
41

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Comparative Study of Keyword-Based Search Features

in Content-Oriented Networks

Kévin Pognart, Yosuke Tanigawa, and Hideki Tode

Dept. of Computer Science and Intelligent Systems

Osaka Prefecture University

Osaka, Japan

{pognart@com., tanigawa@, tode@}cs.osakafu-u.ac.jp

Abstract— The Internet shows limited performances for users’

needs, especially on content sharing and video streaming.

Content-Oriented Networks (CONs) are efficient approaches

for such uses. They abandon the location-based routing of the

Internet (IP routing) for a content identifier-based routing. In

CONs, users must know the exact content identifier to request

it. To give users an easier use of CONs, we quantitatively

compare two keyword-based search features for CON: the

existing Independent Search and Merge (ISM) and Keyword-

based Breadcrumbs (KBC) we propose. While ISM uses

routers to store mapping information between a content and its

locations, and between a keyword and its corresponding

contents, the proposed KBC simply uses routers to store

information about contents went through them, in CONs based

on Breadcrumbs (BC). We present in this paper the working

schemes of ISM and KBC, and we compare their advantages

and inconvenience, and their performances using simulation

results.

Keywords-Keywords-based Breadcrumbs; Independent Search

and Merge; Content-Oriented Network; search; keyword; cache.

I. INTRODUCTION

The current Internet was made for an efficient
communication between two machines by its host-to-host
architecture. Nowadays, main use of the Internet is to watch
video streams and to share contents, but the host-to-host
architecture has limited performances. That is the reason
why we present Keyword-based Breadcrumbs (KBC) [1],
another network architecture with a user-friendly content
searching feature exploiting its specificities. The inspiration
comes from peer-to-peer (BitTorrent), which improves
content sharing performances by coordinating several users
by the contents they have. Content-Oriented Network
(CON), which is a network architecture based on peer-to-
peer features, is an alternative to the current Internet. In
CON, messages are routed using content identifier instead of
location identifier. In-network caches can store copies of
contents while keeping the same content identifier. A content
and its copies are considered identical when requesting it.

As for CON, several routing methods have been
proposed to realize it [2][3]. In our work, we particularly
focus on Breadcrumbs (BC) [4][5] due to its attractive
features described in Section II. BC is a feasible hybrid
solution that simply provides content-oriented capability
over the current IP network. This BC-based CON has simple

content caching, location and routing systems. In BC, we
assume that users and possibly routers have a content cache.
Routers have also a BC table used to route requests. When
content passes through a router, a BC entry is created in its
BC table to indicate the direction of the cached content. If
the content goes through a node having a content cache, the
content is cached. Requests are firstly sent to a server to
download contents by using IP routing. When a request
arrives at a router where a BC entry for the same content
identifier exists, the request is redirected to follow the
direction shown in the BC entry. Each next node will redirect
the request according to the direction in BC entries until
finding the content in a content cache. If an issue occurs
during the redirection, the BC entries are invalidated and the
request is forwarded again to the server by IP routing.

To perform the routing, content identifiers must be
unique. This uniqueness makes the requests difficult from a
user’s point of view. This problem also exists in the current
Internet with URLs, and it leads to the need to use web
search engines. Current web search engines are not an
efficient solution because they use location and they cannot
use cached content information. Hence, we propose KBC
[1]. We extensively designed the BC framework to
complement it with a keyword-based search feature while
keeping the way of working of BC and its advantages. We
introduced different KBC request behaviors to retrieve
answers. Also, we have implemented another keyword-based
retrieval function called Independent Search and Merge
(ISM) [6] for comparing their architecture and their
performances.

In this paper, we present CONs. Then, we propose
principle, specifics, and settings of KBC. After that, we
describe also principle, specifics, and settings of ISM. We
evaluate KBC and ISM performances by comparing them
with some simulation scenario. After, we summarize the
advantages and inconveniences of KBC and ISM, we
conclude about our choice to work on KBC, and we talk
about our future work.

II. RELATED WORK

Our work is an enhancement of CONs from a user’s

point of view. Hence, we compared several CONs and chose

the one with interesting characteristics.

42

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Related CON schemes

To create a CON, several schemes have been proposed.
The Data oriented Network Architecture (DONA) [7], the
Network of Information (NetInf) [8], the Publish-Subscribe
Internet Routing Paradigm (PSIRP) [9], and the Content-
Centric Networking (CCN) [10] are the main approaches. In
DONA, sources publish contents into the network and their
information is spread to the nodes called resolution handlers.
A request goes to a resolution handler to be routed to the
content. Then, the content is sent back to the requester by the
reverse path or by a shortest route. NetInf can retrieve
contents by name resolution and by name-based routing.
Depending on the model used, the publication of a content
uses a Name Resolution Service (NRS) by registering the
link between the name and the locator, or it uses a routing
protocol to announce the routing information. A node having
a content copy can register it with NRS and by adding a new
name/location binding. If an NRS is available, the requester
can first resolve a content name into several available
locators and find a copy from the best source. Alternatively,
the requester can send a request with the content name for
finding a content copy by name-based routing. Then, content
found is sent back to the requester. In PSIRP, contents are
published into the network but publications receive a
particular Name Scope. Users can subscribe to contents.
Publications and subscriptions are linked by a rendezvous
system. It uses the scope identifier requested and the
rendezvous identifier to form the name of the content. And
by a matching procedure, the corresponding forwarding
identifier is sent to the content source. Then, the content is
sent to the requester. In CCN, contents are published at
servers and nodes, and routing protocols are used to
distribute the content location information. Requests are
forwarded toward a publisher location. CCN router
maintains a Pending Interest Table (PIT) for outstanding
requests. PIT maintains this state for all requests and maps
them to the requester network interfaces. Contents are then
sent to the requester interfaces. CCN can perform on-path
caching: when a content arrives at a router, this router can
cache a content copy. It allows subsequent received requests
for that content to be answered from that cache. While the
namespace of DONA, NetInf and PSIRP are flat and names
are not human-readable, the CCN namespace is hierarchical
and the names can be human-readable. Flat namespace
allows persistent names while the hierarchical one is IP
compatible. With flat namespace, the routing is structured
and the control overhead is low. With hierarchical
namespace, the routing is unstructured based on flooding and
the control overhead is high.

B. Breadcrumbs-based CON

We particularly focus on Breadcrumbs [4][5], which has
been designed to reduce server loads and to form an
autonomous CON in cooperation with cached contents. The
network is a cache network where routers can cache contents
and manage a table of BC entries, which are guidance
information to a node holding the corresponding content.
Note that in our research, actually, not core nodes but edge
nodes including STBs or terminals only have content caches

for higher feasibility, though this limitation can be removed
easily. When a content passes through a router, this router
creates in its BC table a BC entry corresponding to the
content as shown in Figure 1 (a). A BC (BC entry) is data
containing the content ID, the next node and the previous
node on the content path, and the most recent time at which
the content was requested and was forwarded via this router.
BC is used for in-network guiding of request. Nodes
information in BC is used to route requests. Time
information is used to manage BCs in BC table and delete
the outdated ones (since the last time update if any). When a
request is created at a user node, its destination is set to a
server containing the desired content in an ideal case. On its
path, if the request encounters a router where a BC
corresponding to the desired content exists, the router will
redirect the request to the direction of the next node indicated
by the BC entry, and the subsequent BC trail, series of BC
entries, will guide the request until it finds the content in a
cache as shown in Figure 1 (b). If a problem occurs during
this redirection (content not cached at BC trail destination,
lack of BC entry in the BC trail), the request is redirected to
its initial server by IP routing while invalidating the whole
corresponding BC entries. Hence, BC trails can be followed
in both directions: one is used for finding content, and the
other one is used to invalidate the BC trail. Namely, through
tracing a series of BC entries, a request can follow the
content downloaded previously. Some advantages are that
the server loads are reduced and that there is no need to

(a) Download of a content from a server

(b) Download of a content using Breadcrumbs information

Figure 1. Breadcrumbs system overview

43

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implement coordination protocol for cached contents. Also,
it combines IP-routing for the first destination of request and
BC trail routing when a right BC is found on path by
requests. In terms of feasibility and scalability, BC is very
interesting. It combines location-based routing and content
name-based routing. Moreover, since location-based routing
is the default routing system, BC can work in a partial
deployment scenario allowing incremental deployment in the
network. It has been demonstrated that this partial
deployment is feasible but the performances highly depend
on the deployment proportion [11]. Nevertheless, it has been
shown that overlay can be used to improve these
performances too.

C. Unknown contents search feature in CON

Regarding the keyword-based search feature for CON,
some approaches have been proposed. It is important to add
this feature in CON because the current web search engines
use centralized data centers, and they cannot access caches.
Hence, some advantages due to basic concepts of CON are
not used. One approach to provide such a feature is to
implement a system similar to typical multimedia search
engines into CCN [12]. This system searches the contents
similar to the content the user includes inside its request.
When a search by content name is performed, the search
interest is flooded over the network. Each node sharing
searchable content performs a feature extraction task: a
feature vector containing information about the content
characteristics is extracted for each content, and an index is
formed for each content type. When a request for similar
contents is received by a node, it performs similarity search
by comparing the request descriptors (the feature vector of
the content requested) against the index to find a set of the
most similar contents. When a node has similar contents, a
new content is created: it is a collection of corresponding
CCN links constituted by a label name for the similar object
descriptors and a target name for the CCN name. An interest
is sent to the requester to inform him about its availability.
He requests the collection objects from each interest
received. Then, data packets carrying the collections of
names of similar objects are sent to the requester. This
approach seems to be extendable to a keyword-based search
feature but it does not seem feasible for a network such as
the current Internet because of the flooding of messages all
over the network.

Another approach consists in giving each keyword (or
group of keywords) a numerical keyword ID as in
Independent Search and Merge and Integrated Keywords
Search [6]. Using these keyword IDs, the system can retrieve
the answers for a keyword-based request by finding contents
related to the keyword. This information is stored in router
tables. We will develop Independent Search and Merge
mechanisms in Section IV.

The approach we work on is Keyword-based
Breadcrumbs [1]. The main idea is to use the specificities of
Breadcrumbs [4], content information stored in routers on-
path, to store also keywords related to content in routers on
the content path. When a keyword-based request arrives at a
router, all content information is checked and if some

contents have all the requested keywords, the request is
copied to find these contents using BC specifics. These
mechanisms will be explained in the next section.

III. KEYWORD-BASED BREADCRUMBS – OUR PROPOSAL

In order to have a feasible and scalable keyword-based
search feature for CON, we propose Keyword-based
Breadcrumbs (KBC). Our goal is to add an intrinsic
keyword-based search feature to BC system while preserving
the BC advantages in terms of simplicity, scalability,
feasibility and working. For this purpose, we add elements to
BC system to allow two ways of working: the standard
working using content name-based request and sending back
of content, and a new one using keyword-based request,
where KBC entries are used to find other contents in other
location than server, and where answers are information
about content and not the content itself. To distinguish BC
system and KBC system, BC entry will be renamed to KBC
entry from now when it concerns KBC system.

A. Principle of the Keyword-Based Search Feature

The basic idea is to use KBC to find closest
corresponding contents. In the initial state, there are no
cached contents and no guidance information. When a
content is downloaded, KBCs are created on-path like in the

(a) Download of a content from a server

(b) System behavior to a keyword-based request

Figure 2. Keyword-based Breadcrumbs system overview

44

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

BC system as shown in Figure 2 (a). The difference appears
for a keywords-based request. For the KBC request, the first
destination remains a server. If the request reaches a node
with one or more KBC entries whose keywords correspond
to the requested ones, the request will be replicated as shown
in Figure 2 (b). Replicated requests follow their KBC trail
while the original request continues its path to the server.
Then, when a right content is found, an answer containing
the content ID, its list of keywords and its location is sent
back to the requester. By this method, the requester can get a
large number of answers with information for choosing the
one he wants and if there are several identical contents, he
can select the closest one. Also, IP-routing is used for
downloading a content found by such a request because the
answer gives the content ID and the location, and so
performing another BC request for this content ID is
unnecessary.

B. Specificities of KBC

 In the proposed KBC system, we created new messages
type: requests by keywords (KBC request, in opposition to
BC request for a request by content ID) and answer (to KBC
request because for BC request the answer is the content
itself). We set rules for managing the behavior of KBC
request. Also, some additions have been done to nodes to
allow the use of keywords. As described previously, content
has its list of keywords in addition to its ID for the creation
of KBCs. Each server contains contents and a server table,
which contains some of its closest other servers. This
information is used to redirect KBC request for having
enough answers. KBC entry contains the content ID, the
content keywords, the next node and the previous node on
the content path, and the most recent time the content was
requested by its ID and was seen at this node. Time
information is used to manage KBC in KBC table. If a KBC
timer reaches the time out limit because of inactivity, it is
deleted. KBC request contains the list of keywords set by the
requester, a request ID for managing answers and for
avoiding the previous issue, and the last node ID on its path.
An answer contains the content ID and its list of keywords
for allowing the user to know if this answer corresponds to
the content he wants. Also, it contains the request ID for
linking the answer to its request. And it contains the location
of the content for allowing the requester to select the closest
one he wants between several identical contents. Note that an
answer must not contain the content itself. The goal is to
search corresponding contents, but the user has to select the
content(s) he wants from the answers list before the
download. Thus, answers to KBC requests are only
information about contents and not the contents themselves.
We also made some optimization for reducing the number of
request replications:

 Routers have a KBC table and a KBC request table
containing the request IDs of recent KBC requests
that went through them. This table exists to avoid an
issue of KBC request replications loop. This issue
happens when a triangle of routers is as follows: one
KBC trail follows two edges and another one with
the same keywords list follows the last edge in the

same way. Figure 3 presents such a situation. The
two nodes containing these two KBC entries (nodes
2 and 3) create KBC request replication whenever
KBC request for the corresponding keywords list
goes in. In node 2, a replication is made for the black
KBC trail, and in node 3 a replication is made for the
white KBC trail, which will go again in node 2 via
node 1, and so on.

 In KBC request, the information of the last node ID
on path is used to reduce useless replications. When
a request follows even partially a KBC trail on its
reverse path, each router will replicate the request to
follow this KBC trail as shown in Figure 4. Then, a
lot of replications are created for only a single KBC
trail. Only the first replication to follow the KBC
trail is enough, others flood the network. Hence, if
the next node shown in KBC is equal to the previous
node on the request path, the request is not
replicated.

 In KBC answer, the addition of the content location
assures to choose the closest content between the
answers. And also, the following request for a
content found by this KBC search will not perform
another search in the network (BC request) because
this work was already done with the KBC search.

Figure 3. KBC request replications loop

Figure 4. KBC request flooding by following a KBC trail

45

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. KBC request settings

An important challenge for keyword-based search feature
in CON is to be efficient while not overloading the network
and limiting the messages flooding. We propose here two
KBC request settings to manage their behavior. As explained
previously, a request needs a server destination at its
creation. In “1 Server”, the KBC request is sent to one server
only, but we set a threshold of minimum number of answers
found in server. If this threshold is not reached, the request is
redirected to another server, which was not reached yet by
the request, thanks to the servers table. In “1 Server
Extended”, we keep the settings from “1 Server” but we
propose to add new information in contents and KBCs, the
origin server location of the content. If a KBC request finds a
KBC entry whose origin server is not one of the destination
servers, a request replication is created to go to the new
server. For “1 server extended”, we also made some
optimizations:

 We add also in KBC request a list of destination
servers, which is updated at each replication for a
server to avoid useless replications.

 We add to server a past history request ID table to
avoid several answers for the same KBC request ID.
The server sends answers for a KBC request only
one time for each KBC request ID.

 For a KBC request, original destination server and
other destination servers found on-path are
distinguished. The threshold of minimum number of
answers found in servers is tried to be reached only
with the original destination server.

IV. INDEPENDENT SEARCH AND MERGE – COMPARED

METHOD

To evaluate the efficiency of KBC, we implemented
another similar existing approach: Independent Search and
Merge (ISM) [6]. In ISM, content ID and keywords
describing the content are used to publish content. During a
keyword-based search, some routers retrieve content IDs
corresponding to the requested keywords. Then, at the user
device, only the intersection of all content IDs retrieved are
shown as the answers of the search. Then, user can perform
a search using the content ID he selected.

A. Principle of Independent Search and Merge Feature

The main idea is to link content ID to content locations,
and to link keyword to corresponding content IDs. Hence,
knowing a content ID allows the network to find easily all
locations of the content. Also, by searching for some
keywords, the network can retrieve easily content IDs
corresponding to each keyword, and by taking into account
only the intersection of all lists of answers, the user has its
final list of results. One characteristic point in ISM is that
each keyword is managed independently. To store all this
information, routers are used. They have 2 tables: A Content
Search Table, which stores for each content ID the
corresponding content locations, and a Keyword Search
Table, which stores for each keyword the corresponding
content IDs. Also, using some algorithms, these 2 tables are

not redundant between all routers. Each router is assigned to
specific keywords and content IDs.

Registering a content: To register a content, we need to map

the content ID and the content location, and we need to map

each keyword and the content ID. For this purpose, we

convert each keyword to a keyword ID, similar to content

ID but belonging to a different domain, by using a pre-

defined hash function. Also, another hash function is used to

map any ID (content ID or keyword ID) to an IP address.

The resulting IP address must correspond to an existing

router IP address. If it is not the case, the hash function is

applied again until generating a valid IP address. The

generation of a valid IP address is assured by the use of

DMap [13]. Regarding the content location, the previous

hash function is applied to the content ID to generate the

router IP address corresponding to this content ID. Then, an

insert request containing the content ID and the content

location is sent to this router. Once the router receives this

insert request, the new mapping entry is added in the router

Content Search Table. Regarding the keywords, each

keyword is converted into a keyword ID, and for each

keyword ID a router IP address is generated. For each

keyword ID, an insert request containing the keyword ID

and the content ID is sent to the corresponding router. Once

the router receives this insert request, the mapping

information is added to the router Keyword Search Table.

Because content ID and keyword ID domains are different,

routers can distinguish if the insert request concerns the

Content Search Table or the Keyword Search Table. This

scheme is explained in Figure 5 (a), where Content 1 is

uploaded in the server S1. Once the upload is done, the

content needs to be registered. Hence, S1 creates an insert

request to link Content 1 ID CID1 and its location S1, and 3

insert requests to link the keywords KW1, KW2 and KW3

to CID1. For the first insert request, the hash function is

used on CID1, and the result is the IP address of the router

R4. Hence, this insert request is sent to R4. For the

keywords, they are first converted to keyword IDs KID1,

KID2, and KID3 by another hash function, then the previous

hash function is used. KID1 leads to R1, KID2 leads to R2,

and KID3 leads to R3.

1) Requesting a content by its content ID: To request a

content using its content ID, we just need to apply the hash

function to the content ID to obtain the router IP address

where the information about the content locations is stored.

A request containing the content ID and the requester IP

address is sent to the corresponding router. Then the router

sends back the content locations found in its Content Search

Table. Finally, the requester needs to send a similar request

to one of the content locations answered to download the

content.

2) Keyword-based request: The user makes a request by

using several keywords. At the user node, each keyword is

46

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

converted to a keyword ID using the same pre-defined hash

function as the one used for registering contents. Then, for

each keyword ID, the other hash function is applied to have

the IP address of routers having information about these

keywords. Hence, for each keyword ID, a request containing

the keyword ID and the requester IP address is sent to the

corresponding router IP address. At the router, the list of

content IDs corresponding to the keyword ID is retrieved

from the router Keyword Search Table and sent to the

requester. Once the requester received all answers, only the

content IDs shared by all lists are kept and shown to the

requester. Finally, the requester can select one of the content

IDs to perform a request using the content ID. This

behavior is explained in Figure 5 (b). User A makes a

keyword-based request with the keyword KW1 and KW2.

They are converted into the keyword IDs KID1 and KID2.

By using the hash function, KID1 leads to the router R1,

and KID2 leads to the router R2. The content ID

information is sent back to user A: CID1 by KID1, and

CID1 by KID2. Only the content IDs in common are kept:

CID1. Then user A requests the content CID1. By using the

hash function, it leads to the router R4. CID1 location (S1)

is sent back to user A. Finally, user A sends a request for

CID1 at server S1, and S1 replies the content CID1.

V. EVALUATION

To evaluate KBC, we used different simulation

scenarios for KBC and ISM. We use the simulation results

to compare them.

A. Simulation Scenario

1) General settings:

 Network Topology: To evaluate the proposed
schemes, we use a flat router-network based on the
Waxman model on a lattice points of 1000x1000,
α=0.1 and β=0.05 [14]. There are 1000 routers, 5000
users and 50 servers. Each router is linked to five
users and the server locations are chosen according
to uniformly random distribution. Regarding caches,
only edge nodes including STBs or terminals have
content caches for higher feasibility, though this
limitation can be removed easily. Each cache can
have a maximum of two contents.

 Keywords: we set three types of keywords (KW1,
KW2 and KW3), which are hierarchically linked. All
contents and requests contain one of each previous
type of keywords (1 KW1, 1 KW2 and 1 KW3). In
KBC system, a KBC request is initially routed
toward a server. Keyword types are hierarchical for
practicability of the initial routing. KW1 represents
the main characteristic of the content (video, audio,
etc.). Only keywords belonging to a single KW1 are
used. KW2 represents a sub-domain of KW1 (if
KW1 is “Video”, KW2 can be “Action”, “News”,
“Sports”, etc.). There are 25 different keywords for
KW2. KW3 is a more specific keyword describing
more precisely the content. For each KW2, there are
four keywords possible for KW3. In total, 100
keywords combinations are possible.

 Contents: Servers contain in total 10,000 contents,
which are all unique by their content ID and which
are all defined by three random keywords (one of
each keyword type). Hence, each keyword
combination corresponds to around 100 contents.
Also, servers have the same contents during all the
simulation time and for each simulation.

 Requests: The two types of user request (by content
ID and by keywords) are generated at an
independent, identical and exponentially-distributed
random interval. In a first time, 50,000 requests by
content ID are made for initializing the network and
for spreading contents information. Then, we study
the systems for 55,000 content ID-based requests
and a variable number of keyword-based requests
depending on the wanted ratio between these two
request types.

 Answers: When answers for keyword-based requests
are received, one of them is selected to download the
content.

We have four requests patterns to switch between content
ID-based (CID) requests and keyword-based (KW) requests.
For 1 KW request, 2 CID requests are performed (2 CID), 4
CID requests are performed (4 CID), 10 CID requests are

(a) Registering of a content

(b) System behavior to a keyword-based request followed by a content

download request

Figure 5. Independent Search and Merge system overview

47

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performed (10 CID) or 15 CID requests are performed (15
CID). Also, we set four thresholds for the minimum number
of answers found in servers: 5, 10, 15 and 20. For each
threshold value, we average the results for each different
requests pattern to focus on the threshold values.

2) Keyword-based Breadcrumbs: To evaluate KBC, we

use a modified version of Breadcrumbs+ (BC+) simulator

[5] for implementing KBC. Hence, BC+ with adaptive

invalidation is used instead of BC. It is an improvement of

BC to avoid the issue in which some requests cannot reach

the intended content in a particular situation. The

differences with BC are that a BC+ entry has a list of the

previous nodes on the content path instead of the previous

one only, and if at the end of a BC trail, content is replaced

or cannot be cached, an invalidation message is sent to all

the nodes in this previous nodes list.

 Servers: Each server has address information of its
three nearest server neighbors to redirect the requests
in the situation where the threshold number of
answers from servers is not reached. Servers have
also a list of request IDs of requests, which went to
them. We did not set a size for this set. However, it
can be easily done by setting a time out to entries.

 KBC table: It does not have limitation about its size
but information about its size is collected during
simulations.

3) Independent Search and Merge: In ISM, all

information is in router tables. All content IDs are equally

distributed between all routers, and all keyword IDs are

equally distributed between all routers. The function used to

link IDs to router addresses is pre-defined. Also, at the

beginning of the simulation, the information of contents in

servers are known by the corresponding tables (content ID-

content location, and keyword ID-content ID).

B. Performances

1) Keyword-based Breadcrumbs: Figure 6 presents the

efficiency of KBC system for retrieving right contents. The

setting of 1 Server has limited performances because

requests are restrained to a close area of the first destination

server. 1 Server Extended shows high efficiency for finding

different but right contents.
 Figure 7 shows the number of KBC request replications.

With 1 Server, requests are replicated only few times in
mean, which means that it does not degrade the network
performances. With 1 Server Extended, replications are
numerous and can interfere with a good network working.

The repartition of answers between caches and servers
shown in Figure 8 is also interesting because it indicates how
many KBC trails are successfully followed. Once again in 1
Server, the results are low. On the other hand, 1 Server
Extended can find a lot of corresponding KBC trails even if
the threshold in server is low. In a small network area, KBC
requests can easily find a KBC about a content from outside
of this area. Hence with 1 Server Extended, KBC requests

can go all over the network. It is confirmed by the equality
between the number of different contents found (Unique
Contents) and the number of contents found in servers.
Figure 9 shows how many KBC requests do not gather
enough answers in servers. It indicates which thresholds are
fitting or not, knowing the number of contents and their
keywords. As expected, the lower the threshold is, the lower
the failing rate is. But if the threshold is too low, user does
not receive enough answers. About this trade-off, choosing a
medium threshold (10 or 15) seems a good compromise.

Figure 6. Content retrieval efficiency for KBC requests

Figure 7. KBC request replications

Figure 8. Repartition of answers from server or cache, and number of

unique contents found (without taking into account identical contents)

48

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. KBC TABLE SIZE

Mean size of KBC

table

Unbiased variance

of KBC table size

Standard deviation

of KBC table size

71 712 28

TABLE II. NUMBER OF ENTRIES IN ISM TABLES

Mean number of

entries in Content

Search Table

Mean number of

entries in Keyword

Search Table

10 0.125

TABLE III. NUMBER OF CONTENT LOCATIONS FOUND IN ISM

Minimum

number of

locations

found

Maximum

number of

locations

found

Mean

number of

locations

found

Standard

deviation

of number

of locations

found

Percentage

of cases

where only

the server

location

exists

1 1694 7 49 15%

Regarding the KBC tables, no limit was set because the
needed size is important to know. Table I presents the mean
size of KBC table with its unbiased variance and its standard
deviation. Viewing these results, we can propose to have a
KBC table of 100 entries, which is 1/100 of all contents in
our simulated network.

2) Independent Search and Merge: Router tables being

the center of ISM mechanism, we take a look at them.

Content and keyword information are distributed between

all routers tables. Table II shows primary information about

ISM tables. The Keyword Search Table (KST) is

conditioned only by the number of keywords and the

number of content using these keywords. Here, we have 125

keywords, which correspond to 125 KST entries distributed

in the 1000 routers KSTs. Hence, if there are too many

keywords, this table becomes too huge and unfeasable. This

is a limitation of ISM. About the Content Search Table

(CST), its size depends on the number of contents and the

number of their locations. Here, we have 10000 contents,

which correspond to 10000 CST entries distributed in the

1000 routers CSTs. Table III shows the mean number of

locations for a single content and its standard deviation. At

least, each content can be found at a server. For all contents,

there is in mean 7 user cache locations to find it, and in only

15% of keyword-based requests, only the server location

was registered.

Another aspect is the efficiency for retrieving results. ISM

presents a 100% of efficiency thanks to its mechanism.

However, it is counterbalanced by the necessity for routers

tables to have information of all keywords and all contents.

3) Comparative results: To compare KBC and ISM, we

focused on several aspects.
The mean number of packets in the network per unit time

indicates which one implies the more messages creation and
management in mean. As shown in Figure 10, KBC with the
setting “1 Server” induces the least flooding where the
setting “1 Server Extended” induces the higher flooding.
ISM is between them, however, depending on the threshold,
KBC “1 Server Extended” induces between 2% and 12%
more packets than ISM, which is still acceptable.

Figure 11 shows the search time and the download time
for a keyword-based request by using hop count. The lines
correspond to ISM results. For KBC “1 Server Extended”,
the number of necessary hops to perform a keyword-based
search depends on the minimum number of answers from

Figure 9. KBC reaching threshold failing rate

Figure 10. Mean number of packets per unit time for KBC, BC and

ISM

Figure 11. Mean no. of hops to perform a keyword-based request

49

International Journal on Advances in Internet Technology, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/internet_technology/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

server threshold. The higher the threshold is, the higher the
number of hops is. Even with a high threshold, performances
of ISM are worse than KBC. It can be explained by the
routers locations for gathering the information. In KBC, the
effective network area is small. It is close to the user and to
the original destination server of the request. In ISM, the
whole network is used to store the information. Also,
regarding the download time in ISM, a request for the
content location must be made while in KBC this piece of
information is included in the keyword-based request
answers.

ISM emphasis is on efficiency. Hence, all contents and all
locations can be found by a keyword-based request.
However, it requires router tables capacity to be high enough
to store information for all existing keywords and for all
contents, which can be unfeasible. Also, if a router has an
issue and becomes out of order, all information stored are
inaccessible and/or lost because in ISM, network-wide
coordination of routers is necessary. On the other hand, KBC
focuses on scalability and capability of adaptation. We want
to have enough answers, but only a small part of the whole
network is used. Also, the KBC information is managed
automatically with time-out in tables and with invalidation
messages in case of no more valid KBC trail.

VI. CONCLUSION

We presented in this paper a comparative study of
keyword-based search features for Content-Oriented
Network. Such features are important from a user point of
view to make the network accessible. We based our study on
the proposed Keyword-based Breadcrumbs, our keyword-
based search feature based on Breadcrumbs, and on the
existing Independent Search and Merge, another similar
feature performing differently. They are scalable and
interesting. KBC is scalable not only in CON but also in
partially deployed Breadcrumbs because keyword-based
search is close in its working to content name-based one, and
thanks to Breadcrumbs characteristics. These features focus
on different points. ISM is focused on the content retrieval
efficiency. However, be careful about the size of tables used
to store content information, because it depends on the
number of routers, contents, and keywords. Also, a failure in
the system results in a loss of data and so in efficiency. KBC
is focused on the capacity of adaptation and on the user’s
neighborhood. Content information is stored on its path, and
a keyword-based request will go to the closest server and
find close content information. There is a trade-off between
the network flooding and the search efficiency. It seems that
KBC with the setting “1 Server Extended” is a good
compromise with a high efficiency and a capacity of
adaptation.

In our future work, we want to work more on KBC by
changing our network for having non unique contents. Also,
we will take into account the content popularity, and we
want to implement an indicator of users’ satisfaction (if a

content is downloaded thanks to a keyword-based search, it
means that for the keyword list used, the user is satisfied of
this content). Also, we continue to see other possible ways to
perform keyword-based search in CON.

ACKNOWLEDGMENT

This research was supported in part by National Institute
of Information and Communication Technology (NICT),
Japan.

REFERENCES

[1] K. Pognart, Y. Tanigawa, and H. Tode, “Keyword-Based
Breadcrumbs: A Scalable Keyword-Based Search Feature in
Breadcrumbs-Based Content-Oriented Network,” in Proc.
AFIN 2014, Nov. 2014, pp. 20-25.

[2] J. Choi, J. Han, E. Cho, K. Kwon, and Y. Choi, “A Survey on
Content-Oriented Networkinf for Efficient Content Delivery,”
IEEE Communications Magazine, vol. 49, no. 3, Mar. 2011,
pp. 121-127.

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B.
Ohlman, “A Survey of Information-Centric Networking,”
IEEE Communications Magazine, vol. 50, no. 7, Jul. 2012,
pp. 26-36.

[4] E. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-
effort content location in cache networks,” in Proc. IEEE
INFOCOM 2009, Apr. 2009, pp. 2631-2635.

[5] M. Kakida, Y. Tanigawa, and H. Tode, “Breadcrumbs+:
Some Extensions of Breadcrumbs for In-network Guidance in
Content Delivery Networks,” in Proc. SAINT 2011, Jul. 2011,
pp. 376–381.

[6] Y. Mao, B. Sheng, and M. Chuah, “Scalable Keyword-Based
Data Retrievals in Future Content-Centric Networks,” in Proc.
2012 Eighth International Conference on Mobile Ad-hoc and
Sensor Networks (MSN), Dec. 2012, pp. 116-123.

[7] T. Koponen, et al., “A Data-Oriented (and Beyond) Network
Architecture,” in Proc. SIGCOMM ’07, Aug. 2007, pp. 181-
192.

[8] B. Ahlgren, et al., “Second NetInf Architecture Description,”
Deliverable D-6.2 in The Network of the Future - FP7-ICT-
2007-1-216041, Apr. 2010.

[9] M. Ain, et al., “Architecture Definition, Component
Descriptions, and Requirements,” Deliverable D2.3 in
Publish-Subscribe Internet Routing Paradigm - FP7-INFSO-
IST-216173, Feb. 2009.

[10] V. Jacobson, et al., “Networking named content,” in Proc.
ACM CoNEXT 2009, Dec. 2009, pp. 1-12.

[11] T. Tsutsui, H. Urabayashi, M. Yamamoto, E . Rosenweig, and
J. Kurose, “Performance Evaluation of Partial Deployment of
Breadcrumbs in Content Oriented Networks,” in Proc. IEEE
ICC FutureNet 2012, Jun. 2012, pp. 5828-5832.

[12] P. Daras, T. Semertzidis, L. Makris, and M. Strintzis,
“Similarity Content Search in Content Centric Networks,” in
Proc. ACM MM '10, Oct. 2010, pp. 775-778.

[13] T. Vu, et al., “DMap: A Shared Hosting Scheme for Dynamic
Identifier to Locator Mappings in the Global Internet,” in
Proc. IEEE ICDCS 2012, Jun. 2012, pp. 698-707.

[14] B. M. Waxman, “Routing of Multipoint Connections,” IEEE
J. Sel. Areas Comms (Special Issue on Broadband Packet
Communication), vol. 6, no. 9, Dec. 1998, pp. 1617-1622.

