and last rows of Table II,
we provide an explanation for the drop in TCP-flow throughput
in the last column of the row corresponding to UDP rate of 1
Gbps, which highlights the importance of choosing the WFQ
allocations carefully.

Explanation for the first row of Table II: The explanation for
the TCP-flow throughput when there was no background traffic
is straightforward in the 2-queues configuration. As there were
no packets to be served from the β queue and the transmitter
was operating in a working-conserving manner, the β queue’s
50% allocation was used instead to serve the α queue, and

correspondingly the TCP flow enjoyed the full link capacity.
The explanation for the TCP-flow throughput values ob-

served in the 3-queues configurations requires an understand-
ing of the packet arrival pattern to the policer (see Figure 2)
and the rate at which packets leave the policer. When TCP-
flow throughput was almost the line rate (over 9 Gbps), then
the rate at which in-profile packets left the policer was almost
constant at 1 Gbps. This is because the token generation rate
was 1 Gbps and packet inter-arrival times were too short for a
significant collection of tokens in the bucket. Therefore, in an
almost periodic manner, every tenth packet of the TCP flow
was marked as being in-profile and sent to the α queue and the
remaining 9 packets were classified as out-of-profile and sent
to the SS queue. Given that in all the 3-queues configurations,
the α queue was assigned at least 10% of the link rate/buffer
space, the WFQ scheduler determined that the α queue was
in-profile, and the PQ scheduler systematically served 1 packet
from the α queue followed by 9 packets from the SS queue
thus preserving the sequence of the TCP-flow packets. In the
(49,50,1) configuration, 9 packets were served out of the SS
queue in sequence even though the queue was out-of-profile
after the first packet was served. This is because there were
no packets in the β queue and none in the α queue given
the policer’s almost-periodic direction of 1-in-10 packets to
this queue. Since no packets were out-of-sequence or lost, the
TCP-flow throughput remained high at above 9 Gbps in all
the 3-queues configurations.

Explanation for the last row of Table II: When there was
background nuttcp UDP traffic at 3 Gbps, in the 2-queues
configuration, it is easy to understand that the nuttcp TCP
flow was able to use up most of the remaining bandwidth,
which is the line rate minus the rate of background nuttcp
UDP flow, and hence the TCP-flow throughput was about 6.5
Gbps.

The explanation for the low nuttcp TCP throughput in the
3-queues configurations is that the opposite of the systematic
behavior explained above for the first row occurred here. When
the incoming packet rate to the policer was lower than the
line rate, the token bucket had an opportunity to collect a
few tokens. Therefore, when TCP-flow packets arrived at the
policer, a burst of them was classified as in-profile (since for
every token present in the bucket, one packet is regarded as
being in-profile), and sent to the α queue. These were served
in sequence, but because the transmitter had to serve the β
queue (for the UDP flow), the pattern in which the policer
sent packets to the α queue and SS queue is unpredictable and
involved bursts. This resulted in TCP segments arriving out-
of-sequence at the receiver (as confirmed with tcpdump and
tcptrace analyses presented in the next section). Out-of-
sequence arrivals trigger TCP’s Fast retransmit/Fast recovery
algorithm, which causes the sender’s congestion window to
halve resulting in lower throughput.

Explanation for the last-column entry in the row corre-
sponding to 1 Gbps in Table II: The TCP-flow throughput
dropped much faster from 6+ Gbps to 2.12 Gbps when UDP
rate increased from 0.5 to 1 Gbps in the (10,30,60) 3-queues



178

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. EXPERIMENT 4: QOS CONFIGURATIONS; OOP: OUT-OF-
PROFILE.

WFQ allocation
Configuration Policing 2-queues:(α,β) WRED

3-queues:(α,β,SS)

2-queues None (60,40) NA
3-queues + OOP to
policing1 SS queue (59,40,1) NA
3-queues + OOP to
policing2 SS queue (20,40,40) NA
2-queues +
policing + Drop prob. =
WRED WRED (60,40) queue occ.

configuration than in the other two 3-queues configurations.
This is explained using the above-stated reasoning that when
the TCP-flow packets do not arrive at close to the line rate,
the inter-packet arrival gaps allow the token bucket to collect
a few tokens, making the policer send bursts of packets to the
α queue. In this (10,30,60) configuration, after serving only
one packet from each burst, the WFQ scheduler found the α
queue to be out-of-profile since its allocation was only 10%
or equivalently 1 Gbps. This led to a greater number of out-
of-sequence arrivals at the TCP receiver than in the other two
3-queues configurations, and hence lower throughput.

In summary, the higher the background traffic load, the
lower the nuttcp TCP-flow packet arrival rate to the policer,
the larger the inter-arrival gaps, the higher the number of
collected tokens in the bucket, and the larger the number of in-
profile packets directed to the α queue. If the WFQ allocation
to the α queue is insufficient to serve in-profile bursts, packets
from the α queue and SS queue will be intermingled resulting
in out-of-sequence packets at the receiver. This fine point
notwithstanding, the option of directing out-of-profile packets
from the policer to a separate queue appears to be detrimental
to α-flow throughput. We conclude that the second goal of high
α-flow throughput cannot be met with this policing approach.
In the next experiment, a different mechanism for dealing with
out-of-profile packets was tested.

E. Experiment 4

1) Purpose and execution: The goal of this experiment was
to compare the approach of applying WRED to out-of-profile
packets rather than redirecting these packets to a scavenger-
service queue as in Experiment 3. The planned applications
were the same as in Experiment 3, i.e., to generate one
nuttcp TCP flow and one nuttcp UDP flow.

The next step was router configuration. Four configurations
are compared as shown in Table III. In the fourth option,
Out-of-Profile (OOP) packets are dropped probabilistically at
the same rate as the fraction of α-queue occupancy. In other
words, if the α queue has 50% occupancy, then 50% of the
OOP packets are dropped on average. The policing rate and
burst size settings were the same as in Experiment 3.

Both the TCP and UDP flows were executed for 200 sec,

Figure 7. Experiment 4: The x-axis is time measured in seconds; the top graph
shows the on-off mode in which the UDP rate was varied; the lower graph
shows the TCP flow throughput under the four configurations.

but unlike in Experiment 3, the rate of the UDP flow was
maintained unchanged at 3 Gbps for the whole time period.
Finally, in addition to the previously used methods of obtaining
throughput reports from nuttcp, two packet analysis tools,
tcpdump and tcptrace, were used to determine the num-
ber of out-of-sequence packets at the receiver. Additionally, to
find the number of lost packets, a counter was read at router
WR for the WR-to-W1 link before and after each application
run.

2) Results and discussion: The lower graph in Figure 7 and
Table IV show that the TCP-flow throughput is highest in the
2-queues (no-policing) scenario, with the WRED option close
behind. The policing with WRED option performs much better
than the options in which out-of-profile (OOP) packets are
directed to an SS queue. In the WRED-enabled configuration,
the TCP flow experiences a small rate of random packet loss,
as shown in Table IV, while in 3-queues configurations, there
were much higher numbers of out-of-sequence packets. The
out-of-sequence packets in the WRED-enabled configuration
result from the 15 lost packets, and are not independent events.

Surprisingly, even though the number of out-of-sequence
packets was larger for the 3-queues+policing1 con-
figuration, the throughput was higher in that configuration.
This implies that fewer number of the out-of-sequence packets
caused triple-duplicate ACKs in the first case. But this pattern
is likely to change for repeated executions of the experiment.

Finally, Figure 7 shows that in the 2-queues (no-policing)
configuration, there was degradation of throughput soon after
the flow started. Also, Table IV shows a loss of 5050 pack-
ets (the 4076 out-of-sequence packets were related to these



179

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. EXPERIMENT 4: NUMBER OF OUT-OF-SEQUENCE PACKETS AND LOST PACKETS FOR DIFFERENT QOS SETTINGS.

Measure 2-queues 3-queues+ 3-queues+ 2-queues+
policing1 policing2 policing+wred

Average throughput 6 Gbps 0.92 Gbps 0.47 Gbps 5.6 Gbps
Num. of out-of-sequence
packets at the receiver 4076 8812 7199 15
Num. of lost packets at
the WR-to-W1 router link 5050 0 0 15

losses). Using tcptrace, we found that these losses occurred
at the start of the transfer. This is explained by the aggressive
growth of the congestion window (cwnd) in H-TCP, which
uses a short throughput probing phase at the start. During the
1st second, the throughput of the TCP flow averaged 5.7 Gbps.
The 5050 lost packets occurred in the 2nd second. These losses
occurred in the WR router buffer on its egress link from WR
to W1. If H-TCP increased its cwnd to a large enough value
to send packets at an instantaneous rate higher than 7 Gbps,
then given the presence of the UDP flow at 3 Gbps, the α
queue would fill up. From Experiment 1, we determined that
the particular router used as WR has a 125 MB buffer. Since
the buffer is shared between the α and β queues in a strictly
partitioned mode with the 60-40 allocation, the α queue has
75 MB, which means that if the H-TCP sender exceeds the 7
Gbps rate by even 600 Mbps, the α queue will fill up within
a second. Inspite of this initial packet loss, the 2-queues
no-policing configuration achieves the highest throughput. In
the next experiment, we consider the question of whether the
use of policing and WRED has a fairness advantage when
multiple α flows share a queue.

F. Experiment 5

1) Purpose and execution: The goal of this experi-
ment was to understand how two α flows compete for
bandwidth under different 2-queues configurations: with-
out policing (2-queues), and with policing and WRED
(2-queues+policing+WRED). In a first scenario, the α
flows had similar round-trip times (RTTs), while in a sec-
ond scenario, the RTTs differed significantly. We expected a
fairness advantage for the policing/WRED scheme, but found
the opposite. This is because neither of the two policed α
flows honored their assigned rates, and while under the no-
policing scheme the TCP flows adjusted their sending rates
and had no packet losses, the deliberate packet losses in
the policing/WRED scheme lowered throughput and resulted
in a lower fairness. Thus, the no-policing configuration out-
performs the configuration with policing and WRED from
both throughput and fairness considerations when neither flow
honors the policed rate.

The first step was to choose applications. Two nuttcp TCP
flows were planned. The first TCP flow (TCP1) was from host
E2 to host W1, and the second TCP flow (TCP2) was from
host E1 to host W1. The RTTs were similar but not exactly

the same. The RTT was 1.98 ms on the E2-to-W1 path and
2.23 ms on the E1-to-W1 path, because the latter path passes
through an additional router, ER.

The router configurations were as follows. In the
2-queues configuration, packets from both TCP flows were
directed to an α queue, with the rate and buffer allocations
set to (60,40) for the α and β queues, respectively. In the
2-queues+policing+WRED configuration, the policing
rate/burst size settings were the same as in Experiment 3, and
Out-of-Profile (OOP) packets were dropped probabilistically
with the same settings as in Experiment 4 ([0,100] drop
probability corresponding to [0,100] buffer occupancy.
TCP1 and TCP2 execution intervals were (0, 200) and (51,

151), respectively. In the different-RTTs scenario, the RTT of
TCP2 was increased by 50 ms using tc. Finally, through-
put and retransmission data were collected every second by
nuttcp at the senders.

2) Results and discussion: Experimental results are pre-
sented for the similar-RTT and different-RTTs scenarios.

Similar-RTT scenario:
Figure 8 shows the throughput of the two TCP flows when

they compete for the bandwidth and buffer resources of the
α queue. In the 2-queues configuration, the throughput of
TCP1 was approximately 9.4 Gbps for the first 50 seconds,
but dropped to 7.1 Gbps at t = 51, since TCP2 was initiated
then. In the 52nd second, both flows suffered packet losses,
with TCP1 requiring 2418 retransmissions and TCP2 requiring
3818 retransmissions. Since the sum of the rates of the flows
exceeded 10 Gbps, it caused losses and retransmissions in
the 52nd sec. After the 52nd second, there were no retrans-
missions on either flow. The per-second throughput recorded
by nuttcp, from t = 51 to t = 151 during which both
TCP flows were active, is shown in Figure 9. As the buffer
filled up and queueing delays increased, TCP acknowledg-
ments (ACKs) would have been delayed causing RTT for
TCP1 to increase. This decreased the effective sending rate
(cwnd/RTT). No losses occurred in the rest of the experiment
because as sending rates increased in one or both flows, the
buffer filled up delaying packets, and hence increasing RTT,
which in turn caused the sending rate to drop thus reducing
buffer buildups. This oscillatory behavior can be observed in
the throughput sum plot of Figure 9. The higher rate of TCP1
could be because of the slightly lower RTT for this flow when



180

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Experiment 5: Throughput of two TCP flows under two QoS
configurations (similar RTTs).

Figure 9. Experiment 5: Throughput of two TCP flows, and their total
throughput in the 2-queues configuration (similar RTTs).

compared to that of TCP2.

TABLE V. EXPERIMENT 5: RETRANSMISSIONS AND THROUGHPUT
OF 2 TCP FLOWS FOR THE POLICING/WRED CONFIGURATION (SIM-
ILAR RTTs).

Time (s) TCP Retrans- Throughput (Gbps)
missions Min Median Max

TCP1 227 2.56 4.84 6.31
51 - 53 TCP2 32 0.46 0.5 1.03

TCP1 14 4.35 7.37 8.98
54 - 69 TCP2 0 0.47 1.78 4.98

TCP1 65 4.26 6.91 8.47
70 - 151 TCP2 3 1.02 2.26 4.26

Next, consider the throughput values of TCP1 and TCP2
in the 2-queues+policing+WRED configuration shown
in Figure 8. From t = 51, TCP1 suffered losses and its
throughput dropped steadily until it reached 4.35 Gbps, while
TCP2 throughput kept increasing until it reached 4.98 Gbps at
t = 69. The reason why TCP1 throughput dropped is because
of the policing limit of 1 Gbps. Packets exceeding this rate
were marked as out-of-profile. Since TCP1 rate was 9.4 Gbps
at t = 50 just before TCP2 was started, its sending rate was
well above the policing rate of 1 Gbps. Subsequent to reaching
this almost balanced throughput level at t = 69, losses, and
hence retransmissions, were observed on both flows, but there
were more losses in TCP1 (see Table V) because its rate was
higher.

The key difference between the 2-queues and
2-queues+policing+WRED configurations is that
there were no losses in the former configuration after
t = 53, while in the latter configuration both flows kept
experiencing packet losses. This is because in the second
configuration, as both flows exceeded the policing limit of
1 Gbps, a few packets were marked as out-of-profile in
both flows. Recall that under WRED packets are dropped
probabilistically at a rate equal to buffer occupancy, and since
the buffer will sometimes have packets, losses are inevitable
in the 2-queues+policing+WRED configuration. When
losses occurred under the 2-queues+policing+WRED
configuration, the slight edge in RTT for TCP1 may account
for its higher throughput when compared to TCP2. TCP1
maintained an average rate of 6.86 Gbps from t = 70 to
t = 151 when TCP2 was terminated, at which point TCP1
recovered its rate to 9.4 Gbps. The TCP2 average throughput
from t = 70 to t = 151 was smaller at 2.35 Gbps. A loss
detected with triple duplicate ACKs results in a halving of
cwnd, which is equivalent to halving the sending rate. TCP1
operated in a higher range of cwnd values when compared
to TCP2.

Using Jain’s fairness index [22],

f(x) =
(
∑n

i=1 xi)
2

n·
∑n

i=1 x2
i

xi ≥ 0 (3)

and average throughput values across the t = 51 to t = 151
time range, we computed the fairness values to be 0.97 and



181

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Experiment 5: Throughput of two TCP flows under two QoS
configurations (different RTTs).

0.8 for the 2-queues and 2-queues+policing+WRED
configurations, respectively. This does not imply that the
former is a more fair configuration; it is just that in this
experiment, given that both TCP flows did not honor the
policing limit, policing caused packet losses, and recovery
from packet losses was slower for the longer-RTT path even
if the RTT difference was small. Without policing, there were
no deliberate packet drops in the 2-queues configuration;
instead the TCP senders self-regulated their sending rates.
When the rates were high, buffer occupancy grew, but this
caused RTT to increase, which, in turn, caused a lower sending
rate.

In summary, this experiment showed that policing will result
in decreased throughput for TCP based α flows when two
or more such flows occur simultaneously. In Experiment 4,
policing with WRED did not impact throughput significantly
but there was only one TCP based α flow, unlike in this
experiment.

Different RTTs:
Figure 10 shows the throughput of the two TCP flows with

different RTTs. During the 100-second period when both TCP
flows were active, the throughput of the two TCP flows and
their total throughput are plotted in Figure 11. The throughput
of TCP1 dropped from 9.1 Gbps at t = 50 to 7.1 Gbps at t =
51, since TCP2 was initiated at time 50. In the 57th second,
when TCP2 built up its rate to 2.93 Gbps, which made the
sum of the rates exceed 10 Gbps, both flows suffered packet
losses, with TCP1 requiring 3315 retransmissions and TCP2
requiring 4118 retransmissions. After the 57th second, there
were no retransmissions on either flow. Since the RTT of TCP2

Figure 11. Experiment 5: Throughput of two TCP flows, and their total
throughput in the 2-queues configurations (different RTTs).

was increased by 50 ms, it took 6 sec to reach the time instant
when losses occurred unlike in the similar-RTT scenario in
which both flows experienced losses in 2 sec. In the second
after the losses, TCP1 recovered its throughput back to 9.38
Gbps, while TCP2 throughput decreased from 2.92 Gbps to
11 Mbps.

TABLE VI. EXPERIMENT 5: RETRANSMISSIONS AND THROUGHPUT
OF 2 TCP FLOWS FOR THE POLICING-WRED CONFIGURATION (DIF-
FERENT RTTs).

Time (s) TCP Retrans- Throughput (Gbps)
missions Min Median Max

TCP1 140 3.51 7.6 9.41
51 - 58 TCP2 1 0.003 0.086 0.54

TCP1 107 7.61 8.81 9.35
59 - 151 TCP2 4 0.056 0.42 0.98

Next, we repeated the experiments with the policing and
WRED configuration. The retransmissions and throughput of
the two TCP flows are shown in Table VI. TCP1 experi-
enced losses even after the initial set of losses unlike in
the 2-queues configuration. Consequently, TCP1’s average
throughput was lower in the 2-queues+policing+WRED
configuration (8.98 Gbps) than in the 2-queues configura-
tion (9.1 Gbps), while TCP2’s average throughput was higher
(0.43 Gbps vs 0.41 Gbps). Jain’s fairness index value for
throughput of the two TCP flows was comparable under the
two configurations (0.546 and 0.551 under the 2-queues and
2-queues+policing+WRED configurations, respectively).
The RTT difference was the dominant reason for the unfair



182

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. EXPERIMENT 6: UDP-FLOW LOSS RATE AND PING DELAY.

β queue UDP rate UDP flow average packet loss rate Average ping delay (ms)
rate and (Gbps) before, during, and after the TCP flow before, during, and after the TCP flow
buffer t ∈ (0-52) t ∈ (53-153) t ∈ (154-200) t ∈ (0-52) t ∈ (53-153) t ∈ (154-200)
allocation
20% 2 0 5.03% 0 2.25 103 2.26
30% 2 0 0 0 2.3 2.25 2.25

Reno 20% 3 0 39.33% 0 2.26 103 2.27
30% 3 0 4.57% 0 2.27 104 2.31
≥ 30% 2 or 3 0 0 0 2.26 2.26 2.26
20% 2 0 5.3% 0 2.27 103 2.27
30% 2 0 0 0 2.27 2.26 2.25

H-TCP 20% 3 0 39.3% 0 2.26 103 2.27
30% 3 0 4.67% 0 2.28 104 2.29
≥ 30% 2 or 3 0 0 0 2.26 2.27 2.27

treatment of TCP2, not the QoS configuration.

G. Experiment 6

1) Purpose and execution: The goals of this experiment
were to (i) identify the impact of QoS provisioning under
changing traffic conditions, and (ii) compare two versions
of TCP: Reno and H-TCP. In the first part, we studied the
effect of enabling QoS control, specifically, the 2-queues
configuration, on changing traffic patterns. For example, what
is the impact of background traffic increasing to 3 Gbps when
the β queue to which background traffic was directed was
allocated only 20% of the rate/buffer capacity on a 10 Gbps
link (based on previous traffic measurements). As α flows
occur infrequently, most of the time, service quality for the
background traffic would be unaffected, but if this surge in
background traffic occurred within the duration of an α flow,
there could potentially be higher losses and delays in the
background traffic than if QoS mechanisms had not been
enabled.

As mentioned in Section III-C, the TCP version used in our
experiments was H-TCP, the recommended option for high-
speed networks [21]. However, although computers dedicated
for high-speed transfers are likely to be configured to use H-
TCP, as the most widely used TCP version is still TCP Reno,
we undertook a comparative experiment.

Three applications were planned for this experiment: one
nuttcp TCP flow (from host E1 to W1), one nuttcp
UDP flow (from host E2 to W1) and one ping flow (from
host EA to W1). In the router configuration step, two queues
were configured: a β queue for the background UDP flow
and the ping flow, and an α queue for the TCP flow. The
rate/buffer allocation (the same percentage was used for both
resources) for the β queue was varied from 20% to 60% in
10% increments, and the allocations for the α queue were set
correspondingly. The applications were executed as follows:
UDP flow and ping flow in the time interval (0, 200), and the
TCP flow in the interval (53, 153). Two rates were used for
the UDP flow: 2 Gbps and 3 Gbps.

2) Results and discussion:

Goal 1: Table VII shows the UDP-flow loss rate and ping
delay under different rate/buffer allocations for the β queue
in the 2-queues configuration. Before the TCP flow was
initiated (the first 53 seconds) and after the TCP flow ends (the
last 47 seconds), even if the rate of the UDP flow exceeded
the allocated rate for the β queue (i.e., 20% allocation when
the UDP-flow rate was 3 Gbps), the UDP flow experienced no
losses, and the ping delay remained at around 2.26 ms, which
implies that there was no buffer buildup in the β queue. This
is because the transmitter was operating in work-conserving
mode, which allowed it to serve packets from the β queue as
the α queue was empty.

During the time interval (53-153) when the TCP flow was
active, with a 20% rate/buffer allocation for the β queue, a
2 Gbps UDP flow suffered a 5% packet-loss rate, and the
ping delay was 103 ms, which means the β queue was full.
When the UDP-flow rate was increased to 3 Gbps, while the
β-queue allocation was held at 20% (to model changing traffic
conditions), the UDP-flow packet loss rate increased to about
39%, and the ping delay remained at 103 ms. Such a significant
loss rate and increased packet delay would not have occurred
had separate QoS classes not been created and the buffer not
been divided. When the UDP-flow rate increased, the TCP-
flow rate would have decreased as it would also have suffered
losses. In the 2-queues configuration, the TCP flow suffered
no losses for both the combinations described above: 20% β
queue allocation with 2 Gbps UDP-flow rate, and the 20%-3
Gbps combination. This is because the TCP flow was directed
to the α queue, which had its own large (80%) buffer/rate
allocation.

Goal 2: The numbers in Table VII show that there was no dif-
ference between H-TCP and Reno with regards to the impact
of the TCP flow on the UDP and ping flows. Furthermore,
Table VIII shows that the TCP flow enjoyed the same rate for
most of its duration. When the background UDP-flow rate was
2 Gbps, the TCP-flow throughput was 7.45 Gbps, and when



183

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the UDP-flow rate was 3 Gbps, the TCP-flow throughput was
correspondingly lower at 6.45 Gbps, irrespective of β-queue
rate/buffer allocation. The only difference observed between
Reno and H-TCP was in the TCP-flow’s behavior in the first
few seconds as shown in Table IX. Recall the TCP flow was
started at t = 53. With Reno, the number of retransmissions
that occurred in the early seconds drops as the β-queue buffer
allocation was increased (and the α-queue size, to which
the TCP flow was directed, correspondingly decreased). With
smaller α-queue sizes, it appears that the TCP sender starts
reducing its sending rate sooner, and hence there were fewer
losses and retransmissions. We expected H-TCP to suffer more
losses in the initial few seconds as it is more aggressive in
increasing its sending window, but this was not observed. Both
adjusted their sending rates and experienced no losses after the
initial set of losses shown in Table IX.

TABLE VIII. EXPERIMENT 6: TCP-FLOW THROUGHPUT FOR MOST
OF THE DURATION.

Background TCP throughput
(UDP) rate Reno H-TCP
2 Gbps 7.45 Gbps 6.45 Gbps
3 Gbps 7.45 Gbps 6.45 Gbps

TABLE IX. EXPERIMENT 6: TCP-FLOW RETRANSMISSIONS IN ITS
FIRST FEW SECONDS (THE FLOW WAS STARTED AT t = 53).

UDP-flow β-queue rate/ Time Number of
rate buffer alloc. retx pkts

Reno
30% t = 54 6624

2 Gbps 40% t = 54 5811
50% t = 53 4327
60% t = 54 2645
30% t = 54 7673

3 Gbps 40% t = 54 6970
50% t = 53 5137
60% t = 54 3495

H-TCP
30% t = 54 6008

2 Gbps 40% t = 54&55 4322 & 298
50% t = 53 3825
60% t = 54 3966
30% NA 0

3 Gbps 40% t = 54 1423
50% NA 0
60% t = 54 3528

H. Experiment 7

1) Purpose and execution: As described in Section II,
HNTES uses an offline approach by analyzing NetFlow reports
of completed flows to determine source-destination addresses
of α flows, and then uses these addresses to configure firewall

Figure 12. Experiment 7: The impact of an unidentified α flow with and
without HNTES.

filters in ingress routers of a provider’s network to redirect
packets of future α flows to traffic-engineered QoS-controlled
paths. With this scheme, an α flow between a new source-
destination pair will not be identified as such until its NetFlow
reports are analyzed, which most likely will occur after the
flow completes. Such unidentified α flows will be directed to
the β queue in a 2-queues configuration. Since in such a
configuration, buffer resources are partitioned between the β
queue and α queue, the purpose of this experiment was to
study the impact of such unidentified α flows.

Three nuttcp flows were planned for this experiment: a
UDP flow from E2 to W1, TCP flow TCP1 from E2 to W1,
and a second TCP flow TCP2 from E1 to W1. In addition,
a ping flow was executed from from EA to W1. Two router
configurations were used in this experiment: (i) 1-queue: a
single virtual queue was defined on the egress interface from
WR to W1, and all flows were directed to this queue, and (ii)
2-queues: two virtual queues (α queue and β queue) were
configured on the egress interface from WR to W1, and WFQ
scheduling was enabled with the following rate (and buffer)
allocations: 60% for α queue and 40% for β queue.

The execution intervals of the flows, ping, UDP, TCP1,
and TCP2 were (0,200), (0, 200), (42, 101), and (22, 162),
respectively. The rate of the UDP flow was set to 3 Gbps.
We assumed TCP1 to be the unidentified α flow, which was
hence directed to the β queue, while TCP2 was assumed to
be an α flow from a previously seen source-destination pair,
and hence directed to the α queue. The ping and UDP flows
were directed to the β queue. Measurements were collected
from the nuttcp and ping applications.



184

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Results and discussion: The throughput of the two TCP
flows and the ping delays are shown in Figure 12. In the
1-queue configuration, during the 60 seconds when both
TCP flows were active, TCP1 throughput kept increasing to
4.16 Gbps, while TCP2 throughput kept decreasing from 6.5
Gbps to 2.26 Gbps. This is because the RTT was slightly lower
for TCP1 as discussed earlier.

In the 2-queues configuration, TCP1 throughput was only
1 Gbps. This is because the β queue allocation was 40% of
the link rate/buffer, of which 3 Gbps was used by the UDP
flow, and TCP2 was actively consuming the 60% allocation of
the α queue. The mean throughput of the new α flow (TCP1)
in the 1-queue case was 3.2 Gbps, while it was only 0.8
Gbps under the 2-queues configuration. In other words,
the presence of HNTES and the corresponding 2-queues
configuration had an adverse effect on the unidentified α flow,
though as shown in our prior work, most α-flow generating
source-destination pairs send repeated α flows [3].

TABLE X. EXPERIMENT 7: TCP-FLOW RETRANSMISSIONS AND
PING DELAYS.

(sec, no. of (sec, no. of) (sec, ping delay (ms))
TCP1 retx) TCP2 retx)

1-queue configuration
NA (23, 3267) (24, 2.25)
(50, 955) (50, 568) (50, 4.7)

2-queues configuration
NA (22, 8074) (22, 2.3)
(44, 1855) (44, 0) (44, 87.3)
(60, 7) (60, 0) (60, 30.2)
(82, 7) (82, 0) (83, 48.5)

Consider the impact of the unidentified α flow on the
ping flow. In the 1-queue configuration, the ping delay was
around 2.3 ms until TCP2 was initiated at t = 22, at which
instant the ping delay surged up to 65.9 ms as seen in Figure 12
because of the buffer build-up from TCP2 packets. Since H-
TCP is aggressive in increasing its sending rate, in its 2nd

second (t = 23), there were 3267 packet drops as shown in
Table X. With all these losses, ping delay correspondingly
dropped down to 2.25 ms at t = 24. However, the delay
quickly increased back to the 56 ms range peaking at 88.7 ms
at t = 49. As shown in Table X, it took a few seconds after
TCP1 was initiated for both TCP1 and TCP2 to experience
packet losses causing ping delay to drop back down to 4.7
ms at t = 50. Beyond this time instant, neither TCP flow
suffered losses with both adjusting their sending rates based
on received acknowledgments and ping delay peaked at 91.5
ms at t = 101 when TCP1 ended. The ping delay dropped to
34 ms and increased to 47.9 ms at which point it dropped to
2.3 ms at t = 162 when TCP2 ended.

In the 2-queues configuration, the ping delay stayed
around 2.3 ms even after TCP2 was initiated as seen in
Figure 12 (because TCP2 was directed to a different queue),
but increased to 87.3 ms when TCP1 was initiated at t = 43

(since TCP1 representing an unidentified α flow was directed
to the same queue as the ping flow). TCP2 suffered no losses
after the initial losses of 8074 packets in its first second. On the
other hand, TCP1 suffered losses not only in its first second
(1855 losses), but again at t = 60 and t = 82. During these
seconds, ping delay dropped correspondingly from 103 ms at
t = 59 to 30.2 ms at t = 60, and from 103 ms at t = 82
to 48.5 ms at t = 83. These results illustrate that the smaller
buffer allocation for the β queue can have a negative effect
on real-time flows when an unidentified α flow appears.

In summary, QoS partitioning does have negative effects
when mismatched with traffic as shown in Experiment 6,
and when α flows are undetected and hence handled by the
partition set aside for β flows. Nevertheless, the benefits of
QoS partitioning as illustrated in the first five experiments
outweigh these costs.

IV. CONCLUSIONS AND FUTURE WORK

To reduce the impact of large-sized, high-rate (α) transfers
on real-time flows, a Hybrid Network Traffic Engineering
System (HNTES) was proposed in earlier work. HNTES is
an intra-domain solution that enables the automatic identi-
fication of α flows at a provider network’s ingress routers,
and redirects these flows to traffic-engineered QoS-controlled
virtual circuits. The purpose of this work was to determine
the best QoS mechanisms for the virtual circuits used in this
application. Our findings are that a no-policing, two-queues
(one for α flows and one for β flows) solution with weighted
fair queueing and priority queueing is both sufficient and the
best for this application. It allows for the dual goals of reduced
delay/jitter in real-time flows, and high-throughput for the α
flows, to be met.

We studied two types of policing schemes for handling out-
of-profile packets: redirection to a (third) scavenger-service
(SS) queue and Weighted Random Early Detection (WRED)
in which out-of-profile packets are either dropped probabilis-
tically according to some profile or held in the same queue
as in-profile packets. The WRED scheme was better than the
SS-queue scheme because the latter caused out-of-sequence
arrivals at the receiver, which triggered TCP congestion control
mechanisms that led to lower throughput. However, the no-
policing solution was better than the policing/WRED solution
because in this application flows are not likely to honor
the circuit rates and therefore deliberate packet drops are
inevitable in the policing/WRED solution causing lowered
throughput. The negatives of partitioning rate/buffer space
resources between two queues were studied. Our conclusions
are that close network monitoring is required to dynamically
adjust the rate/buffer space split between the two queues as
traffic changes, and the probability of unidentified α flows
should be reduced whenever possible to avoid these flows from
becoming directed to the β queue.

As future work, we plan to develop theoretical and/or sim-
ulation models to characterize the impact of QoS provisioning
schemes on TCP throughput.



185

International Journal on Advances in Internet Technology, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/internet_technology/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. ACKNOWLEDGMENT

The University of Virginia portion of this work was sup-
ported by the U.S. Department of Energy (DOE) grant DE-
SC0002350, DE-SC0007341 and NSF grants OCI-1038058,
OCI-1127340, and CNS-1116081. The ESnet portion of this
work was supported by the Director, Office of Science, Office
of Basic Energy Sciences, of the U.S. DOE under Contract No.
DE-AC02- 05CH11231. This research used resources of the
ESnet ANI Testbed, which is supported by the Office of Sci-
ence of the U.S. DOE under contract DE-AC02-05CH11231,
funded through the American Recovery and Reinvestment Act
of 2009.

REFERENCES

[1] Z. Yan, M. Veeraraghavan, C. Tracy, and C. Guok, “On how to provision
Quality of Service (QoS) for large dataset transfers,” in Proceedings of
the Sixth International Conference on Communication Theory, Reliabil-
ity, and Quality of Service (CTRQ), Apr. 21-26, 2013.

[2] S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level analysis and
modeling of nework traffic,” in ACM SIGCOMM Internet Measurement
Workshop 2001, Nov. 2001, pp. 99–104.

[3] Z. Yan, C. Tracy, and M. Veeraraghavan, “A hybrid network traffic
engineering system,” in Proc. of IEEE 13th High Performance Switching
and Routing (HPSR) 2012, Jun. 24-27 2012.

[4] Esnet. Retrieved: 09.10.2013. [Online]. Available: http://www.es.net/
[5] GEANT. Retrieved: 09.10.2013. [Online]. Available: http://www.geant.

net/
[6] JGN-X. Retrieved: 09.10.2013. [Online]. Available: http://www.jgn.nict.

go.jp/english/
[7] On-Demand Secure Circuits and Advance Reservation System

(OSCARS). Retrieved: 09.10.2013. [Online]. Available: http://www.es.
net/services/virtual-circuits-oscars

[8] J. Spragins, “Asynchronous Transfer Mode: Solution for Broadband
ISDN, Third Edition [New Books],” Jan./Feb. 1996, pp. 7.

[9] E. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
ReSerVation Protocol (RSVP),” RFC 2205, Sep. 1997.

[10] Z. Liu, M. Veeraraghavan, Z. Yan, C. Tracy, J. Tie, I. Foster, J. Dennis,
J. Hick, Y. Li, and W. Yang, “On using virtual circuits for GridFTP
transfers,” in The International Conference for High Performance Com-
puting, Networking, Storage and Analysis 2012 (SC 2012), Nov. 10-16,
2012, pp. 81:1–81:11.

[11] GridFTP. Retrieved: 09.10.2013. [Online]. Available: http://globus.org/
toolkit/docs/3.2/gridftp/

[12] A. Sniady and J. Soler, “Performance of Flow-Aware Networking in
LTE backbone,” in Proceedings of OPNETWORK2012, OPNET 2012.

[13] J. Kurose and K. Ross, “Computer networks: A top down approach
featuring the internet,” Pearson Addison Wesley, 2010.

[14] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, Aug. 1993.

[15] D. Lin and R. Morris, “Dynamics of random early detection,” in ACM
SIGCOMM Computer Communication Review, vol. 27, no. 4, Oct. 1997,
pp. 127–137.

[16] WRED. Retrieved: 09.10.2013. [Online]. Available: http://www.cisco.
com/en/US/docs/ios/11 2/feature/guide/wred gs.html

[17] R. Guérin, S. Kamat, V. Peris, and R. Rajan, “Scalable QoS provision
through buffer management,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 28, no. 4, Oct. 1998, pp. 29-40.

[18] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate fairness
through differential dropping,” ACM SIGCOMM Computer Communi-
cation Review, vol. 33, no. 2, pp. 23–39, Apr. 2003.

[19] R. P. Vietzke. (2008, Aug.) Internet2 head-
room practice. Retrieved: 09.10.2013. [Online]. Avail-
able: https://wiki.internet2.edu/confluence/download/attachments/17383/
Internet2+Headroom+Practice+8-14-08.pdf

[20] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance
networks,” in Protocols for Fast Long Distance Networks Workshop
(PFLDnet), Feb. 16-17, 2004.

[21] Retrieved: 09.10.2013. [Online]. Available: http://fasterdata.es.net/
host-tuning/linux/

[22] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
Technical Report TR-301, DEC Research, Sep. 1984.


