
63

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Mass Storage System for Bare PC

Applications Using USBs

William V. Thompson, Hamdan Alabsi, Ramesh K. Karne, Sonjie Liang, Alexander L. Wijesinha, Rasha

Almajed, and Hojin Chang
Department of Computer & Information Sciences

Towson University

Towson, MD

(wvthompson, halabsi, rkarne, sliang, awijesinha, ralmajed, hchang) @towson.edu

Abstract—Bare machine applications eliminate the overhead

and the security vulnerabilities that are due to operating

systems. This paper describes a mass storage system for bare PC

applications that uses USBs. It is implemented by extending a

scalable FAT32 USB file system for a bare PC. First, details of

the bare PC file system including the file API, file system

internals, and file operations are given. Then the architecture of

the mass storage system and its design and implementation are

presented. A mass storage system based on this architecture is

built by using four USBs on a desktop PC. Capabilities of the

mass storage system are demonstrated by storing conventional

files and SQLite database files on multiple USBs. Experiments

to measure raw versus conventional file system performance

show a 12% improvement for writes and a 33% improvement

for reads with 30 MB files. This work is a first step towards

building mass storage systems to support future bare machine

big data and mobile applications with improved security and

performance.

Keywords-bare machine computing; bare PC; FAT32 file

system; mass storage; USB.

I. INTRODUCTION

Mass storage systems are used with Web servers, database
systems, clients, and numerous applications. Media for mass
storage include hard disk drives, optical drives, memory cards,
and USB flash drives. A mass storage system for a
conventional application typically requires the support of an
operating system (OS) or kernel. This paper considers a mass
storage system for bare PC applications using USBs.

Bare PC applications are based on the BMC (Bare
Machine Computing) paradigm, which eliminates the
vulnerabilities and overhead of an OS. In the BMC paradigm,
no OS, kernel, or middleware is required to communicate
between an application and the hardware, i.e., an application
contains everything it needs to run on a bare machine or bare
PC. The BMC application uses direct interfaces to
communicate with the hardware.

Mass storage systems are associated with file systems that
manage both conventional data files and raw data files. File
systems provide a means for organizing and retrieving the data
needed by many computer applications. Typically, they are
closely tied to the underlying operating system (OS) and mass
storage technology. The mass storage system for bare PC
applications uses a file system that is independent of any OS

or platform. Such a file system can also be used by OS-based
applications.

We first describe the bare PC file system including the file
API [1]. We then show how the file system can be used as a
basis for the architecture, design, and implementation of a
mass storage system for bare PC applications using USBs.
USB flash drives are ideal for file systems and mass storage
in bare machine computing as they are inexpensive and able
to store increasing amounts of data. We also demonstrate the
capabilities of a bare PC mass storage system consisting of
four USBs on a desktop PC by storing conventional files and
SQLite database files on multiple USBs. We lastly present
experimental results using the bare PC mass storage system to
compare raw versus conventional file performance for both
writes and reads. The bare PC file system and mass storage
system can be used to support future bare machine database
management systems and big data applications, or Web
servers and mobile applications.

The rest of the paper is organized as follows. Section II
gives a brief overview of BMC applications and related work.
Section III gives details of the bare PC file system and its
operation. Section IV describes the system architecture for the
mass storage system, and Section V presents its design and
implementation. Section VI illustrates functional operation,
and presents the experimental performance results. Section
VII concludes the paper and suggests possibilities for future
research.

II. BMC APPLICATIONS AND RELATED WORK

A BMC application suite consists of an application, the
necessary protocols and drivers, and the code to boot and load
the application. A hard disk is not used in a bare PC, so all the
code must be stored on a removable device such as a secured
USB flash drive. Currently, BMC applications run on any
x86-based bare PC. Bare PC applications include a Webserver
[2][3], Webmail and email servers [4][5], split protocol
servers [6], server clusters [7], SIP servers and user agents [8],
and peer-to-peer VoIP systems [9].

Many approaches have been used to reduce OS overhead
or build high-performance systems. Some use lean kernels,
while others move OS-functionality into applications.
Examples include Exokernel [10], IO-Lite [11], OS-Kit [12],
and Palacios and Kitten [13].

64

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The BMC paradigm [14] eliminates the OS and uses direct
interfaces to the hardware to run applications on a bare PC.
This approach to computing differs from a conventional
approach as there is no underlying OS to manage resources,
i.e., the application programmer manages memory and
schedules tasks. The application is written primarily in C/C++
(with some assembly code) and runs as an AO (Application
Object) that includes its own interfaces to the hardware [16]
and the necessary OS-independent device drivers.

There are many types of file system specifications such as
FAT32 [17], NTFS [18] and exFAT [19]. The BMC file
system currently uses FAT32 as it is simple and easy to
implement. The FAT32 file system has been used for building
high performance clusters [20]. The Umbrella file system,
which also integrates two different types of storage devices, is
an example of a mass storage system that uses USB flash
drives [21]. Driver-level caching can be used to improve file
system for removable storage devices [22]. However,
removable storage media can be exploited through the OS
[23]. Bare PC USB file systems and mass storage systems
have no OS-related vulnerabilities. Since there is no OS, a
USB device driver needs to be integrated with the bare PC
application [24].

SQLite is a lean database management system [25]. It is
self-contained, self-configured, and stand-alone (i.e., it does
not require a separate client and a server). SQLite is included
in Web browsers, mobile devices and embedded systems. It
requires an OS and the amalgamated version has about 130K
lines of code. SQLite has been transformed to run on a bare
PC with no OS or kernel [26].

III. BARE PC FILE SYSTEM

The material in this section previously appeared in [1]. The

bare PC USB file system depends on the USB architecture

[27], USB Mass Storage Specification [28], USB Enhanced

Host Controller Interface Specification [29], FAT32 standard

[17], and the BMC paradigm [14]. The file system is stored

on a USB along with its application. The USB layout is

similar to a memory layout providing a LBA (Linear Block

Addressing) scheme. That is, a USB address map is similar

to a memory map. However, a USB is accessed with sector

numbers that are directly mapped to memory addresses. It

uses SCSI (small Computer System Interface) commands

[30] that are encapsulated in USB commands. Thus, a bare

PC USB driver that works with this file system is needed

[24]. The FAT32 standard is complex and has a variety of

options that are needed for an OS based system as it is

required to work with many application environments. The

FAT32 options implemented in this system and the file API

are designed for bare PC applications.

In [31], the design of a lean USB file system for bare PC

applications was discussed and an initial version of the file

system was built and tested. However, the file system was not

easy to modify or use with existing bare PC applications. The

rest of this section describes the implementation of an

enhanced USB file system with a simple file API for bare PC

applications.

A. File API

In a bare PC application, code for data and the file system
reside on the same USB. In addition to the application as noted
above, the USB has the boot code and loader in a separate
executable, which enables the bare PC to be booted from the
USB. The application suite (consisting of one or more end-
user applications) is a self-contained AO that encapsulates all
the needed code for execution as a single entity. For example,
a Webmail server, SQLite database and the file system can all
be part of one AO. Since no centralized kernel or OS runs in
the machine, the AO programmer controls the execution of the
application on the machine. When an AO runs, no other
applications are running in the machine. After the AO runs, no
trace of its execution remains.

An overview of the USB file system for bare PC
applications is shown in Fig. 1. The simple API for the file
system consists of five functions to support bare PC
applications. These are (1) createFile(), (2) deleteFile(), (3)
resizeFile(), (4) flushFile() and (5) flushAll(). These functions
provide all the necessary interfaces to create and use files in
bare PC applications. The fileObj (class) uses a fileTable data
structure to manage and control the file system. A given API
call in turn interfaces with the USBO object, which is the bare
PC device driver for the USB [24]. This device driver has
many interfaces to communicate directly with the host
controller (HC). The HC interfaces with USB device using
low-level USB commands.

Fig. 2 lists the file API functions, and Fig. 3 shows an
example of their usage. The parameters for the createFile()
function are file name (fn), memory address pointer (saddr),
file size (size) and file attributes (attr); it returns a file handle
(h).

The file handle is the index value of the file in the fileTable
structure, which has all the control information of a file. This
approach considerably simplifies file system design as it can
be used as a direct index into the fileTable without the need

Figure 1. Bare machine USB file system.

Figure 2. File API functions.

65

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for searching. The deleteFile(h) function uses the file handle
to delete a file. When a file is deleted, it simply makes a mark
in the fileTable structure and its related structures such as the
root directory and FAT (File Allocation Table).

Figure 3. File API usage.

The resizeFile() function is used to increase or decrease a

previously allocated file size. Thus, an AO programmer needs
to keep track of the growth of a file from within the
application. The flushFile() function will update the USB
mass storage device from its related data structures and
memory data. An AO programmer has to call this function
periodically or at the end of the program to write files to
persistent storage. The flushAll() interface is used to flush all
files and related structures onto the USB drive. Note that the
programmer gets a file address, uses it as standard memory
(similar to memory mapped files), and manages the memory
to read and write to a file. There is no need for a read and write
API in this file system. All standard file IO operations are
reduced to the list shown in Fig. 2.

A significant difference between the bare PC file system
and a conventional OS-based file system is that an AO
programmer directly controls the USB device through the
API. That is, a user program directly communicates with the
hardware without using an OS, kernel or intermediary
software. For instance, the createFile() function invokes the
fileObj function, which in turn invokes the USBO function.
The latter then calls the HC low-level functions. In this
approach, an API call runs as a single thread of execution
without the intervention of any other tasks. Thus, writing a
bare PC application is different from writing conventional
programs as there is no kernel or centralized program running
in the hardware to control the application. These applications
are designed to run as self-controlled, self- managed and self-
executable entities. In addition, the application code does not
depend on any external software or modules since it is created
as a single monolithic executable.

B. File System Internals

Building a USB file system for bare PC applications is
challenging. The system involves several components and
interfaces, and it is necessary to map the USB specifications
to work with the memory layout in a bare PC application and

the bare machine programming paradigm. Details of file
system internals are provided in this section to illustrate the
approach.

1) USB Parameters: Each USB has its own parameters

depending on the vendor, size and other attributes. Some

parameters shown in Fig. 4 are used for identification and

laying out the USB memory map. These parameters are

analogous to a schema in a database system and are located

in the 0th sector.

Figure 4. USB parameters.

2) USB and Memory Layout: Fig. 5 displays the USB

layout for a typical file system with 2GB mass storage.The

boot sector contains many parameters as shown in Fig. 4. The

reserved sectors parameter is used to calculate the start

address of FAT1 table. The number of sectors per FAT

defines the size of FAT1 and FAT2 tables, which are

contiguous. The root directory entry follows the FAT2 table

as shown in Fig. 5. The number of clusters in the root

directory and number of sectors per cluster defines the

starting point for the files stored in the USB. The root

directory has 32 byte structures for each file on the USB.

These 32 byte structures describe the characteristics of a

FAT32 file system. The layout in Fig. 5 shows two files

prcycle.exe and test.exe. The first file is the entry point of a

program after boot and the second one is the application.

Other mass storage files created by the application are located

after test.exe. The bare PC file system has to manage the FAT

tables, root directory and file system data.

3) Memory Map: The USB layout and its entry points are

used to map these sectors to physical memory. A memory

map is then drawn as shown in Fig. 6. During the boot

process, the BIOS will load the boot sector at 0x7c00 and

boot up the machine. This code will run and load prcycle.exe

using a mini-loader. When prcycle.exe runs, it provides a

menu to load and run the application (test.exe). The original

boot, root directory and FATs as well as other existing files

and data in the USB are also stored in memory to manage

them as memory mapped files. The cache area stores all the

user file data and provides direct access to the application

program. In this system, the USB and memory maps are

controlled by the application and not by middleware.

66

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Initialization: Fig. 7 illustrates the initialization

process after the bare PC starts. During initialization, existing

files from the USB are read into memory and file table

attributes are populated. In addition, FAT tables and other

relevant parameters are read and stored in the system. If the

file data size is larger than the available memory, then partial

data is read as needed and the file tables are updated

appropriately. A contiguous memory allocation strategy is

used to manage real memory. Because the file handle serves

as a direct index to the file table, the file management system

is simplified.

Figure 5. USB layout.

5) File Table Entry (FTE): The FTE is a 96-byte structure

as shown in Fig. 8. The file name is limited to 64 bytes

including name and type. 32-byte control fields are used to

store the file control information needed to manage files.

These attributes are derived from the root directory, FAT

tables and memory map. The file index is the first entry in the

FTE and it indicates the index of the file table. The index is

also used as a file handle to be returned to the user for file

control.

6) File Operations: The five file operations in the bare

PC system use the data structures file table and device driver

interfaces. The file system only covers a single directory

structure. When createFile() is called, it first checks the file

table for any existing file using the file name. If this file does

not exist, a new file is created with the given file name and

requested file size. Then an entry is made in the file table,

memory is assigned, and the root directory and FAT entries

are created for the file. When flushFile() is called, it updates

the USB and the call returns the file handle, which is an index

into the file table. Similarly, deleteFile() will delete the file

from the file table and flushAll() will update the USB with

all the USB data fields. The resizeFile() interface simply uses

the same entry with a different memory pointer and keeps the

data“as is” unless the size is reduced. When the size is

reduced, the extra memory is reset. All API calls and their

internals are visible to the programmer.

Figure 6. Memory map.

7) File Name: The file system supports both short and

long file names. At present, long file names are limited to 64

characters by design since they introduce difficulties when

creating the root directory and file table entries. The FAT32

root directory structure also results in complexity that affects

file system implementation.

8) System Interfaces: The USB file system runs as a

separate task in the bare PC AO. The AO has one main task,

one receive task and many application tasks such as server

threads. The main task enables plug-and-play when the USB

drive is plugged into the system. Each USB slot in the PC is

managed as a separate task. Tasks and threads are

synonymous in bare PC applications as threads are

implemented as tasks in the system. Each event in the system

is treated as a single thread of execution without interruption.

Thus, each file operation runs as one thread of execution.

C. Operation

The file system is written in C/C++, while the device
driver code is written in C and MASM. The MASM code is
27 lines and provides two functions that read and write to
control registers in the host controller. The fileObj code is
4262 lines including comments (30% of the code), and one

67

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class definition. State transition diagrams are used to
implement USB operations and their sequencing. For
example, some of the state transitions occurring during the
initialization process are shown in Fig. 7. The fileObj in turn
invokes the USB device driver calls shown in Fig. 9.

Figure 7. Initialization.

Figure 8. File Table Entry (FTE).

File operations can be done anywhere in the bare PC

application. The task structure that runs in the bare PC file
system is similar to that used for the bare Web servers, and
runs on any Intel-based CPU that is IA32 compatible. Bare PC
applications do not use a hard disk; instead, the BIOS is used

to boot the system. The file system, boot code and application
are stored on the same USB. A bootable USB along with its
application is generated by a special tool designed for bare PC
applications. The USB file system was integrated with the
bare PC Web server for functional testing.

Figure 9. USB operations.

The operation of the bare PC file system is demonstrated

by having two existing files (prcycle.exe and test.exe) on the
USB along with the boot code. Small and large files are
created by the application with file sizes varying up to 100K.
To demonstrate file operations, four files were created and
tested as described here in addition to the two files prcycle.exe
and test.exe on the USB (after the program runs, there is a total
of six files on the USB). The data were read from the files and
also written to them using the file API. A USB analyzer [32]
was used to test and validate the file system and the driver.
Fig. 10 shows a sample trace from the analyzer that illustrates
reset, read descriptors, set configuration and clear. These low
level USB commands are directly controlled by the
programmer (they are a part of the bare PC application).

Fig. 11 shows the six files that exist on the USB displayed
on the screen of a Windows PC. The four created files can be
read from the Windows PC. Fig. 12 shows the file system in
the bare PC root directory in memory. This directory is used
to update the files until they are flushed. Fig. 13 shows the root
directory entries on the USB after the program is complete.
Fig. 14 is a screen shot on the bare PC showing the four files
(short and long) created successfully by the system. The bare
PC screen is divided into 25 rows and 8 columns to display
text using video memory. This display is used by the
programmer to print functional data, and for debugging. The
programmer controls writing to the display directly from the
bare PC application, with no interrupts used for display
operations.

IV. ARCHITECTURE

We now describe a mass storage system for BMC
applications by integrating the bare PC file system and the
SQLite database system. This mass storage system can then
be adapted for use with existing BMC applications. Fig. 15
shows the system architecture for the mass storage system.

 A USB flash drive is a complete file system by itself,
which consists of boot, FAT, root directory and file data. As
main memories are getting cheaper and larger, it is becoming
feasible to map high-capacity flash drives into main memory.
Such memory maps enable easier implementation and high

68

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance while avoiding the need for an intricate memory
management system.

The file system resident on the USB flash drive is
represented by a 32-byte data structure capturing its file
attributes. This is similar to a 32-byte structure in a FAT32
root directory structure. Conventional and SQLite files can all
be represented with the same data structure.

Figure 10. Analyzer trace.

The “file index” field is the entry point used as an index into
the root directory. The “file size” shows the number of bytes
in the file. The“start cluster” and “# of clusters” show the
starting point of the cluster on the physical media and the
number of clusters needed for the entire file. Usually, a cluster
is defined as 8 sectors, but a larger value can be used for larger
files. The “start addr” and “end addr” fields define the start
and end of the physical memory map in the system. In BMC
systems, all memory is physical memory, which avoids virtual
memory and paging overhead. The “start sector#” identifies

the LBA needed to access the flash drive. The LBA scheme
on the USB provides a convenient way to address it, which is
similar to addressing main memory. However, the USB
device needs to use SCSI (small computer system interfaces)
[30] commands for access. The “file attr” field defines the
file permissions needed to store the file in the system. Each
file in the system needs one 32-byte record, which provides
all the control information needed to manage the mass storage
system.

Figure 11. Windows trace.

As a mass storage system has high capacity (order of

terabytes or more), a large number of flash drives is needed.
Although a desktop usually provides only a dozen USB ports,
this limit can be increased to 127 ports by using a USB HUB.
Each device is addressed by a unique “portno” in the range 1
to 127. The system architecture allows creation of a separate
task for managing each port resulting in a “taskindex” from
0-126 (=portno–1). In a BMC application, one can define as
many tasks as needed for managing ports; alternatively, a
single task can be used to manage multiple USBs.

Figure 12. Bare PC root directory.

Mass storage needed for BMC applications can use up to

4 GB of real memory as this is the limit for a 32-bit address

69

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

space. If more storage is required, then the resident memory
can be swapped in and out of persistent storage on to flash
drives, without the need for virtual memory or paging. Raw
file structures in temporary storage on the flash drives can be
then used for swap space. We can also use a 64-bit CPU that
can provide larger main memory capacity and a larger address
space. The BMC architecture for the mass storage system is
scalable and simple, and can be extended to meet the needs of
new applications and future advances in technology. The
design and implementation of the mass storage system based
on the bare PC file system are detailed in the next two sections.

Figure 13. USB root directory.

V. DESIGN AND IMPLEMENTATION

The BMC mass storage system requires mechanisms to
integrate the file system with the bare PC application. We
integrated the SQLite file system with the application by using
a bridge and interfaces from C to C++. The multiple USBs in
a desktop need to host and manage multiple file systems in
memory. The plug-play feature of USBs requires task
structures that can detect the activity of flash drives and
provide appropriate functionality. As the USB driver is now
part of the application suite, timing-related and device-related
knowledge must be integrated with the application. The
device driver has to be managed by a separate file system task
as it requires internal transactions and setup to perform USB
operations. When SQLite is included as part of the mass
storage system, it requires special handling of database
functions to include the user interface and background
operations.

A. Bridge between C/C++

The BMC code is written as object-oriented C++ programs
with some C and Microsoft assembly code. The API to
address hardware takes a path from a C++ function to a C
function and then to an assembly function as needed. The C
functions are used in C++ by defining them in “extern”
blocks. This is a normal operation where C++ can call C code
as is acceptable to go from strict type checking to no type
checking. The SQLite code is written in C and it requires to
communicate to the bare PC application code for the file
system, device driver, and other function calls. Calling C++
from C to C++ violates object-oriented principles and
weakens the strict type checking of C++. The bridge shown in

Fig. 16 enables communication from C to C++. There are
variety of ways to implement this bridge [33]. The C to C++
bridge can be summarized in four steps. In Step 1, capture the
C++ member function address and store it in shared memory.
In Step 2, define a C function header and a “typedef” for a
dummy function. In Step 3, implement the C function, where
the dummy function address is derived from the member
function address in C++, which is stored in shared memory.
In Step 4, simply define a C prototype where it is needed and
call the C function. Notice that the “typedef” function
signature must be the same as the C function call. We have
defined many such functions in SQLite database to call the
bare PC C++ functions to achieve the necessary integration.

Figure 14. Bare PC screen shot.

B. USB Operation Flow Diagram

The USB operation flow diagram is shown in Fig. 17.
Every time a USB is plugged in, it goes through a sequence of
operations including: reset, read descriptors to capture device
parameters, setup, clear feature to enable its end points, test
unit ready, and read/write. The control flow for each USB has
to go through these steps before it can be used for read and
write operations. Note that some of these operations are SCSI
commands encapsulated in the USB commands. The order of
these operations are very important to make the USB
operational. In addition, there are some built-in delays needed
for reset operation. Determining these delay values and
adjusting them as needed in the bare PC USB device driver
proved to be somewhat challenging. Fig. 18 shows the design

70

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and implementation of the approach used for managing the
USB ports. There are two USB controllers in the Optiplex 960
desktop system. One controller provides four ports in the front
of the machine, which are used for testing this architecture.
The second controller’s ports are in the back of the machine.
A single task is designed to manage these four ports. These
port numbers vary from 3, 4, 5, and 6. Their task indexes are
one less than the port numbers. Each USB has its own file
system that is resident on the flash drive. The control program
is designed to check each port for its operation and
functionality.

Figure 15. System architecture.

We found that the USB controller behaves differently

depending on whether there is only one USB in operation or
many of them plugged in. In the latter case, it requires a
special reset known as mass storage reset. This is in addition
to the operations as shown in Fig. 17.

A mass storage requires a sequence of USB operations test
unit ready, read data, write data, clear feature, and sense data.
The single USB task will go through each device and perform
read or write operations as needed by an application. This task
will stay in the loop until it is terminated by the user.

C. Task Structure

The task structure shown in Fig. 19 illustrates the
integration of the mass storage system with the bare PC Web
server application, which requires HTTP tasks. A Web server

also requires resource files that are sent to clients. It may also
use the SQLite database to provide dynamic content to clients.
A USB task provides all USB interfaces to the user (it could
be “n” tasks for “n” ports). A SQLite task manages all SQLite
operations including user interfaces.

We did not address the integration of the USB file system
or SQLite database files with the bare PC Webserver.
However, the architecture of the mass storage system provides
all the functionality needed for integration. The “Main task”
is the main task that continually runs in the bare PC. When a
network packet arrives, a “RCV task” runs to process the
request. Similarly, when HTTP data has to be sent to a client,
the “HTTP task” runs. Each task type has its own task pool
created during the initialization process and kept in a stack.
When a task is needed, it is popped from its appropriate task
pool and placed in a circular list. The circular list tasks are
processed on a first-come-first-serve basis. When a running
task is complete, it will be pushed back on to its appropriate
stack. When a task is waiting for an event, it is suspended and
placed back in the circular list. This simple approach to
managing tasks is used in the BMC paradigm. It is scalable as
other types of task pools can be added in the same way.

Figure 16. C to C++ bridge.

71

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Class Flow Diagram

The mass storage system consists of three key class objects
as shown in Fig. 20. The “fileobj” class provides a lean and
efficient file API [1] [31] for bare PC applications.
“USBFObj” consists of USB plug-play functions and
interfaces to “fileobj”. This object is managed by the USB file
task. The file system API and all other interfaces can call
“USBObj” interfaces for low-level USB commands such as
test unit ready, read, write, sense, reset, clear feature, etc.

Figure 17. USB operation flow diagram.

The “USBObj”, which is the USB device driver,
communicates with USB controllers and devices. Each device
has its own file system that is managed by the mass storage
system. In the BMC paradigm, all the code needed for a given
application suite is a single monolithic executable that runs by
itself without the need for any external software or a kernel.
Thus, a bare PC programmer has to manage all the intricacies
of a given application suite. The application suite itself is
independent of any external software and includes its own
application and execution environment. A given bare PC
application only carries the interfaces and code it needs (it
avoids implementing unnecessary OS or kernel functionality).

E. Memory Map

In bare PC applications, the physical memory is managed
by the application/system programmer. For a given physical

memory, there is a need to organize a memory map at design
time. Fig. 21 shows a typical memory map for the mass
storage prototype. The first 1GB of memory is used for the
Web server and other bare PC code including stack memory.
The second 2GB of memory is used for USB file storage
including SQLite database files.

Figure 18. USB task diagram.

Figure 19. Task structure.

72

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Two more GBs of memory can also be used for mass
storage as needed. For four USBs, 256 MB storage is used for
each USB (consisting of a total of 1 GB). 12 USBs can be
mapped into a 4GB physical memory. When large memory is
needed, the mass storage has to be swapped in and out of the
USB devices.

 Figure 20. Class flow diagram.

F. Inter-process Communication

It is necessary to communicate between the SQLite and
USB file tasks to invoke file operations such as flush, read and
write. As shown in Fig. 19, the communication block is the
inter-process communication element in the system. When
SQLite is ready to flush, read, or write, it issues a command
to the USB file task and waits synchronously until the
command is complete. We use shared memory in real memory
(< 1 MB) to communicate between these two processes. A
single lock is used to implement this mechanism.

G. Implementation

The mass storage system was implemented in C/C++ with
a small amount of assembly code for the direct hardware
interfaces. The existing implementations of the bare FAT32
file system [1] [31], bare SQLite code transformation [26],
and the bare Web server [2] [3] were used in building the mass
storage system. The bare PC design is modular and extensible
and allows new features and new applications to be added
easily. The bare PC design methodology is described in [34].

VI. FUNCTIONAL OPERATION AND MEASUREMENTS

The mass storage system was tested on a Dell Optiplex
960 desktop with 2 GB Verbatim USBs. Four USBs were
plugged in to the first controller and file operations were
performed sequentially on the port numbers 3, 4, 5, and 6. File

Figure 21. Memory map for each USB.

flush, read, write, and other file operations were tested to
validate the mass storage system. SQLite database files were
also stored on the above four USBs using four different
database files. The read and write operations for regular files
and the database files are same as they use the same file
system. We varied USB file sizes from 1 MB to 30 MB to
measure write and read timings. Fig. 22 shows write times
using the file system and also using raw files.

Figure 22. Write raw data/file.

73

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A 30 MB file was written in 4.698 seconds. A 30 MB raw file
(not using any file system) was written in 4.185 seconds.
Thus, raw file writes can provide an approximately 12%
performance improvement. This implies that bare PC
applications should use raw files instead of a conventional file
system to improve performance.

Figure 23. Read raw data/file.

In a Windows desktop, the same 30 MB file took 8.2

seconds to complete a write on the USB. This indicates that
the bare PC file system has better performance than a
Windows file system. In the bare PC, a 30 MB file was read
in 2.351 seconds. The same file was read as a raw file in 1.762
seconds as shown in Fig. 23. This is a 33% improvement in
raw read versus a file system read. The bare PC systems are
efficient and lean, and the footprint for executable files is
small. The executable file size for this mass storage system is
about 252 KB including the Web server and other bare PC
code.

VII. CONCLUSION

We presented the architecture, design, and implementation
of a mass storage system for bare PC applications. Large files
and SQLite database files were used to demonstrate and test
the feasibility of the system. Four USB flash drives were used
to validate the design and measure basic performance.
Timings for USB file write and read operations with large files
were measured. Also, large raw file write and read timings
were compared with the file operations. The results show that
raw write and reads yield performance gains for bare PC
systems. The mass storage system described in this paper is
lean, simple, and scalable. It also has no OS-related
vulnerabilities. As the code is simple and lean, it is easier to
analyze for security flaws. The system is user-centric and runs
on any x86-based architecture in bare mode.

We also presented a file API for bare PC applications. The
bare PC file system enables a programmer to build and control
an entire application from the top down to its USB data
storage level without the need for an OS or intermediary
system. This implementation can be used as a basis for
extending bare PC file system capabilities in the future. The
file system and mass storage system can be integrated with
bare PC applications such as Web servers, Webmail/email
servers, SIP servers, and VoIP clients. Future research could
investigate the use of these systems for big data applications
and cloud storage.

REFERENCES

[1] W. Thompson, R. K. Karne, S. Liang, A. L. Wijesinha, H.

Alabsi, and H. Chang, “Implementing a USB File System for

Bare PC Applications,” 12th Advanced International

Conference on Telecommunication, 2016, pp. 58-63.

[2] L. He, R. K. Karne, and A. L. Wijesinha, “The design and

performance of a bare PC Web server,” International Journal

of Computers and Their Applications, IJCA, Vol. 15, No. 2,

June 2008, pp. 100-112.

[3] L. He, R. K. Karne, A. L. Wijesinha, and A. Emdadi, “A. A

Study of Bare PC Web Server Performance for Workloads with

Dynamic and Static Content,” 11th IEEE International

Conference on High Performance Computing and

Communications (HPCC), 2009, pp. 494-499.

[4] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha, “The

Design and Performance of a Bare PC Webmail Server,” 12th

IEEE International Conference on High Performance

Computing and Communications, (HPCC) 2010, pp. 521-526.

[5] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P. Appiah-Kubi,

“The design and implementation of a bare PC email server,”

33rd Annual IEEE International Computer Software and

Applications Conference (COMPSAC), 2009, pp. 480-485.

[6] B. Rawal, R. Karne, and A. L. Wijesinha, “Splitting HTTP

requests on two servers,” 3rd Conference on Communication

Systems and Networks (COMSNETS), 2011, pp. 1-8.

[7] B. Rawal, R. K. Karne, and A. L. Wijesinha. “Mini Web server

clusters for HTTP request splitting,” IEEE Conference on High

Performance, Computing and Communications (HPCC), 2011,

pp. 94-100.

[8] R. Yasinovskyy, A. Alexander, A. L. Wijesinha, and R. K.

Karne, “Bare PC SIP user agent implementation and

performance for secure VoIP,” International Journal on

Advances in Telecommunications, vol 5 no 3 & 4, 2012, pp.

111-119.

[9] G. Khaksari, A. Wijesinha, R. Karne, L. He, and S. Girumala,

“A peer-to-peer bare PC VoIP application,” IEEE Consumer

Communications and Networking Conference (CCNC) 2007,

pp. 803-807.

[10] D. R. Engler and M.F. Kaashoek, “Exterminate all operating

system abstractions,” Fifth Workshop on Hot Topics in

Operating Systems,USENIX, 1995, p. 78.

[11] V. S. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A unified

i/o buffering and caching system,” ACM Transactions on

Computer Systems, Vol.18 (1), Feb. 2000, pp. 37-66.

74

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] “The OS Kit Project,” School of Computing, University of

Utah, SaltnLake ,UT, June 2002,

http://www.cs.utah.edu/flux/oskit.

[13] J. Lange et al, “Palacios and Kitten: New high performance

operating systems for scalable virtualized and native

supercomputing.” 24th IEEEInternational Parallel and

Distributed Processing Symposium (IPDPS), 2010, pp. 1-12.

[14] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed,

“DOSC: dispersed operating system computing,” 20th Annual

ACM Conference on Object Oriented Programming, Systems,

Languages, and Applications (OOPSLA), 2005, pp. 55-61.

[15] S. Soumya, R. Guerin and K. Hosanagar, “Functionality-rich

vs. Minimalist Platforms: A Two-sided Market Analysis,”

ACM Computer Communication Review, vol. 41, no. 5, pp.

36-43, Sept. 2011.

[16] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run

C++ applications on a bare PC,”6th ACIS Conference on

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD) 2005, pp. 50-55.

[17] Microsoft Corp, “FAT32 file system specification,”

http://microsoft.com/whdc/system/platform/firmware/fatgn.rn

spx, 2000. [retrieved: April 8, 2016]

[18] R. Russon and Y. Fledel, “NTFS Documentation,”

http://dubeyko.com/development/FileSystems/NTFS/ntfsdoc.

pdf. [retrieved: April 8, 2016]

[19] R. Shullich, “Reverse Engineering the Microsoft ExFAT File

System,”https://www.sans.org/readingroom/whitepapers/fore

nsics/reverse-engineering-microsoft-exfat-file-system-33274.

[retrieved: April 8, 2016]

[20] M. Choi, H. Park, and J. Jeon, “Design and implementation of

a FAT file system for reduced cluster switching overhead,”

International Conference on Multimedia and Ubiquitous

Engineering, 2008, pp. 355-360.

[21] J. A. Garrison and A. L. N. Reddy, “Umbrella file system:

Storage management across heterogeneous devices,” ACM

Transactions on Storage (TOS), Vol. 5, No. 1, Article 3, March

2009.

[22] Y. H. Chang, P. Y. Hsu, Y. F. Lu, and T. W. Kuo “A driver-

layer caching policy for removable storage devices,” ACM

Transactions on Storage, Vol. 7, No. 1, Article 1, June 2011,

p1:1-1:23.

[23] J. Larimer, “Beyond Autorun,” Exploiting vulnerabilities with

removable storage,” 1–66, Jan. 2011.

https://media.blackhat.com/bh-dc-

11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-

removeable_storage-wp.pdf. [retrieved: April 8, 2016]

[24] R. K. Karne, S. Liang, A. L. Wijesinha, and P. Appiah-Kubi,

“A bare PC mass storage USB device driver,” International

Journal of Computers and Their Applications, Vol 20, No. 1,

March 2013, pp. 32-45.

[25] SQLite, http://www.sqlite.org/download.html. [retrieved:

April 8, 2016]

[26] U. Okafor, R. K. Karne, A. L. Wijesinha and B. Rawal

Transforming SQLITE to Run on a Bare PC,” 7th International

Conference on Software Paradigm Trends, 2012, pp. 311-314.

[27] Perisoft Corp, Universal serial bus specification 2.0,

http://www.perisoft.net/engineer/usb_20.pdf. [retrieved: April

8, 2016]

[28] Universal serial bus mass storage class, bulk only transport,

revision 1.0, 1999, http://www.usb.org [retrieved: April 8,

2016]

[29] Intel Corporation, Enhanced host controller interface

specification for universal serial bus, March 2002, Rev 1,

http://www.intel.com/technology/usb/download/ehci-r10.pdf

[retrieved: April 8, 2016]

[30] SCSI2.0 Specifications, http://ldkelley.com/SCSI2/index.html.

[retrieved: April 8, 2016]

[31] S. Liang, R. Karne, and A. L. Wijesinha, “A lean USB file

system for bare machine applications,” 21st Conference on

Software Engineering and Data Engineering (SEDE), 2012, pp.

191-196.

[32] Total Phase Inc., USB analyzers, Beagle,

http://www.totalphase.com. [retrieved: April 8, 2016]

[33] “How to mix C and C++,” The C Programming Language,

https://isocpp.org/wiki/faq/mixing-c-and-cpp. [retrieved: April

8, 2016]

[34] G. H. Khaksari, R. K. Karne and A. L. Wijesinha. “A Bare

Machine Application Development Methodology,”

International Journal of Computers and Their Applications

(IJCA), Vol. 19, No.1, March 2012, pp. 10-25.

