
41

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Checklist for the API Design
of Web Services based on REST

Pascal Giessler, Roland Steinegger,
and Sebastian Abeck

Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: pascal.giessler@kit.edu,

Email: roland.steinegger@kit.edu,
Email: sebastian.abeck@kit.edu

Michael Gebhart

iteratec GmbH
Stuttgart, Germany

Email: michael.gebhart@iteratec.de

Abstract—The trend towards creating web services based on
the architectural style REpresentational State Transfer (REST)
is unbroken. Several best practices for designing RESTful web
services have been emerged in research and practice to ensure
some degree of quality and share solutions to recurring challenges
in the area of API design. But, these best practices are often
described differently with the same meaning due to the nature
of natural language. Also, they are not collected, categorized
and presented in a central place but rather distributed across
several pages in the World Wide Web, which impedes their
application even further. Furthermore, it is often unclear which
best practice has to be taken into account when designing a
RESTful API for a particular scenario. In this article, we identify,
collect, and categorize several best practices for designing APIs
for RESTful web services and form a checklist. To support a
prioritization of relevant best practices, we have mapped them on
quality characteristics of the ISO/IEC 25010/2011. For illustration
purpose, we apply the checklist on the CompetenceService as
part of the SmartCampus ecosystem developed at the Karlsruhe
Institute of Technology (KIT).

Keywords–REST; RESTful; best practices; checklist; quality-
driven; catalog; design; quality; api design; resource-orientation;
SmartCampus

I. INTRODUCTION

This article is an extended version of [1]. It represents a
collection of common best practices for designing Application
Programming Interface (API)s for RESTful web services that
have been derived from a range of articles, magazines, and
pages on the World Wide Web (WWW). The motivation for
this collection was because more and more web services
based on the architectural style REST over Hypertext Transfer
Protocol (HTTP) were developed and deployed compared to
traditional web services with Simple Object Access Protocol
(SOAP). This trend can also be seen at big companies, such as
Twitter or Spotify, are using REST-like API for their services,
which are shown in their API documentations [4] [5]. We are
calling it REST-like at this point since we do not want to
evaluate if this API considers all constraints of the uniform
interface defined by Fielding [6] and can, therefore, be called
RESTful. But, there is a lack of standards and guidelines on
how to design an appropriate API, for example regarding the
usability or the maintainability [2] [3].

Today, an own business model has been established around
APIs when looking at the revenue of Salesforce or Expedia [7]
[8]. For instance, “Salesforce.com generates 50% of its revenue
through APIs,” [7] according to the Harvard Business Review.
That is why it is more important than ever that APIs have to be
designed carefully especially when dealing with a large user
base and heterogeneous platforms. For example, a change of
an API should not break any consumer and, therefore, must be
robust toward evolvability of the API. As discussed in [9], the
API design and its strategy were also identified as a solution
approach for the challenges of the digital transformation in
software engineering.

To meet these challenges regarding the design of APIs,
we have collected, categorized and formalized several best
practices in the form of a checklist so it can be easily applied
during the design of APIs for RESTful web services. To
support a prioritization and selection of relevant best practices
for a particular application scenario, we have mapped them
on quality characteristics of the ISO 25010:2011 [10]. For
instance, if it is important to support mobile platforms, then
you should consider reducing the necessary requests to get the
needed information.

For the purpose of illustration, we first show how we have
integrated the checklist in our software development process
to ensure an API design with quality in mind. Besides, we
show exemplarily the applied best practices on the Compe-
tenceService as part of the SmartCampus system at the KIT.
The SmartCampus is a system that provides functionality for
students, guests, and members of a university to support their
daily life. Today, the SmartCampus is designed according to
the trending microservice approach [11] and offers already
some services, such as the ParticipationService to support
the decision-making process between students, professors and
members of the KIT with a new approach called system-
consenting [12]. The developed services at the SmartCampus
are based on REST, so that they can be used for several
different devices as a lightweight alternative to SOAP.

The current paper is structured as follows: In Section II,
the architectural style REST will be described in detail to lay
the foundation for this article. Afterward, existing papers and
articles will be discussed in Section III to show the necessity

42

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of identification, collection, and categorization of existing best
practices for the API design of RESTful web services. The
CompetenceService is presented in Section IV of which the
best practices will be exemplarily illustrated. Besides, our
development process will be described to show how APIs
will be designed and how the best practices are integrated.
In Section V, the checklist containing the best practices will
be explained in detail. Section VI focusses the mapping of
quality characteristics of the ISO 25010:2011 [10] onto the
previously introduced best practices by illustrating them on a
concrete scenario. Finally, a summary of this article and an
outlook on further work will be given in Section VII.

II. FOUNDATION

This section shall impart the necessary foundation for the
scope of this article. First, the architectural style REST and
its constraints will be described. Then, the term API will be
described while a classification model for APIs based on REST
will be introduced. In addition, informal characteristics of a
API will be represented that can be found in literature.

A. REpresentational State Transfer (REST)
REST is an architectural style, which was developed and

first introduced by Fielding [6] in his dissertation. According to
Garlan and Shaw [13], an architectural style can be described
as follows: “an architectural style determines the vocabulary
of components and connectors that can be used in instances of
that style, together with a set of constraints on how they can
be combined.” [13, p. 6].

For the design of REST, Fielding [6] has identified four
key characteristics, which were important for the success
of the current WWW [14]. To ensure these characteristics,
the following constraints were derived from existing network
architectural styles together with another constraint for the
uniform interface [6]:

1) Client and Server: A client component sends a re-
quest to a server component for executing a remote
operation. It is incumbent upon the server component
to perform or reject the request [6].

2) Statelessness: Each request from client to server has
to contain all necessary information to perform the re-
quest, which leads to the following advantage: “There
is no need for the server to maintain an awareness
of the client state beyond the current request” [6, p.
119].

3) Layered Architecture: A layered-client-server archi-
tecture enables the application of the Separation of
Concern (SoC) principle and the opportunity to add
features like load balancing or caching mechanisms
to multiple layers [6] [15].

4) Caching: This constraint allows a client to match its
request to a previous response from the server with
the result that no request has to be transmitted over
the network [14].

5) Code on Demand: With the usage of Code on De-
mand, additional programming logic can be requested
from the server that is needed for processing received
information from the server [14].

6) Uniform interface: The term “uniform interface”
(hereinafter API) can be seen as an umbrella term,
since it can be decomposed into four sub constraints

[14]: 6.1) Identification of resources, 6.2) manipula-
tion of resources through representations, 6.3) Self-
descriptive messages and 6.4) Hypermedia.

If all of these constraints are fulfilled by a web service, it can
be called RESTful. The only exception is “Code on Demand”,
since it is an optional constraint and has not be implemented
by a web service. The mentioned constraints are illustrated in
Figure 1.

$

$

$

$

$

$

$

$

Client Connector: Client+Cache: Server Connector: Server+Cache:$

$

Figure 1. REST style [6, p. 84]

B. (Web) API
An Application Programming Interface (API) is a “local

interface from higher-level component to a lower-level com-
ponent” and can also be called as a horizontal interface [16, p.
915]. It acts as a contract between the service and the service
consumer in the area of web services. It describes how the
client can communicate with the service and how the request
will be processed and responded to. An API can be called a
web API, when the interface can be accessed via the internet
or via internet-enabled technologies, such as HTTP.

For the classification of APIs based on REST, Richardson
et. al. have developed a maturity model that classifies the API
according their compliance of the mentioned preconditions for
the uniform interface (see Section II-A 6.1 - 6.4) [17]. This so-
called Richardson Maturity Modell (RMM) consists of three
different maturity levels: 1) Usage of a resource-oriented styles
rather than Remote Procedure Call (RPC) style, 2) Usage of
HTTP methods according to their semantic and, 3) Usage of
Hypermedia so that the API is self-documenting. For better
illustration, the RMM is represented by Figure 2.

Level 3 : Hypermedia

Level 2 : HTTP methods

Level 1 : Resources

Maturity

Figure 2. Richardson Maturity Model

Besides this classification, there are also informal criteria
that can be found in literature especially when looking for
integration technology. According to Newman [11], breaking
changes should be avoided. This means that the API should
be robust in terms of its evolution since it acts as a contract
between service consumer and service provider. Also, the API
should be technology-agnostic and hide internal implemen-
tation details not to increase the coupling. That is why the

43

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

API should abstract from a particular implementation by not
exposing internal details, such as the used technology or any
proprietary standard. Another important characteristic is the
simplicity, and the comprehension from a service consumer
perspective since other developers or development teams are
the primary target group.

III. BACKGROUND

This section discusses different articles, magazines and
approaches in the context of RESTful best practices, which
respect the architectural style REST and its underlying con-
cepts.

In Fielding [6], Fielding presents the structured approach
for designing the architectural style REST, while it remains
unclear how a REST-based web service can be developed in a
systematic and comprehensible manner. Furthermore, there is
also a lack of concrete examples of how hypermedia can be
used as the engine of the application state, which can be one
reason why REST is understood and implemented differently.

In [11], Newman presents a book about the microservice
approach that is followed by several companies. Although,
there is dedicated chapter regarding the ideal integration
technology, it lacks on concrete best practices or guidelines
especially for APIs based on REST. Instead of this, the book
provides rather an overview about the technology choices that
have to be made when choosing an integration technology.

Mulloy [18] presents different design principles and best
practices for Web APIs, while he puts the focus on “pragmatic
REST”. By “pragmatic REST” the author means that the
usability of the resulting Web API is more important than
any design principle or guideline. But, this decision can
lead to neglecting the basic concepts behind REST, such as
hypermedia.

Jauker [19] summarizes ten best practices for a RESTful
API, which represent, in essence, a subset of the described
best practices by Mulloy [18] and a complement of new best
practices. Comparable with [18], the main emphasis is placed
on the usability of the web interface and not so much on the
architectural style REST, which can lead to the previously
mentioned issue.

Papapetrou [20] classifies best practices for RESTful APIs
in three different categories. However, there is a lack of
concrete examples of how to apply these best practices on
a real system compared to the two previous articles.

In [21], a checklist of best practices for developing REST-
ful web services is presented, while the author explicitly
clarifies that REST is not the only answer in the area of
distributed computing. He structures the best practices in four
sections, which addressing different areas of a RESTful web
service, such as the representation of resources. Despite all
of his explanations, the article lacks in concrete examples to
reduce the ambiguousness.

Richardson et. al [14] cover in their book as a successor
of [22], among other topics, the concepts behind REST and
a procedure to develop a RESTful web service. Furthermore,
they place a great value on hypermedia, as well as Hypermedia
As The Engine Of Application State (HATEOAS), which is not
taken into account by all of the prior articles. But, the focus of
this work is the comprehensive understanding of REST rather
than providing best practices for a concrete implementation to

reduce the complexity of development decisions. s In [23],
Burke presents a technical guide of how to develop web
services based on the Java API for RESTful Web Services
(JAX-RS) specification. But, this work focuses on the imple-
mentation phase rather than the design phase of a web service,
where the necessary development decisions have to be made.

In [24], Guinard and Trifa provide a guide on how to
design and implement Internet of Things (IoT) solutions on the
Web to ensure interoperability across different platforms. They
recommend using a hypermedia approach when designing an
API. But, common challenges, such as troubleshooting of an
API, naming of resources and error handling are not discussed
in detail.

IV. SCENARIO

This section addresses the domain at which the best
practices for the API design will be illustrated. Besides, it
shows the engineering principle behind the design and the
development of the SmartCampus at the KIT to highlight the
importance of APIs and the necessity of best practices.

A. Domain
The SmartCampus is a modern web application, which

simplifies the daily life of students, guests, and members at
the university (see Figure 3). Today, it offers several services,
such as the ParticipationService for decision-making [12],
the SmartMeetings for discussions or the CampusGuide for
navigation and orientation on the campus, and the Workspace-
Service to find a free working place by using smart devices.
By using non-client specific technologies, the services can be
offered to a wide range of different client platforms, such as
Android or iOS.

Figure 3. SmartCampus [25].

The CompetenceService is a new service as part of the
SmartCampus to capture and semantically search competences
in the area of information technology. For easier acquisition
of knowledge information, the CompetenceService offers the
import of competence and profile information from various
social networks, such as LinkedIn or Facebook. The resulting
knowledge will be represented by an ontology, while the profile
information will be saved in a relational database. SPARQL
Protocol And RDF Query Language (SPARQL) is used as
the query language for capturing and searching knowledge
information in the ontology.

In Figure 4, the previously described CompetenceService is
illustrated in the form of a component diagram. As integration

44

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

technology according to Newman [11], REST was chosen
since we are dealing with semantic information that should
be reflect by the API. For implementation of the Competence-
Service, the Java framework Spring was used.

Relational
database

Ontology
database

Competence
Server

use

SQ
L

useSPARQL

Competence
Client

REST-based
API

REST-based
API

REST-based
API

Facebook

LinkedIn

Google+

XING

Figure 4. Component model of the CompetenceService.

To demonstrate the benefits of this service, a simple use
case will be described in the following. A young startup
company is looking for a new employee, who has competences
in “AngularJS” and “Bootstrap”. For that purpose, the startup
company uses the semantics search engine of the Compe-
tenceService to search for people with the desired skills. The
resulting list of people will be ordered by relevance so that the
startup company can easily contact the best match.

B. API-Driven Development Process
For the design and development of our services as part of

the previously introduced SmartCampus, we have decided to
choose the API-First key engineering principle. The API-First
engineering principle allows us to focus on the quality of the
API design before any implementation effort is made. In our
eyes, the APIs are an important and highly valuable business
asset since they define what we can do with the system.

In Figure 5, our API-First engineering principle is shown.
First, we identify the service requirements that we have
gathered from scenarios. Scenarios are described from the
perspective of a user that interacts with the software by using
its user interface [26]. The resulting service operations are used
for the first draft of the API. For the design of the API, we
have defined some API guidelines based on the checklist in
this article to ensure the consistency, maintainability, and us-
ability of our service landscape. The API guidelines represent
decisions that we have taken in previous development projects.
After the first draft of the API specification is created, an ample
peer review based on the checklist and the application scenario
will be conducted by a dedicated team to ensure the quality of
the API. For the API specification, we rely on the OpenAPI
as a vendor neutral API specification format (former Swagger
specification) since it is open source and is supported by a
vast majority of big companies, such as Google, Microsoft, and
IBM [27]. When reviewing the API, the responsible developers
have to explain their design decisions. If the resulting quality
report revealed some issues, the iteration cycle starts from the

Designing/
modifying web API

Reviewing
web API

Identifying service
requirements

Implementing
service

Implementing
service consumer

API spec
(draft)

API spec
(contract)

Service
operatons

API
guidelines

<<
us

es
>>

<<
us

es
>>

… …

Figure 5. API-First engineering principle.

beginning with the modification of the API specification draft.
In the other case, the API gets the status of a contract and will
be handed over to the appropriate development teams.

V. CHECKLIST FOR THE API DESIGN
OF WEB SERVICES BASED ON REST

This section presents eight different categories of best
practices for designing REST-based web services, whereby
each one is represented by a subsection (see Figure 6). The
categories semantically group the found best practices and
shall act as a checklist of important aspects that have to
be considered when designing APIs for web services based
on REST. Furthermore, we are providing recommendations
for each category based on literature, that we have found
during our conduction. The best practices should not be seen
as strict guidelines. Furthermore, it is important to point out
here that the fulfillment of the following best practices does
not guarantee the compliance of the mentioned constraints in
Section II. For this, the RMM can be used to analyze the
preconditions of a REST-based web service (see Section II-B).

A. Versioning
Versioning of a Web API is one of the most important

considerations during the design of web services since the API
represents the central access point of a web service and hides
the service implementation. This is why a web interface should
never be deployed without any versioning identifier according
to Mulloy [18]. For versioning, many different approaches
exist, such as embedding it into the base Uniform Resource
Identifier (URI) of the web service or using the HTTP-Header
for selecting the appropriate version [18]. But, web services
based on REST do not need to be versioned due to hypermedia.
The hypermedia aspect allows us to update the hyperlinks
at runtime since the client does not hardcoded them in its

45

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Versioning

Naming

Identification

Error Handling /
Troubleshooting

Documentation

Usage of Query
Paramters

Interaction

MIME-Types

API Design
for Web Services
Based on REST

Figure 6. Categories of best practices for designing REST-based web services

client code and is, therefore, up to date as soon as the service
provides a new representation of a requested resource.

That is why RESTful web services can be compared with
traditional websites that are still accessible on all web browsers
when modifying the content of the websites. So, no additional
adjustment is necessary on the client side. Furthermore, ver-
sioning also has a negative impact on deployed web services,
which Fielding states as follows: “Versioning an interface is
just a polite way to kill deployed applications” [28] since it
increases the effort for maintaining the web service.

B. Naming
The naming and description of resources correlates with

the usability of the web service since the resources represent
or abstract the underlying domain model. Furthermore, by
defining guidelines for naming, we can ensure a consistent
naming style across several services within the service-oriented
architecture. This leads to a consistent look and feel regardless
of the development team, who has designed and developed it.
For this category, five best practices could be identified:

1) According to Vinoski [21], Papapetrou [20] and Mul-
loy [18], nouns should be used for resource names.
Since a subresource is simply a resource with a com-
position relationship to another resource, we think
this rule should be applied here as well.

2) The name of a resource should be concrete and
domain specific, so that the semantics can be inferred
by a user without any additional knowledge [18] [20].

3) The amount of resources should be bounded to limit
the complexity of the system, whereby this recom-
mendation depends on the degree of abstraction of
the underlying domain model [18].

4) The mixture of plural and singular by naming re-
sources should be prevented to ensure consistency. In
addition, a resource should be able to handle several
entities instead of just one one. But, there may be
exceptions, such as Spotify‘s me resource [18] [19].

5) The naming convention of JavaScript should be con-
sidered since the media type JavaScript Object No-
tation (JSON) is the most used data format for the
client and server communication by this time [3] [18]
[29]. For instance, Google has defined an extensive
styleguide [30].

Figure 7 illustrates the first, second and third best practice of
this category.

1 /* ProfileController */
2 @RestController
3 @RequestMapping(value = "/profiles")
4 public class ProfilesController {
5 ...
6 @RequestMapping(method = RequestMethod.GET)
7 public List<Profile> getProfiles() {...}
8 ...
9 }

10
11 /* CompetenceController */
12 @RestController
13 @RequestMapping(value = "/competences")
14 public class CompetenceController {
15 ...
16 @RequestMapping(method = RequestMethod.GET)
17 public List<Competence> getCompetences() {...}
18 ...
19 }

Figure 7. Example for description of resources.

C. Resource Identification

According to Fielding [6], URIs should be used for unique
identification of resources. If we take it accurately, there is
no need for declaring best practices for resource identification
when following a hypermedia approach since only the meta-
information of the hyperlink will be evaluated and processed
by the service consumer. But, we have found several best
practices regarding resource identification. On the basis of
this result, we assume that most so-called REST-based APIs
are positioned on the second level of the RMM rather than
third one. That is why we have decided to list the found best
practices to improve the usability for this kind of API:

1) An URI should be self-explanatory according to the
affordance [18]. The term affordance refers to a
design characteristic by which an object can be used
without any guidance. Since the main part of a URL
consists of resource names, we have to ensure that
these names are also domain-related and not termed
in an abstract way.

2) A resource should only be addressed by two URIs.
The first URI address represents a set of states of the
specific resource and the other one a specific state of
the previously mentioned set of states [18].

3) The identifier of a specific state should be difficult
to predict [20] and not references objects directly
according to the Open Web Application Security
Project (OWASP) [31], if there is no security layer
available.

4) There should be no verbs within the URI since this
implies a method-oriented approach, such as SOAP
[18] [19].

Figure 8 illustrates the second best practice of this category.
Note that there are no verbs within the URIs, hence the fourth
best practice is also fulfilled.

46

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 /* Set of profiles */
2 competence-service/profiles
3
4 /* Specific profile with identifier {id} */
5 competence-service/profiles/{id}

Figure 8. Example for identification of resources.

D. Error Handling and Troubleshooting

As already mentioned, the API represents the central access
point web service, which is comparable with a provided inter-
face of a software component [32]. Each information about
the implementation of the service is hidden by the interface.
Therefore, only the outer behavior can be observed through re-
sponses by the web service, which is why well-known software
debugging techniques, such as setting exception breakpoints
can not be applied.

For this reason, the corresponding error message has to be
clear and understandable so that the cause of the error can be
easily identified. With this in mind, we could identify three
best practices:

1) The amount of used HTTP status codes should be
limited to reduce the feasible effort for looking up
in the specification. At this time, there are over 60
different status code with different semantic [18] [19].

2) Specific HTTP status codes should be used accord-
ing to the official HTTP specification [33] and the
extension [34] [19] [21] [20].

3) A detailed error message should be given as a hint for
the error cause on client side [18] [19]. That is why
an error message should consist of six ingredients:
3.1) An absolute Uniform Resource Locator (URL)
that identifies the problem type, 3.2) A short sum-
mary of the problem type, that is written in english
and comprehensible for software engineers, 3.3) The
HTTP status code that was generated by the origin
server, 3.4) An application specific error code, 3.5)
A detailed human readable explanation specific to
this occurrence of the problem and 3.6) An URL
with further information about the specific error and
occurrence.

4) For operational troubleshooting, it would be benefi-
cial to use an application-specific or unique identifier
that will be send with each request. This allows a
filtering of service logs, when an issue was reported.

Figure 9 illustrates the mentioned ingredients of an error
message according to the third best practice of error handling.

E. Documentation

A documentation for Web APIs is a debatable topic in the
context of RESTful web services since it represents an out-
of-band information, which should be prevented according to
Fielding: “Any effort spent describing what method to use on
what URIs of interest should be entirely defined within the
scope of the processing rules for a media type” [35]. This
statement can be explained with the fact that documentation
is often used as a reference book in traditional development

1 HTTP/1.1 503 SERVICE UNAVAILABLE
2 /* More header information */
3 {
4 "problem":
5 {
6 "type": "http://httpstatus.es/503",
7 "status": 503,
8 "error_code": 173,
9 "title": "The service is currently under

maintenance",
10 "detail": "Connection to database timed out",
11 "instance": "http://.../errors/173"
12 }
13 }

Figure 9. Example for detailed error message.

scenarios. As a result of this, it can lead to hardcoded hyper-
links in the source code instead of interpreting hyperlinks of
the current representation following the HATEOAS principle.
Also business workflows will be often implemented according
to the documentation. In this case, we call it Documentation
As The Engine Of Application State (DATEOAS). As a result
of this, we have developed a new kind of documentation in
consideration of HATEOAS to give developers a guidance for
developing a client component.

The new documentation consists of three ingredients: 1)
Some examples which show how to interact with different
systems according to the principle of HATEOAS due to the
fact that some developers are not familiar with this concept
[35], 2) an abstract resource model in form of a state diagram,
which defines the relationship and the state transitions between
resources. Also, a semantics description of the resource and
its attributes should be given in form of a profile, such as
Application-Level Profile Semantics (ALPS) [36], which can
be interpreted by machines and humans and 3) a reference
book of all error codes should be provided so that developers
can get more information about an error that has occurred.

profiles
competencies

competencies

self self

profiles

Figure 10. Example for documentation of the Web API.

Figure 10 illustrates an abstract resource model of the
CompetenceService. Based on this model, it can be derived
which request must be executed to get the desired information.
For example to get all competences of a specific profile, we
have to first request the resource profiles. This results in a set of
available profiles, whereby each profile contains one hyperlink
for further information. After following the hyperlink by
selecting the desired profile, the whole information about the
profile will be provided, as well as further hyperlinks to related
resources, such as competences.

47

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Usage of Query Parameters
Each URI of a resource can be extended with parameters to

forward optional information to the service. This is important
when operating on the result set before transmitting over the
network. For instance, the selection of relevant information
can reduce the transmitted payload. We have identified five
different use cases since they will be supported by several
platforms, such as Facebook or Twitter.

1) Filtering: For information filtering of a resource either
its attributes or a special query language can be used. The
election for one of these two variants depends on the neces-
sary expression power of the information filtering. Figure 11
illustrates how a special user group can be fetched by using a
query language [19].

1 GET /profiles?filter=(competencies=java%20and%20
certificates=MCSE_Solutions_Expert)

Figure 11. Filtering information by a using query language.

2) Sorting: For information sorting, Jauker [19] recom-
mends a comma separated list of attributes with “sort” as
the URI parameter followed by a plus sign as a prefix for
an ascending order or a minus sign for a descending order.
Finally, the order of the attributes represents the sort sequence.
Figure 12 illustrates how information can be sorted by using
the attributes education and experience.

1 GET /profiles?sort=-education,+experience

Figure 12. Sorting a resource by using attributes.

3) Selection: The selection of information in form of
attributes reduces the transmission size over the network by
responding only with the requested information. For this
purpose, Mulloy [18] and Jauker [19] recommend a comma
separated list of attributes and the term fields as the URI
parameter. Figure 14 represents an example how the desired
information can be selected before transmitting over the net-
work.

1 GET /profiles?fields=id,name,experience

Figure 13. A selection of resource information.

4) Search: The search for relevant information is a com-
mon use case. It is recommended to use the default query
parameter q or using entity attributes, such as id or uuid.

1 GET /profiles?q=Java;Scala

Figure 14. A search of relevant information.

5) Pagination: Pagination enables the splitting of
information on several virtual pages, while references for the
next (next) and previous page (prev) exist, as well as for the
first and last page (first and last).

1 GET /profiles?offset=0&limit=10

Listing 1. Requesting 10 profiles by using pagination.

As URI parameter, offset and limit were recommended,
whereby the first one identifies the virtual page and the last
one defines the amount of information on the virtual page [18]
[19]. A default value for offset and limit can not be given since
it depends on the information to be transmitted to the client,
which Mulloy stated [18] as follows: “If your resources are
large, probably want to limit it to fewer than 10; if resources
are small, it can make sense to choose a larger limit” [18,
p. 12]. Figure 1 illustrates a request using pagination on the
resource profiles.

Although, the mentioned pagination technique is often
recommended in literature, there are some issues especially
when dealing with big data volumes or when fetching two
virtual pages during inserting or deleting operation. These
issues are outlined in [37].

G. Interaction with Resources
By using REST as the underlying architectural style of a

system, a client interacts with the representations of a resource
instead of using it directly. The interaction between client and
server is built on the application layer protocol HTTP, which
already provides some functionality for the communication.
For the interaction with a resource, we could identify five
different best practices:

1) According to Jauker [19] and Mulloy [18], the used
HTTP methods should be conform to the method’s
semantics defined in the official HTTP specification.
So, the HTTP-GET method should only be used by
idempotent operations without any side effects. For a
better overview, Table I sums up the most frequently
used HTTP methods and their characteristics. These
characteristics can be used to associate the HTTP
methods with the correct Create Read Update Delete
(CRUD)-operation [21].

2) The support of HTTP-OPTIONS is recommended if
a large amount of data has to be transmitted since it
allows a client to request the supported methods of
the current representation before transmitting infor-
mation over the shared medium. But, this additional
HTTP-OPTIONS request is only necessary, if the
supported operations were not written explicitly in
the representation or when dealing with Cross-Origin
Resource Sharing CORS) [38].

3) A compression mechanism, such as GZIP should be
supported to reduce the payload. By using the HTTP
header field “Accept-Encoding”, the client can indi-
cate that he expects an appropriate encoding while
on the other side, the server can set the “Content-
Encoding” field when using content encoding. If the
client does not set the “Accept-Encoding”, the server
should use compression by default.

48

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) The support of conditional GET should be consid-
ered during the development of a service based on
HTTP since it prevents the server from transmitting
previously sent information. Only if there are mod-
ifications of the requested information since the last
request, the server responds with the latest represen-
tation. For the implementation of conditional GET,
there are two different approaches that are already
described by Vinoski [21].

5) The support of partial updates should be considered
so that the client does not have to send unchanged
information. This is relevant when sending a large
amount of data since the bandwidth of upstream is
usually much lower than for downstream.

TABLE I. CHARACTERISTICS OF THE MOST USED HTTP METHODS.

HTTP method safe idempotent

POST No No

GET Yes Yes

PUT No Yes

DELETE No Yes

OPTIONS Yes Yes

PATCH No No

H. MIME Types
Multipurpose Internet Mail Extensions (MIME) types are

used for the identification of data formats, which will be
registered and published by the Internet Assigned Numbers
Authority (IANA). These types can be seen as representation
formats of a resource. For this category, we could identify the
following four best practices:

1) At least two representation formats should be sup-
ported by the web service, such as JSON or Extensi-
ble Markup Language (XML) [18].

2) JSON should be the default representation format
since its increasing distribution [18].

3) Existing MIME types should be used, which already
support hypermedia, such as JSON-LD (JSON for
Linking Data), Collection+JSON and Siren [21].

4) Content negotiation should be offered by the web
service, which allows the client to choose the rep-
resentation format by using the HTTP header field
“Accept” in his request. Furthermore, there is the
opportunity to weight the preference of the client with
a quality parameter [21].

VI. QUALITY-DRIVEN PRIORITIZATION
OF BEST PRACTICES

After describing the identified categories of best practices
for the API, the next logical step is the selection of rel-
evant best practices for a given scenario. That is why we
have mapped them on quality characteristics of the ISO/IEC
25010:2010 [10] (see Figure 15). For illustration purpose, we
take the assumption that API of the current CompetenceService
has to be optimized for mobile platforms. This means, for
example, that the necessary requests for getting the needed
information of the service have to be minimized and transmit-
ted as fast as possible to reduce the latency and improve the
responsiveness for the consumers. If we look at Figure 15, this

will comply with the time behaviour quality sub characteristic
as part of the performance efficiency quality characteristic.

Figure 15. Product quality model of the ISO/IEC 25010:2011 [10]

After gathering the non-functional requirements or qual-
ity requirements for the API, we can select the appropriate
categories and best practices that have to be considered.
The method for the quality-driven prioritization approach is
illustrated in Figure 16.

Designing/
modifying web API

Reviewing
web API

Implementing
service

Implementing
service consumer

API spec
(draft)

API spec
(contract)

Service
operatons

API
guidelines/

best practices

<<
us

es
>>

<<
us

es
>>

… …

<<
us

es
>>

Identifying service
requirements

Selecting/
Prioritizing best

practices or
guidelines

Quality
characteristics

Figure 16. Revised API-First engineering principle with quality-driven
prioritization

49

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Best Practices for Performance Efficiency
For the improvement of the performance efficiency accord-

ing to the ISO/IEC 25010:2010 [10], we have identified five
relevant best practices that should be considered when design-
ing an API. In particular, we make no statement regarding the
completeness of the upcoming list of best practices for the
performance efficiency.

1) Usage of Query Parameters (see Section V-F): The
required network bandwidth load for transferring the
response can be further reduced by a preprocess-
ing step on service side based on given optional
parameters. The optional parameters can be handed
over through query parameters. For instance, a subset
of representation fields can be selected by using
the appropriate query parameter fields. Besides, the
parsing effort on service consumer side can also lead
to an increasing responsiveness.

2) Support of HTTP-OPTIONS (see Section V-G-2)
should be implemented to allow requesting the sup-
ported HTTP methods. Keep in mind, the support is
necessary when dealing with CORS and asynchrony.

3) Use Compression (see Section V-G-3): Each trans-
ferred information over the shared network should be
compressed since mobile networks have often higher
latency and lower bandwidth compared to traditional
networks.

4) Support of conditional GET (see Section V-G-4)
should be implemented by the service so that only
new information will be send to the client.

5) Support partial updates (see Section V-G-5): The
bandwidth for upstream is lower than for downstream
so that the service should be able to handle partials
updates and not expect a full representation of a
resource.

Besides these mentioned best practices, we have also
recognized that the number of requests should be minimized
in a mobile scenario. But, we have found no best practice that
can be directly mapped onto this. In our eyes, this can be
achieved by one of the following approaches. For the sake of
completeness, we have also list a non REST-like approach at
the end.

1) Combining resources to a new more abstract resource
tailored to the specific use case that is needed on the
mobile client.

2) Providing an additional orchestration layer (e.g.
Backend-For-Frontend (BFF) [11]) that splits the
client request in multiple server requests and responds
with a collected response.

3) Using a technology-driven and not REST-like ap-
proach, such as GraphQL that offers a declarative way
for fetching the required information [39].

By following the mentioned best practices, we have could
improve the perceptible responsiveness of the mobile client
application. Figure 17 illustrates the average latency of two
different versions of one mobile client - 1) before and 2) after
application of the mentioned best practices that results in an
API change. At the beginning, the mobile client application
requests some initial data plus some app configuration so the
latency is typically higher compared to the further course of
the usage.

0 10 20 30 40

0

1,000

2,000

3,000

Duration of mobile client application usage (s)

L
at

en
cy

(m
s)

Before API change
After API change

Figure 17. Mobile client application latency before and after applying the
quality-driven selection of best practices

B. Mapping of Best Practices and Quality Characteristics

In the previous section, we have illustrated the quality-
driven approach by selecting best practices according to their
influence on the performance efficiency. This section shall
focus the whole set of the quality characteristics by presenting
a influence map from the mentioned best practices onto the
quality characteristics of the ISO/IEC 25010:2011 [10] (see
Figure 18). The dashed lines represent positive impacts of the
best practices on the quality characteristics.

Functional suitability

Performance efficiency UsabilityReliability Security

Maintainability Portability Compatibility

Product Quality Model
(ISO/IEC 25010:2011)

Versioning

Naming

Identification Error Handling /
Troubleshooting

DocumentationUsage of Query
Paramters

Interaction

MIME-Types

API Design for Web Services
Based on REST

Figure 18. Influence map of best practices for API design for web services
based on REST onto the ISO/IEC 25010:2011 [10]

The intention is to support API designers especially for
web services based on REST by a kind of prioritization of
best practices. In our eyes, the selection of best practices based
on quality characteristics is more intuitive than traditional
approaches, such as the requirement-level indication of the
RFC 2119 [40]. The reason for this is that the importance
of different best practices can vary from organization to
organization.

50

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. SUMMARY AND OUTLOOK

In this article, we created a checklist for the API design
of web services based on REST. More precisely, we identified
and collected best practices for the API design. These best
practices were classified into eight different categories that
focus on different aspects of an API. The categories and best
practices represent the checklist: Each category describes an
aspect that has to be considered when designing an API. The
best practices within one category represent recommendations
that have to be kept in mind when the category as aspect is
important for a specific API. For instance, one category is
versioning. If versioning is something that is important for
the specific API, then the best practices within this category
should be kept in mind when designing the API. Finally, we
associated the categories with quality characteristics of the
ISO/IEC 25010:2010 [10] to show the impact of best practices
on the quality of the API.

The intention of this article was not to reinvent the wheel.
For this reason, the best practices within this article were re-
used from existing work. Instead, the focus of this work was
to identify and collect existing best practices, to unify them,
and to associate them with certain aspects of an API design.
Best practices are only helpful when software architects and
developers know when to consider them and what they are for.
For this reason, our classification into eight categories helps to
decide, whether a certain best practice should be considered
or not. Furthermore, our best practices are not meant to be
complete. They are more a recommendation about what should
be kept in mind when a certain aspect (category) is relevant
for an API design.

To illustrate the applicability of our checklist, we applied
the checklist, i.e., its categories and their best practices on a
concrete scenario. As a scenario, we chose the SmartCampus
of the Karlsruhe Institute of Technology. SmartCampus is
a modern web application. Its purpose is to simplify the
daily life of students, guests, and members at the university.
The SmartCampus consists of several provided services. One
service is the CompetenceService that semantically searches
competences in the area of information technology. By ap-
plying our checklist, we could identify relevant best practices
for our API. The checklist helped us to identify, which of
the best practices are relevant for this service and which ones
are not. The best practices are not strict guidelines; they are
more recommendations that helped us to keep certain aspects
in mind. By using the checklist during the API design, we had
a concrete list about what to consider. This helped us to not
forget relevant aspects when creating the API.

Summarized, the checklist, i.e., the categories and their best
practices help software architects and developers to design the
API of web services with certain recommendations kept in
mind. As today, best practices are distributed across several
existing works, until now, it was hard to find a unified set of
best practices. Furthermore, the best practices were isolated. It
was not clear, whether a certain best practice should be consid-
ered or not. Its impact was not obvious. With our classification
into eight categories, software architects and developers get the
possibility to filter the best practices and to understand, which
ones are necessary and which ones are not relevant for a certain
API design. This reduces the amount of best practices to the
relevant ones and simplifies the application of best practices.
Even though our checklist is not meant to be complete, it is

a helpful list of best practices, i.e., recommendations. This
list reminds software architects and developers of aspects
they should consider when designing an API with certain
categories being relevant. Furthermore, for software architects
and developers it is not necessary any more to lookup best
practices in literature. As the checklist is a first collection and
unification of widespread best practices, software architects
and developers can directly start with this checklist in their
daily projects. As we build on existing work and reference
this work, detailed descriptions can be looked up if necessary.
But it is not necessary to spend time to collect best practices
from scratch. With the association to quality characteristics of
ISO/IEC 25010:2010 [10], software architects and developers
get an understanding about the impact of the best practices
and certain design decisions on the quality of the API. This
increases the awareness of design decisions and helps to create
APIs in a quality-oriented manner.

In the future, we plan to investigate the impact of our
checklist on the development speed, as well as the quality. To
evaluate the usefulness of the best practices for API design, we
consider setting up two teams of students, Team A and Team B.
Both teams get the requirement to develop two services as part
of the SmartCampus at the KIT of similar complexity. Both
teams are expected to have similar experiences in developing
software systems, and both teams should not have knowledge
about best practices for API design. However, Team A will
be equipped with our checklist. We expect that Team A will
spend much less time searching appropriate best practices. The
checklist will provide Team A appropriate best practices about
how to design the API. Figure 19 shows the expected results.

2 4 6 8

Team B

Team A

Week

Requirements
Design

Implementation
V erification

Figure 19. Duration of the development phases in weeks.

In addition, we plan to extend our checklist with further
best practices and to describe the best practices by means of
technology-independent metrics. In a next step, we plan to map
these technology-independent metrics onto concrete technolo-
gies, such as Java and JAX-RS. This mapping constitutes the
basis for an automated application of the metrics on concrete
design or implementation artifacts [41]. Besides, we will use
the checklist on upcoming projects an exemplifies the whole
API design process in a more detail so that each development
team is capable of applying it on its own projects.

REFERENCES
[1] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and S. Abeck,

“Best Practices for the Design of RESTful web Services,” International
Conferences of Software Advances (ICSEA), 2015. [Online].
Available: http://www.thinkmind.org/download.php?articleid=icsea\
2015\ 15\ 10\ 10016

51

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] R. Mason, “How rest replaced soap on the web: What it means to you,”
October 2011, URL: http://www.infoq.com/articles/rest-soap [accessed:
2015-02-20].

[3] A. Newton, “Using json in ietf protocols,” the IETF Journal, vol. 8,
no. 2, October 2012, pp. 18 – 20.

[4] Spotify, “Web API Endpoint Reference,” URL: https:
//developer.spotify.com/web-api/endpoint-reference/ [accessed: 2016-
09-30].

[5] Twitter, “REST APIs,” URL: https://dev.twitter.com/rest/public [ac-
cessed: 2016-09-30].

[6] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[7] B. Iyer and M. Subramaniam, “The Strategic Value of APIs,” URL:
https://hbr.org/2015/01/the-strategic-value-of-apis [accessed: 2016-07-
26].

[8] Deloitte, “API economy - From systems to business services,” URL:
http://dupress.com/articles/tech-trends-2015-what-is-api-economy/ [ac-
cessed: 2016-09-30].

[9] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the Digital
Transformation in Software Engineering,” International Conferences
of Software Advances (ICSEA), 2016. [Online]. Available: http://
www.thinkmind.org/download.php?articleid=icsea 2016 5 30 10067

[10] ISO/IEC, “Std 25010:2011 - Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- System and software quality models,” International Organization for
Standardization, Geneva, CH, Standard, 2011.

[11] S. Newman, Building Microservices. O’Reilly Media, Incorporated,
2015.

[12] M. Gebhart, P. Giessler, P. Burkhardt, and S. Abeck, “Quality-oriented
requirements engineering for agile development of restful participation
service,” Ninth International Conference on Software Engineering Ad-
vances (ICSEA 2014), October 2014, pp. 69 – 74.

[13] D. Garlan and M. Shaw, “An introduction to software architecture,”
Pittsburgh, PA, USA, Tech. Rep., 1994.

[14] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, 2013.

[15] Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.

[16] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a multi-
faceted metric for service design,” in 18th World Wide Web Conference
(WWW2009), ACM. Madrid, Spain: ACM, April 2009, pp. 911–920.

[17] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-
media and Systems Architecture. O’Reilly Media, 2010.

[18] B. Mulloy, “Web API Design - Crafting Interfaces that Developers
Love,” March 2012, URL: http://pages.apigee.com/rs/apigee/images/
api-design-ebook-2012-03.pdf [accessed: 2015-04-09].

[19] S. Jauker, “10 Best Practices for better RESTful API,” Mai 2014,
URL: http://blog.mwaysolutions.com/2014/06/05/10-best-practices-
for-better-restful-api/ [accessed: 2015-02-19].

[20] P. Papapetrou, “Rest API Best(?) Practices Reloaded,” URL: http://
java.dzone.com/articles/rest-api-best-practices [accessed: 2015-02-26].

[21] S. Vinoski, “RESTful Web Services Development Checklist,” Internet
Computing, IEEE, vol. 12, no. 6, 2008, pp. 94–96. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=4670126

[22] L. Richardson and S. Ruby, Restful Web Services. O’Reilly Media,
2007.

[23] B. Burke, RESTful Java with JAX-RS 2.0. O’Reilly Media, 2013.

[24] D. D. Guinard and V. M. Trifa, Building the Web of Things With
examples in Node.js and Raspberry Pi. Manning, 2016.

[25] C&M, “The system SmartCampus and the project SmartCampusbarrier-
free,” URL: http://cm.tm.kit.edu/smartcampus.php [accessed: 2016-09-
30].

[26] M. B. Rosson and J. M. Carroll, “The human-computer interaction
handbook,” J. A. Jacko and A. Sears, Eds. Hillsdale, NJ, USA:
L. Erlbaum Associates Inc., 2003, ch. Scenario-based Design,

pp. 1032–1050. [Online]. Available: http://dl.acm.org/citation.cfm?id=
772072.772137

[27] OAI, “Open API Initiative,” URL: https://openapis.org/ [accessed: 2016-
09-30].

[28] R. T. Fielding, “Evolve’13 - The Adobe CQ Community Technical
Conference - Scrambled Eggs,” 2013, URL: http://de.slideshare.net/
royfielding/evolve13-keynote-scrambled-eggs [accessed: 2015-09-23].

[29] A. DuVander, “1 in 5 APIs Say “Bye XML”,” 2011, URL: http:
//www.programmableweb.com/news/1-5-apis-say-bye-xml/2011/05/25
[accessed: 2015-02-20].

[30] Google, “Google JSON Style Guide,” 2015, URL: https:
//google.github.io/styleguide/jsoncstyleguide.xml [accessed:
02.12.2015].

[31] OWASP, “Testing for insecure direct object references (otg-authz-004),”
2014, URL: https://www.owasp.org/index.php/Testing for Insecure
Direct Object References (OTG-AUTHZ-004) [accessed: 2015-05-
12].

[32] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach, ser. ACM Press Series. Addison-
Wesley, 2000.

[33] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616, hypertext transfer protocol – http/1.1,”
http://tools.ietf.org/html/rfc2616, 1999.

[34] M. Nottingham and R. Fielding, “Rfc 6585, additional http status
codes,” 2012, URL: http://tools.ietf.org/html/rfc6585 [accessed: 2015-
02-18].

[35] R. T. Fielding, “REST APIs must be hypertext-driven,” October 2008,
URL: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven [accessed: 2015-02-20].

[36] M. Amundsen, L. Richardson, and M. W. Foster, “Application-Level
Profile Semantics (ALPS) ,” Tech. Rep., August 2014, URL: http://
alps.io/spec/ [accessed: 2015-04-09].

[37] M. Winand, “We need tool support for keyset pagination,” 2014, URL:
http://use-the-index-luke.com/no-offset [accessed: 2015-12-23].

[38] W3C, “Cross-Origin Resource Sharing,” URL: https://www.w3.org/TR/
cors/ [accessed: 2016-09-30].

[39] Facebook, “GraphQL,” URL: https://facebook.github.io/graphql/ [ac-
cessed: 2016-09-30].

[40] S. Bradner, “Rfc 2119, key words for use in rfcs to indicate requirement
levels,” 1997, URL: http://www.rfc-base.org/txt/rfc-2119.txt].

[41] M. Gebhart, “Query-based static analysis of web services in service-
oriented architectures,” International Journal on Advances in Software,
2014, pp. 136 – 147.

