
75

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Semantic Service Management and Orchestration for Adaptive and Evolving Processes

Johannes Fähndrich, Tobias Küster, and Nils Masuch

DAI-Labor, Technische Universität Berlin
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

e-mail: {johannes.faehndrich, tobias.kuester, nils.masuch}@dai-labor.de

Abstract—Introducing adaptiveness into service compositions al-
lows for a next generation of services, which adapt to their context
of use and posses self-* properties like self-healing and self-
configuring. However, the development of adaptive and flexible
services is challenging and lacks tool support. For this next step
in service development there are a multitude of requirements to
be met: a service discovery needs to keep the available services
up-to-date, a semantic layer needs special development resources
to introduce interoperability, ontologies need to be managed
and merged, a service selection mechanism has to find the
fitting service for a context out of a vast amount of service
advertisements, and runtime components need to surveil the
execution of such a service composition. In this paper, we review
multiple projects, in which those components have been subject to
research, and we present our own approach of a semi-automatic
development methodology for adaptive service compositions and
finally discuss future challenges.

Keywords–Semantic Service Matching; Automated Service Com-
position; BPMN Processes; OWL-S.

I. INTRODUCTION

In recent years, the increasing digitalization of our societies
has led to a vast amount of new possibilities. Many companies,
administrations, and devices share their data or functionalities
with others via application programming interfaces (APIs),
or services, respectively. Examples are the smart home, or
the transportation domain: In the first case, many different
devices, such as smart meters and household appliances, are
addressable and can be regulated remotely. In the second case,
new services are provided digitally, such as car-sharing offers,
where the user can find, reserve and unlock a nearby car via
an API, and many of the actual cars or charging stations are
accessible via services, as well. Those are just two examples
of new services, leading towards a sophisticated Internet of
Things (IoT), which is often eagerly anticipated to connect
services across domain borders.

By introducing adaptiveness into service compositions,
those services can be dynamically combined and orchestrated,
allowing for a next generation of services, which adapt to their
context of use and posses self-* properties like self-healing
and self-configuring. However, there are some significant chal-
lenges that have to be overcome in order to exploit their
potential. To begin with, there is the requirement of finding
an appropriate service in the first place. Different approaches
like Universal Description, Discovery and Integration (UDDI)
have been proposed, but none really has made it into the
market. Second, there is the need for interoperability. Since a
homogeneous data environment in open, extensible platforms
is unrealistic, automated mapping solutions between models or
ontologies respectively are one potential approach. And finally,

due to the increasing amount of services, there is a strong
requirement for automatic understanding of services and their
composition to value-added functionalities.

Especially for the last challenge, semantic technologies
are an appropriate approach by providing structured data to
machines. However, this does not come without a price.
The management overhead can be immense, especially for
developers not familiar with semantic technologies.

In this article, which is an updated and extended version
of a paper previously presented at The Eleventh International
Conference on Internet and Web Applications and Services
(ICIW 2016) [1], it is our goal to develop a semantic-based
service management methodology that considers the whole
life-cycle of semantic services including more sophisticated
algorithms for automation. More concretely, we provide de-
velopment tools for model transformation, for the semantic
description of services, and their deployment in order to
set up a service. Furthermore, we propose how to find and
match services at design-time and how to easily integrate them
either to Java code or into an editor for the Business Process
Model and Notation (BPMN). Based upon that we developed
comprehensive matching and service composition techniques
that can be used both at design-time and at runtime.

The remainder of this paper is structured as follows: At
first, we motivate our case in Section II. In the following
sections, we introduce the core components used for matching
and planning (Section III), as well as development tools
(Section IV) and a runtime environment (Section V), in which
those are used. In each of those sections, we will also contrast
our approach and contribution to the respective state-of-the-
art. Then, in Section VI, we combine the core components,
tools, and runtime to a comprehensive development method
for semantic service engineering, and show how it was applied
in research projects (Section VII), before we finally wrap up
and conclude in Section VIII.

II. MOTIVATION

Proper service management is highly important to build
reliable and reusable software systems. Service management
can be divided into several phases, whereas each of them
contains requirements that are not fully met so far. As il-
lustrated in Figure 1, the service management starts with the
most fundamental part, the service engineering. Under the term
service engineering we subsume the concrete specification of
a service, which also contains the embedment of existing
services into a new process. At this point, the challenge of
finding such a service comes into play for the first time. When
we think about platforms containing hundreds or thousands of

76

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

services, a comprehensive search, matching, and even planning
mechanism is necessary. In our case, we try to address this
challenge by providing a semantic-based service matching
mechanism, which will be described in Section III. Further-
more, this feature has to be embedded into a development
environment. Many approaches that provide service matching
and planning stick to very specific planning languages for the
whole process definition, which makes it hard to use them
for daily problems. Therefore, in this paper it is a clear focus
to provide an approach that relies on a specification language
that is commonly used and expressive enough. After having
specified the process of the service its proper declaration has
to be processed. Currently, this step is neglected since most of
the service management approaches do not rely on a service
declaration that can be analysed and interpreted by machines.
In future scenarios however, each service, even a value-added
one that is already using other services, should be made
available to other instances in order to enable efficient service
composition. In Section IV we will provide an approach how
to semantically enhance services based on a semi-automatic
process. After the declaration the service has to be tested and
where required the service engineering has to be launched
again in order to adapt the service process. There are already
lots of interpreter components that enable the step-through and
validation of a process. However, an interpreter component that
is integrating service matching, planning and service selection
features during testing is – to the best of our knowledge
– not available so far. We will present our approach for
this in Section IV, as well. After a successful testing phase
the developer has to deploy the service in order to make
it available. Here the important issue is to transform the
specified process from the Service Engineering phase into an
executable language. The more transformations the tool chain
supports the more flexible the service can be launched. In our
case we provide different target languages as well as direct
interpretation, which we describe in Section V.

Furthermore, deployed processes currently are not very
flexible in practice. In our approach we aim to support the dy-
namic integration of services or even service chains at runtime.
This leads to a highly adaptive service that can select services
according to functionality and Quality-of-Service parameters.
The approach of adaptive service selection at runtime is also
discussed in Section III.

The described adaptability is also important for the last
phase of the service management lifecycle: the service mon-
itoring. While executing the service, another component has
to surveil the status of the service. Think about a situation
when a street network routing service that is being used for
a multimodal routing service is immediately out of order and
not usable any more. Usually, some error message might occur,
that will be sent to a maintenance person that has to check why
the service can not be invoked any more and has to decide
how to proceed next. It is our goal to simplify this by using
the before described adaptive service approach. In our concept
the service composition itself is searching for an alternative
service within the platform based on the semantic description
of the missing service.

In summary it can be stated that in each of the service
management phases there are still open challenges to fulfil in
order to provide an adaptable service management methodol-
ogy, that can be used for actual problems. In the following

Figure 1. Basic service management lifecycle.

we will describe our concept of adaptive service selection and
planning.

III. CORE COMPONENTS

In this section, we will have a look at the core compo-
nents used for matching semantic services and for planning
with those services. While those components are used in the
development tools and in the runtime environment that we will
introduce in the next sections, they are self-contained and can
be used independently from the rest, e.g., in a different context.

A. Semantic Service Matcher
Since the beginning of research in semantic service match-

ing, matchmakers have matured in precision and recall [2].
Thus, the focus of service matching has shifted to the inte-
gration of non-functional parameters and formal modelling of
system properties. The development on the Service Matcher
that had the best Normalised Discounted Cumulative Gain
(NDCG) value in the last Semantic Service Selection contest
(S3) in 2012 [2], called SeMa2, has been focused on formal-
ising and distributing the architecture of SeMa2 and enabling
a learning mechanism to customise the matching results to a
given domain. In the following we first describe the approach
of SeMa2 and then discuss the current state-of-the art for
service matchmaking.

1) Approach: Within this section we describe how we mod-
elled the architecture, the matching probability, its aggregation
and which parameters for the learning can be extracted. For an
even more detailed discussion about SeMa2, we refer to [3].

a) Architecture of a modern Service Matcher: The
service matching task can be broken down into subtasks like
matching the inputs of the request and the advertisement, or
comparing their textual descriptions. In the SeMa2 architec-
ture each of these subtasks has been explicitly encapsulated
in a so-called expert, which can be distributed following the
agent paradigm.

As shown in Figure 2, the SeMa2 consists of 33 different
experts, which are dependent from each other (edges of the
graph). The “Matching Result” represents the overall result
of a matching request. It is also defined as an expert as it
aggregates the results from the opinions of six types of experts:
the text similarity expert, comparing the textual descriptions
of a service; the in- and output parameter expert looking at
the parameters and results of the services; the effect structure
expert, evaluating the similarity of effects; the rule reasoning
expert, which evaluates whether the precondition and effect
rules are satisfied with the same parameters; as well as the
rule structure expert, and the marker passing expert, which
connects the describing ontologies through ontology matching.

77

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Expert System of the SeMa2. High-level experts are composed of
low-level experts, all contributing to the Matching Result.

Each expert creates an opinion about the matching of two
services. These opinions are aggregated by experts which use
other experts to create their opinion. Six types of experts
form the top level of the aggregation. Five of those experts
analyse structural and logical relatedness of the two services.
The sixth expert is a semantic expert. It analyses the semantic
similarity between the different aspects of the two services.
For its opinion it created a semantic graph through lexical
decomposition and passes markers along the edges of this
graph to measure the semantic distance from, e.g., the input
of one service to another. The interested reader is referred to
[4] for more details. Each of those experts uses other experts
to help forming its opinion, expressing the matching score of
one aspect of a service. Thus, each expert encapsulates such
a scoring method, which can be reused by multiple experts
or extended with new scoring as the architecture evolves. The
opinions of the experts are weighted due to their performance
in an offline learning phase. For more details please find [3].

b) Probabilistic model of opinion: The different opin-
ions of the experts are formalised by utilising the results of
Morris [5], as probabilities pi(R,A). As an expert i observes
aspects of a request R and advertisement A and calculates
their distance. We can abstract this opinion as pi(Θ|d) where
Θ is the subject of interest and d are the observations. pi(Θ|d)
could be interpreted as a degree of belief of Θ observing data
d. For more details see [3].

To aggregate the opinions of the different experts, an
Opinion Pool is used. Here, a weighted mean of the opinions
is created, for which we chose a weighted arithmetic mean
called linear opinion pool [6] in a previous work [3]. This
arithmetic mean has been generalised by Genest [7] to be able
to use weights in the interval [−1, 1] in a more general class
of linear opinion pools. With this formalisation, the quality of
the different aspects can be weighted during the aggregation.
Choosing those weights is done during the learning phase. This
selection of weights for the experts enable the matcher to adapt
to the specifics of the semantic service descriptions of a special
domain.

c) Learning Semantic Service Matcher: Selecting
weights for each experts instances (SeMa2 for now has 133
experts instances), we do not only assess the performance of

the expert, but also the quality of the description of the service,
the ontologies of the domain and if present specific description
aspects of a domain. These interdependencies are the reason
why we are unable to learn the performance of an expert in
general and reuse the weights for other matching domains.

For the learning, SeMa2 implements different standard
learning mechanisms, reaching from genetic algorithms im-
plemented with the Watchmaker Framework [8] to simulated
annealing [9]. For the statistical evaluation the Semantic
Web Service Matchmaker Evaluation Environment (SME2)
tool [10] is used, calculating the NDCG of each expert and
adapting its weight according to the optimisation strategy used
during the learning. As a drawback, this ability to adapt to the
domain makes an offline learning phase necessary, where a test
collection of example services needs to be defined, including
a relevance rating for the training set of service to be used by
the SME2 tool.

2) State-of-the-Art: In order to optimise the result of the
service matching a learning phase can be introduced to adjust
the parameters of a service matchmaker to the properties of
the domain. The parameters to learn depend on the service
matchmaker and thus its flexibility depends on the parameters
that can be observed.

In Klusch et al. [11] the authors introduced a formal
model of defining weights for the aggregation of different
similarity measures with the names ww − similarity and
ws − structural similarity measure. The aggregation method
has been learned using a Support Vector Machine (SVM)
approach based on training data. The matchmaker component
that invokes this approach is designed to match SA-WSDL
services (Semantic Annotations for Web Service Description
Language).

Klusch and Kapahnke [12] introduce another learning
service matchmaker by extending the approach of a prior
work [13] for OWL-S service descriptions (Web Ontology
Language for Web-services). Here, matching results of dif-
ferent matching types are aggregated using a weighted mean.
The authors introduce different types of matching results that
are weighted. Firstly, approximated logical matching, which
is divided into approximated logical plug-in and subsumed-
by matching. Secondly, non-logic-based approximated match-
ing, which are text and structural semantic similarity-based
signature matching. The weights of this aggregation are also
learned using a SVM. This supervised learning approach is
replicated in our work, but with a different learning algorithm.
The relevance set that is used to rank the matching results are
reused with a genetic algorithm and a hill-climbing search.

Gmati et al. [14] use an architecture similar to ours, which
uses parameters as weights to combine the results of the
different matching components. This idea was published earlier
in [3] with an additional learning component for the introduced
weights.

To the best of our knowledge there exist only these
approaches that utilise machine-learning techniques in order to
cope with the challenge of aggregating service matchmaking
techniques. For future research, service matchers will also
have to be extended with the capability of comparing QoS
parameters and Service Level Agreements of services.

78

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Semantic Services Planner
During the creation of a service composition, automation

might help the developer to save time. The capability of general
purpose planners to create solutions for complex problems is
sometimes seen with conflicting opinions: The creation of a
plan is resource intense and can produce use case specific
plans, which are rarely reusable. On the other hand, they can
find solution humans are not capable of finding. This is due the
the fact that a human is insufficiently effective when scanning
through the vast amount of available services and comprehend
their contextual usage.

This leads to the question when to use a general pur-
pose planner during the creation of service compositions.
The answer is flexible as it is unspecific: The planner can
be used to the extend the developer needs its help. If the
developer wants to prove feasibility before creating a hand-
made service composition, then the whole service composition
can be planned to get an idea of the available services. If the
overall service composition is already designed, the inclusion
of new services might entail other services, which can be
found through planning. This can help a developer to chose
between the fit of a service into its compositions. At the end
the suggestion of single services in a context of a service
composition (between a service layer i− 1 and another i+ 1)
can be based on QoS parameters as well.

This allows a specification of the adaptive parts of a service
composition, since the parts that are provided by a planner
can be changed during runtime. By removing the grounding
of a service, the so-created service template needs to be filled
with a service instance available at runtime, which enforces
adaptation. In this way, a compromise between development
time and adaptiveness can be found.

1) Approach: The ability to automatically compose ser-
vices to reach a given goal is called service planning [3].
The service planner based on the SeMa2 utilises the service
matcher for three tasks: first, to reason about effects and
preconditions to find applicable service. Second, to reason on
parameter selection for grounding the services, and third, to
apply the execution of a service to reach a new state.

The algorithm in Figure 3 describes a standard planning
approach applied to service planning. Here, the contribution is
a planning in the service world without translating the service
to the Planning Domain Description Language (PDDL) or
similar to solve the planning problem.

The search used is defined in the function State-
Search.next(Open). Depending on the implementation of the
state search, the next state to be extended is selected. Here
an A∗ or equivalent algorithm can be used. In each state
s that will be extended next, the selection of the services
and their grounding is formalised in the function Service-
Search.UsefulServices(s). Here a set of grounded services is
selected, which define the transition to the following open
states. The state transition function is given by execute(s, g),
where the output and the effect of a service are integrated
into the given state s. This is a theoretical execution, since
the execution at runtime includes backtracking and a context
sensing mechanism to sense the effect of a service. After
extending a multitude of nodes during the search of the state
space, the function reconstructPath(path) reduces the path
from the goal to the start state to a minimal call of services.

Name: ServicePlan
Input: Sstart , Sgoal , Services Output: Service Composition

1: path ← []
2: Closed ← ∅
3: Open ← {Sstart}
4: while s← StateSearch.next(Open) do
5: if s 6∈ Closed then
6: if s = Sgoal then
7: return reconstructPath(path + [s])
8: end if
9: grounded ← ServiceSearch.UsefulServices(s)

10: if grounded 6= ∅ then
11: succ ← {execute(s, g) | g ∈ grounded}
12: Open ← Open ∪ succ \ Closed
13: path ← path + [s]
14: end if
15: Closed ← Closed ∪ {s}
16: end if
17: end while
18: return failure

Figure 3. Service Planner algorithm.

The complexity of the algorithm depends on the imple-
mentation of the state search and state pruning mechanism,
being the heuristic that selects useful services, including the
complexity of the service matcher used. In general, the worst
case complexity of such an algorithm is exponential [15, p.72].

By planning on services we accept a number of challenges:

• Service Grounding checks all parameters of services to
be executed next and creates all combinations of indi-
viduals that fit those parameters. These combinations
lead to multiple (possibly infinite) grounded services
out of one service description. Here the challenge lies
in the selection of continuous parameters.

• Output Integration into the state poses a challenge
since it is not clear how a service without effect
can influence the state. One example of such services
are information providing services, which are not
world altering services [16]. Thus, here we create an
assertion of the class of the output, creating an appro-
priate individual, equivalent to the “AgentKnows” of
Doherty et al. [17].

• Semantic Web Rule Language built-ins (SWRLb) are
mathematical extensions like “greater than”, string
manipulations or description of time. Additionally,
lists are modelled in SWRLb but are not supported
by reasoners like Pellet [18].

• Semantic Web Rule Language XML Concrete Syntax
(SWRLx) is an extension to the Semantic Web Rule
Language (SWRL) allowing to model individual cre-
ation, creation of classes and properties. This is vital to
the service planning, because service execution might
create individuals or classes that can not be modelled
without SWRLx built-ins.

2) State-of-the-Art: There is a multitude of related work in
using planning techniques for service composition. Rodriguez
et al. [19] analyse three parts of Service-Oriented Architecture
(SOA) in connection to artificial intelligence planning: i)
service discovery techniques, ii) service composition systems,

79

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and iii) service development tools. Even though Rodriguez et
al. noticed that the use of QoS parameters for the selection of
a service in a service composition is ”a significant research
problem” [19] their analysis of the state of the art does
not reflect QoS parameters. Markou and Refanidis focus on
non-deterministic planning approaches for automated service
composition where the approaches are analysed for their
heuristics but only in the sense of using them or not [20].
Zou et al. [21], [22], [23] focus more on efficiency of the
planning techniques for the automated service composition but
neglect to see the importance of semantic information given by
semantic web service descriptions. This leads them to look at
approaches translating the service composition problem into a
PDDL planning domain and with that they lose every semantic
description available before. Transforming facts described in
OWL (Web Ontology Language) and, e.g., SWRL into a PDDL
domain leaves with no basis for ontology matching if the same
fact is formulated in different ways.

We argue that the performance of a general purpose planner
depends on the heuristic used during the search for a path from
start to goal state. This leads us to the conclusion to analyse
the state of the art for factors neglected by other surveys, e.g.,
how a service description is used to create heuristics for the
used planning technique.

We start out with Rodriguez-Mier et al. [24] who neglect
non-functional parameters as well, but they describe a general
heuristic that is used in an A∗ algorithm. This heuristic com-
bines the amount of already executed services in a backward
search: h(n) = distance(Sn, Sgoal), where Sn is the current
state and Sgoal is the goal state. In addition the cost of a state
Sn is the number of services still needed to reach the start state.
This is denoted with c(n). This is combined to the heuristic
function f(n) = h(n) + c(n). This heuristic has the drawback
that it only is applicable after a solution has been found. Thus
it can be used to select the best path, from start to goal state,
but it can not be used during the planning itself.

Meyer and Weske [25] as well count the number of service
executions as a heuristic for their planning mechanism. They
restrict this heuristic further, arguing that it is only an upper
limit since the plan could include parallel executions and thus
the amount of service execution steps can be further reduced.

Hoffman and Nebel [26] use a relaxed plan heuristic by
removing the deletions out of the effect of a service. This can
be done in PDDL since there are only additions and deletions
of facts. Such a heuristic becomes research worthy if the
semantics of the problem looked at comply to the open world
assumption. This is because we can not decide if a left-out
fact is true or not. Further effects could conflict each other
because they are coming from different conceptualisations,
e.g., different ontologies describing the same or opposite fact.

Klusch et al. [27] use the heuristic of Hoffman and
Nebel [26] where a breadth first search is used if services
have the same heuristic value.

Bonet and Geffner [28] build a heuristic by evaluating each
fact of the goal. Here a fact fg of the goal has an estimated
cost of the length of a minimal path through the planning state
space from the initial state. This leads to a heuristic:

h(s) =
∑

fg∈Sgoal

gs(fg) (1)

where

gs(fg) =

{
0 if fg ∈ S

max
s∈Services

[1 + gs(s.pre)] else (2)

Here Services is the set of all available services and s.pre
is the set of preconditions of the service s. The maximum
in Equation (2) is chosen because it forms an admissible
heuristic [28].

Mediratta and Srivastrava [29] introduce the heuristic of
Hoffman and Nebel [26] to an AND-OR graph as a plan. Here
the cost of each OR path through the graph is selected with
a minimum. For AND-connected nodes in the Graph the cost
function is summed up.

Fanjiang and Syu [30] use genetic algorithms for the
service composition, which does not contain any heuristics at
all. This is the same with Lécué et al. [31] who use reasoning
in OWL-DL (Web Ontology Language Description Logic) for
the selection of fitting services but no heuristics.

Regarding this state of the art we suggest that heuristics are
part of the future work in this domain [32]. This is based on
the performance issues described in the evaluation of the here
analysed papers. Furthermore, the heuristic can be used during
design time, to suggest services to the developer as part of a
semi-automatic service composition framework. During design
time, the actual execution and parametrisation of the service is
left to the developer. Thus, a heuristic does not need to select
purely executable services for a given state.

IV. DEVELOPMENT COMPONENTS

The method for semantic service management and devel-
opment makes use of two development tools, which are both
implemented as Eclipse plugins [33] and thus can seamlessly
be integrated into the developer’s usual workflow.

The overall architecture of the proposed development com-
ponents is shown in Figure 4. We differentiate between the
runtime, in which a service can be grounded to its real
parameters and execution environment, and the design time,
in which there are fewer resource constrains for the planning
and an expert is able to fine-tune the service composition in a
BPMN editor.

Here, black arrows describe the information flow, e.g., the
service matcher gets the service descriptions out of a service
repository and supplies the state-space-planner with fitting
services for a current state.

a) Design Time: At design time, the developer is sup-
ported by a BPMN editor to create service compositions.
This BPMN editor uses semantic annotations to describe
the functional and non-functional aspects of a service. These
descriptions are used by a planning component to build service
compositions (a sequence of services) to suggest to the user
while he is searching for reusable service for his composition.
This state space planner uses a service matcher to identify
useful services out of a service repository.

The result of this process is a BPMN description of a
service composition that can be deployed into a runtime.
This description can be quite abstract as we will describe in
Section IV-B. This abstraction allows for flexibility and thus
for an adaptation of the composition at runtime.

80

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design TimeRuntime

Services

State-Space-
Planner

Service
Matching

QoS-Monitor Description
Blackboard

Ontology
Repository

Service Composer

HTN-Planner

QoS Service
Selector

Execution
Engine

BPMN Editor

Semantic
Annotation

BPMN Service Composition

Deployment

Grounded Service
Composition

SeMa 2

SSM

VSDT

Figure 4. Architecture of the development components.

b) Runtime: At runtime, the given service composition
is concretised. This is done since the resource consumption of
the general purpose planning is too high to be used at runtime.
To keep the introduced flexibility, the service composer uses a
HTN-planner (Hierarchical Task Network) to select between
alternative sub-plans. This is thought as a first principle planner
where plans are selected from a plan library [34]. As a one-step
plan, a service call is the atomic entity that can be replaced.
This service composer can replace unavailable services, or use
a QoS service selector to optimise the service composition to
some criteria. With ever more service compositions available
and thus more alternatives of sub-plans to search from, this
service composer becomes a fast planner with domain specific,
optimised service composition.

Another task of the service composer is the selection of
unknown parameters. Those are called the service grounding.
This might be, e.g., the resolution of a display device or the
rendered models, which are unknown during design time. Fur-
thermore, if a template of a service is part of the composition,
the concrete service instance needs to be chosen, before the
composition can be executed. Again this selection can be based
on the QoS parameters of the services.

The resulting grounded service composition is passed to
an execution engine. This execution engine reports QoS
parameters back to the QoS-Monitoring, which in parts then
ranks the services used to learn their quality parameters for
future references.

The service blackboard describes the available services
and their QoS behaviour. The service blackboard thus does
restrict the accessibility of services theoretically available
during design time and practically executable during runtime
– there might be political, organisational, or financial reasons
as to by whom services can be accessed – and lets the service
composer choose from alternatives.

All in all, this separation of runtime and design-time is
a trade-off between complexity and adaptability. Since the
automated creation of a service composition from scratch is
too expensive, the adaptation of existing plans might lose

on adaptiveness, but renders the system profitable through
reusability of plans.

In the following we describe the two involved develop-
ment components, namely the Semantic Service and Ontology
Manager (SSM) and the Visual Service Design Tool (VSDT)
in more detail.

A. Semantic Service and Ontology Manager

The description of the Semantic Service and Ontology
Manager is divided into an approach section and a short state-
of-the art section related to the semantic annotation of services.

1) Approach: In order to be able to integrate intelligent
planning algorithms, the environment has to come up with
the necessary infrastructure. One essential requirement in
this respect is the semantic description of functionalities or
services. Since current standards such as OWL-S [35] are not
easy to describe from scratch, we developed a plug-in called
Semantic Service Manager (SSM) [36], providing a set of fea-
tures supporting a semi-automatic description of services. The
core of SSM is an Ontology Manager (see Figure 5), which
enables the developer to include and utilize OWL ontologies
for the application in semantic service descriptions. However,
since many development approaches use other languages to
specify the domain of concern, such as the Eclipse Modeling
Framework (EMF), the Ontology Manager also provides a
transformation process from EMF to OWL.

SSM Environment
View

Service
Search View

Service
Description View

SSM JIAC
Agent Rule Editor Ontology

Management

Transformation

OWL-S <-> JIAC

Ecore -> OWL

WSDL -> OWL-S

JIAC-
File

Ecore
-File

WSD
L-File

OWL-
S-File

OWL-
File

BPMN Editor

Service
Matching

Description
Blackboard

Figure 5. Components of the Semantic Service Manager.

Based on the Ontology Manager the developer is then
able to describe the service according to name, description,
input and output parameters and finally preconditions and
effects. The latter ones can be described via SWRL, and for
this purpose SSM comes with a syntax highlighting editor
and structure parser. The description can then be utilized in
different ways. Either it can be deployed to a semantic service
repository (see Section V), it can be sent to a BPMN process
(see the next paragraph), or it can be linked to a service
of the multi-agent framework JIAC V (Java-based Intelligent
Agent Componentware, version 5) [37]. With these options at
hand, the developer can easily connect semantic descriptions
to services and is able to deploy them immediately.

81

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The second purpose of the SSM is the search and utilization
of existing and running services within a distributed environ-
ment. Therefore, the SSM provides a Service Discovery View
where the developer can define (incomplete) parameters of a
service and search the platform directory using the SeMa2

matcher. The developer can also adapt the weightings of the
different matching techniques used. After selecting one of the
services they can either be pushed to the Visual Service Design
Tool (VSDT) to use it within a BPMN process (see Figure 7),
or a code inclusion function can be triggered that inserts the
service call code into the open Java window.

The different ways how the SSM can be used for describing
or searching services or service templates and for importing
them into a complex process are shown in Figure 6.

Figure 6. Different ways of creating or searching services with the SSM and
using them in complex processes.

2) State-of-the-Art: Many of the works in the context of
semantic service management merely focus on service match-
making, but forget the design process, although being just
as important. However, some focus on the semantic markup.
The OWL-S editor [38] is a plug-in for Protégé, an open
source ontology editor. With it a complete creation and editing
of OWL-S descriptions is possible. Furthermore, the service
behind the description can be tested via a graphical user
interface. Drawbacks of the OWL-S editor are that it cannot
handle multiple ontologies, because of limitations of Protégé.
There is no connection to a framework, meaning that the editor
lacks usability. The authors also do not see the benefits of a
Java-to-OWL transformation. They argue that most commonly
the service is developed before the implementation in code.
Another editor for OWL-S is the OWL-S IDE [39]. It is a plug-
in for Eclipse and, contrary to the OWL-S editor, supports the
generation of OWL-S skeletons out of Java code. However, this
generation is limited to basic types due to the missing support
of ontologies. Furthermore, it does not support preconditions
nor effects.

B. Visual Service Design Tool

This section starts with a detailed description of the Visual
Service Design Tool followed by a state-of-the-art paragraph
related to process modelling.

1) Approach: While basic services are usually imple-
mented in the form of Java classes or equivalent, for ser-
vice compositions the Business Process Model and Notation
(BPMN) [40] has proven useful. Using the VSDT, existing

semantic services can be imported from the SSM and or-
chestrated to complex processes using the BPMN notation
(Figure 7).

Figure 7. Semantic service development tools with example usecase. Top:
VSDT editor showing process diagram; bottom: SSM view.

The VSDT is based on the Eclipse Graphical Modelling
Framework (GMF) and provides a rich visual editor for BPMN
processes [41]. It also provides means for process validation,
simulation/debugging, and export features to different exe-
cutable languages.

The BPMN editor integrates with the Semantic Service
Manager view in the way that services from the SSM can be
imported into the VSDT. Via a function in the User Interface
(UI), an accordant service description is added to the currently
opened VSDT process, together with data types representing
the different ontology concepts. That service can then be used
in a service task and combined with control flow, short scripts,
and other services to a complex process. Instead of an actual
service, the same approach can also be used for importing a
service template into the VSDT process, which will then be
matched to an actual service at runtime.

Accordingly, the BPMN service model used in the VSDT
had to be extended to allow for semantic information. While
the BPMN specification only accounts for Web service imple-
mentations – both for service- and for send- and receive-tasks
– we extended the model to allow for the implementation to
be either a Service or a Message Channel, according to the
more diverse means of interaction in JIAC, and in multi-agent
systems in general. Also, while the service description can
still be used for Web services, it supports additional attributes
for the service’s preconditions and effects, e.g., in the form of
SWRL expressions, and whether the service refers to an actual
service or a service template (Figure 8).

Figure 8. Extended Message- and Service-model used in VSDT BPMN
editor.

Next, those processes can be exported to executable lan-
guages such as BPEL (Business Process Execution Language)

82

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

processes [41] or JIAC agent behaviours [42], [43], the latter
being the execution environment used in this approach, which
will be discussed in detail in Section V. In the case of
JIAC agents, VSDT processes can either be compiled to
JIAC beans, encapsulating an accordant behaviour, or they
can be interpreted directly. In this work, we will focus on
the interpreting approach.

2) State-of-the-Art: BPMN [40] can be used for describing
services and service orchestrations in particular on a high level
of abstraction. BPMN provides a rich syntax for modelling
both the internal processes as well as the interactions of the
system, and can thus be seen as a combination of Activity
Diagrams and Sequence Diagrams of the Unified Modelling
Language (UML). Further, while the process diagrams are eas-
ily understandable, the underlying formal model provides the
attributes necessary to describe readily-executable programs.

BPMN is being used for modelling and generating service-
oriented systems in a number of other works and can be seen
as a de-facto standard for this task. Besides the mapping from
BPMN to BPEL that is included in the specification itself [40,
Chapter 14], alternative mappings have been proposed, e.g.,
by Ouyang et al. [44] and Mendling et al. [45]. Today, many
process management systems can also execute the BPMN
diagrams directly.

Besides those well-established paths, there are also ap-
proaches using BPMN for modelling agents and multi-agent
systems. For instance, in GPMN, Jander et al. [46] com-
bine BPMN processes with goal-hierarchies for Jadex agents
equipped with BPMN interpreters. In WADE [47], on the other
hand, a proprietary notation similar to BPMN is used, and the
processes are transformed to executable code for JADE (Java
Agent Development Framework).

Concerning the integration of semantics into BPMN, Bar-
nickel et al. extended the Oryx BPMN editor with ontology
matching capabilities, using OWL-DL [48], but to the best
of the authors’ knowledge there are no approaches towards
integrating semantic service matching into BPMN or accordant
process engines.

V. RUNTIME COMPONENTS

In this section we will discuss the different components
of the runtime environment. The services are executed as
part of a JIAC multi-agent system. This way, each service is
running on an individual agent, providing an adequate level of
modularity and encapsulation. The environment also provides
interfaces to other types of (web) services, such as WSDL
(Web Service Description Language), SOAP (Simple Object
Access Protocol), and REST (Representational State Transfer),
which can be integrated transparently with JIAC.

A. Multi-agent Framework
The execution environment is based on JIAC V (www.jiac.

de), a multi-agent framework also incorporating many aspects
of service-oriented architectures [37]. The agents are situated
on agent nodes (runtime containers).

Complementary to message-based communication, one of
the core mechanics of JIAC agents is to expose actions.
Depending on its scope, an action can be found and used
by other components of the same agent, by other agents on
the same node, by any agent on the network, or exposed as

a webservice to be used by different applications. Each JIAC
agent node has a directory of known agents and actions, both
on the same node as well as on other nodes, that can be used
for querying and finding specific agents and actions according
to templates. Given just the name, or the inputs and outputs
of an action, the directory will find and return an action that
matches that template (if such an action exists), which can
then be used for creating an accordant intention.

Each agent’s behaviours and capabilities are defined in sev-
eral agent beans, providing different general and application-
specific functions (see Figure 9).

Figure 9. Components of a JIAC multi-agent system and individual agents
(adapted from [49]).

Besides providing actions for others to use, agent beans
can also implement periodic behaviour, or behaviours to be
executed when the state of the agent changes (e.g., when it
is starting or stopping). Also, they can attach observers to
the agent’s memory to react, e.g., to incoming messages or
to changes in the environment. Finally, several application-
independent beans can be added to the agent or the agent
node as a whole, to provide certain functionalities, such as
communication, persistence, migration, or reactive behaviour.

Integrating the semantic service matcher into JIAC was
very natural and straightforward. The SeMa2 itself has been
wrapped into a JIAC agent node bean, i.e., there is one instance
of the matcher for each individual node, shared by all agents
on that node, hooking into the directory running on that node.
Whenever a semantic service template (as opposed to a plain
JIAC action template) is passed to the directory for service
lookup, the directory will delegate it to the semantic service
matcher bean, which will return the best matching service. To
the agent invoking the service, it is fully transparent whether
the found capability is a standard JIAC action or a semantic
service.

In order to utilise the service matching and planning
functionalities within the JIAC environment it was necessary
to extend the existing action model for agents by means of
a semantic service description model. The model is oriented
towards the OWL-S standard dividing information into Profile,
Process and Grounding parts. The latter can either reference
JIAC action information or it can define WSDL or REST
attributes.

B. WSDL and REST Web Service Integration

For interfacing with other services, the WSDL- and REST-
services integration beans can be used. Those two components
do both have the following two effects:

• all the JIAC actions accessible via the directory that
have the ‘webservice’ scope will be exposed to the
outside world as accordant WSDL or REST services,
respectively,

83

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• additional JIAC actions will be created and exposed,
representing each of the WSDL and REST services
known to those beans.

The respective input and output data types (e.g., XML schemas
in the case of WSDL web services) are mapped to correspond-
ing Java classes, and vice versa. The created web services
are hosted by the same agent node using an integrated Jetty
server. Thus, JIAC agents can seamlessly and transparently be
integrated with both, REST and WSDL services.

C. Semantic Service Repository
Each of the semantic services is associated with a URI

resource, holding their actual semantic descriptions in the form
of an OWL-S document. While in theory each of the agents (or
corresponding entities in a different runtime) could host their
respective service descriptions themselves, this approach is not
optimal, as the URI might change depending on where the
agent is running. Instead, a central Semantic Service Repository
is used for hosting the different service descriptions and their
relevant ontologies, each being identified by a unique and
invariant URI.

The service repository has been realised as a JIAC agent
node, encapsulating a Jetty web server and providing a number
of actions for deploying, searching, and fetching service de-
scriptions. It also supports multiple filters, e.g., for only show-
ing services that are currently running. Service descriptions
can be deployed to the repository either statically, using the
SSM tool, or dynamically whenever an agent providing the
respective service starts. The service repository automatically
parses the service descriptions and adapts all the internal URI
references, e.g., to the descriptions of the services’ inputs and
outputs within the same document, to its current server address,
where those resources are stored.

Each JIAC service, that is backed by a semantic service
description, has an attribute semanticURI referring to the
corresponding OWL-S resources. When the SeMa2 matcher
is invoked from within JIAC, the runtime will fetch the service
descriptions, pass those to the matcher, receive the result, and
finally return the action whose semanticURI corresponds to
that matching result.

Currently, we are working towards distributing the service
repository, to improve scalability for large numbers of services
and service requests, as well as the ability to automatically
assess the Quality-of-Service (QoS) of the invoked services,
e.g., latency and time-to-complete.

D. JIAC based BPMN Interpreter
One of several application-independent components for

JIAC agents is the process interpreter bean, enabling the agent
to interpret and execute BPMN processes created with the
VSDT [42].

The process interpreter bean is composed of three layers
(Figure 10): First, the process interpreter bean itself provides
actions for adding processes to be interpreted and for managing
already running processes. Also, it acts as an interface to
the agents, providing functionality for sending and receiving
messages and invoking other actions from within the BPMN
processes. Finally, it exposes all the processes (that have an
accordant start event) as actions so they can be used by other
agents.

Figure 10. Layered architecture of BPMN Interpreter Bean. [42]

Whenever a BPMN diagram is added to the process engine
bean for interpretation, an interpreter runtime is created, which
is responsible for each process spawned from this diagram. It
keeps track of start events and creates a new instance of that
process whenever an event corresponding to the respective pro-
cess start events occurs. Several volatile process instances are
responsible for running the individual processes spawned by
the runtime, evaluating conditions and assignments, executing
the different activities, and keeping track of the current state
of the process, i.e., which activities are ready for execution, as
well as the values of the different process variables. Depending
on the type of the activities, different actions are taken, e.g.,
sending or receiving a message, invoking another service,
executing some short script, or interacting with the user.

After one or more processes have been deployed to the
interpreter – either at start-up or using the above-mentioned
actions – in each step of the interpreter bean’s execution cycle,
each interpreter runtime will advance each of its associated
interpreter runtimes by one step, which in turn each execute
each activity that is currently in a ready or active state.

Employing JIAC’s communication and service infrastruc-
ture, the interpreted processes can discover and make use
of other JIAC actions, and – if the respective proxy beans
are present – of WSDL and REST services. If the semantic
service matcher is installed in the node, it is automatically
used for finding services according to the templates used in
the processes. The current state of the interpreter bean – the
active runtimes, their respective process instances, and their
internal states – can be monitored using a simple UI, also
providing an interface for manually starting processes and for
the processes to interact with the user, e.g., for BPMN user
tasks, or for querying missing service parameters.

While this UI is intended for developers, a similar generic
UI can also be used for invoking the services and interacting
with the user in a more end-user friendly way, as we will show
in the following.

E. Smart Personal Assistant and UI Renderer

The Smart Personal Assistant (SPA) is a UI framework for
quickly developing adaptive, multimodal user interfaces for
services [50], and is used in a number of research projects.
While the usual SPA UI is manually created for the service
at hand and styled to fit the design of the respective project,
a special Renderer UI has been created, allowing to start
any service, and also providing callbacks for user interaction
triggered by the invoked service. Similar to the interpreter
monitoring UI, input fields for querying the service parameters
and for displaying the output are automatically derived from
the respective classes, using the Java Reflection API.

While those generic, automatically generated UIs do not
look as polished as the manually crafted ones, they allow

84

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for quickly prototyping new complex services with rich user
interaction and for integrating them into the user’s workflow.

All of the here described components are open source and
available for download from www.jiac.de.

VI. METHODOLOGY

In the following, we will sketch a process of how the
different components introduced in the last three sections are
used together to form a methodology of semantic service en-
gineering. At its base, the method is similar to other software-
and service engineering methodologies, but combines those
with requirements for and contributions of semantic services.
An overview of the methodology is shown in Figure 11,
using the BPMN notation, and highlighting how the different
components are used in the stages of the process. In the
following, we will describe the different steps in more detail.

A. Ontology Engineering
The first step in creating semantic services is to model the

ontology that will be used for describing the service’s inputs,
outputs, precondition and effect, if any. This is particularly
important, since one of the main motivations for semantic
services is for those services to be easily findable, reusable,
and composable with other services; thus, whenever possible
it should be the aim to reuse, or, if necessary, extend existing
ontologies, instead of creating new ones. This step is also
concerned with mapping the ontological concepts, for example
described in OWL, to a representation that is closer to the ser-
vice implementation, e.g., Java classes (or vice versa, starting
with Java classes and generating according OWL ontologies).

The new or modified ontologies are then uploaded to a
server hosting a repository of known ontologies, so they can
be used in the next step, as well as in other services. There
is no specific tool for this step in our method. Ontologies can
be created, e.g., with Protégé [51], or generated from existing
Java classes or EMF models [52].

B. Creating Semantic Service Description
Next is the creation of the semantic service description

itself, defining the “contract” of the service. Of course, this
step is not particular for semantic services, but is a common
practice for all of service- and software engineering. The major
difference is that besides name, textual description, input and
output parameter, also the preconditions and effects of a service
can be defined. Especially the latter, which in our approach can
be described with the semantic rule language SWRL, extend
the attributes of a service in a way that matching or planning
processes can deduce its purpose and its formal prerequisites.
However, as describing semantic terms can be challenging, we
paid attention to provide a user-friendly editor with syntax-
highlighting, auto-completion and validation parser. Currently
missing, but contemplated is the integration of several QoS
attributes, making the selection of services also sensitive to
non-functional aspects.

The new service description is uploaded to a service
repository, adding it to the list of services usable by the
semantic service matcher and planner. In our method, the SSM
tool is used for creating the service descriptions using OWL-
S. Existing ontologies can be browsed (but not edited) for
selecting concepts for input and output, while preconditions
and effects are specified using SWRL. The finalized service

description can then be deployed to the repository and an ac-
cordant stub for the service implementation can be generated.

C. Service- and Process Engineering
The bulk of the service development process is occu-

pied with engineering the service’s implementation. While
the service’s method declaration can be generated from the
semantic service description, its body has to be implemented
by a developer. Here, we can differentiate two main activities:
Identifying and integrating existing services, and developing
the logic that combines those services to a new service, or
process, with added value.

There are three ways how services can be searched, identi-
fied, and imported into the currently developed process, using
the SSM tool:

• The service can be searched for, using a semantic
service template, and the service best matching the
template is integrated into the current service.

• In case no single service satisfies the template, the
semantic service planner can be used to automatically
find a service composition that, as a whole, matches
the template; the individual services of that composi-
tion are then integrated into the current service in the
appropriate sequence.

• Instead of searching services at design time, the tem-
plate that would be used for matching the service can
itself be integrated into the current service, deferring
the search and matching process to runtime.

Of course, there is also a fourth case: That no service or
service composition can be found that fulfils the template. In
this case, a new service has to be created, thus starting a new
instance of the service development process.

The service logic can be created in two ways: Either in
the form of a Java method, or, using the VSDT, as a BPMN
process, which is later either mapped to Java (JIAC agent
beans) or interpreted directly. Which one to choose mainly
depends on the ratio of service reuse to “original” service logic:
In case the new service is mainly a composition of existing
basic services, they can very well be modelled visually as
business processes, but if they contain complex calculations
or make extensive use of third-party libraries (that are not
available as services), then implementing the services in plain
Java is the better choice. As a middle way, it is also possible
to integrate short snippets of Java code into a BPMN process,
using script tasks.

D. Testing the Implementation against the Specification
The last step before deployment is testing, to ensure that

the services’ implementations comply with their semantic
descriptions. Of course, testing plays a well-established role
in software engineering and is not particular to semantic ser-
vice development. However, the presence of formal semantic
descriptions impose both an obligation and an opportunity for
(automated) unit testing.

On the one hand, while even a regular function or service
that does not comply with its documentation is always a
nuisance, a semantic service that violates its stated effect could
threaten the functionality of the entire system it is embedded
in, as automated planners will rely on that information. On

85

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Semantic Service Management and Development Process, as a BPMN process, and associated components: Green: Semantic Service Core; Blue:
Development Tools; Red: Execution Environment. The central activity is an ad-hoc subprocess, executing the embedded tasks as needed, in no fixed order.

the other hand, since the intended behaviour of the service has
already been specified in its precondition and effect, writing
the actual tests becomes very straightforward.

While this is currently not implemented in our approach, it
would also be possible to automatically generate unit tests from
the semantic service description, particularly the service’s pre-
conditions and according effects. For this, the input parameters
can be generated, setting all attributes that are not specified in
the precondition randomly; then, the expected output can be
inferred from the service’s effect, thus testing the actual result
of the service invocation against the expected value.

In case the service does not comply with the tests (i.e.,
with its stated preconditions and effects), the usual course
of action is, of course, to fix the service. However, in some
cases this may also expose flaws in the service’s input, output,
precondition and effect (IOPE) descriptions. In this case, the
process has to backtrack and update the semantic service
description and adapt or extend the service’s implementation
accordingly.

E. Deployment and Runtime Monitoring
The final step is to deploy the new service to the runtime

environment. Depending on whether the service has been
implemented directly as a Java class (e.g., a JIAC agent bean
exposing an accordant action), or in the form of a BPMN
process diagram orchestrating different existing services, the
deployment process is slightly different.

• In case the service has been implemented directly in
Java and is meant to be a basic service to be used as
a building block for other services, it is best to create
a new agent exclusively for that service and to deploy
it to the runtime server.

• In case of a service composition created as a BPMN
process, the process diagram can be deployed to an
already running process interpreter agent. This way,
deployment and undeployment is very dynamic, and
the interpreter also provides basic capabilities for
runtime monitoring and user interaction. Alternatively,
the process can also be automatically translated to Java
code and deployed as in the above mentioned case.

In both cases, the services are deployed to the JIAC runtime
environment and can be invoked as actions, and searched for

using the semantic service matcher. Using the WSDL and
REST integration beans, the services will also be exposed as
WSDL or REST services, respectively, and can transparently
use other services available in those formats.

VII. SEMANTIC SERVICE MANAGEMENT IN PRACTICE

In this section, we will explore how the semantic service
engineering method discussed in this paper can be applied in
practice. For this, we will have a look at two scenarios: First,
we describe how the service matcher and the development tools
have been used in a recently completed research project in the
e-mobility domain. Then, we continue to describe one of our
current projects, in which we are extending our approach for
the augmented reality domain.

A. Semantic Services for E-Mobility
In the project EMD (Extendable and adaptive E-Mobility

Services), a use case within the transportation domain was
constructed to demonstrate the use of the developed tools,
the methodology, and the basic services, as seen in Figure 7.
The process was created using the VSDT editor, orchestrating
services from the SSM. The finished process is deployed to
the JIAC BPMN interpreter for execution and the SeMa2 is
used for service matching at runtime.

Our first scenario combines different basic services for
searching for charging stations, reserving parking spaces and
charging slots, as well as access control to the same. First, the
process queries the user’s information, particularly w.r.t. her
current location, and available subscriptions for car sharing
and parking space providers. It then uses the location to find
charging stations that are close by using services from charging
station provides for whom the user has a subscription. Those
charging stations are then presented in a list for the user to
choose from, using the UI renderer, and the user is asked for
the time of reservation. The corresponding charging station
reservation service is matched and the booking is made, if
that time slot is not already taken, or the user is asked again.
Finally, as soon as the user signals that she arrived at the
location, another service is matched and invoked to handle the
access control, if any.

In this example, the SeMa2 can be used for finding relevant
services for searching and reserving charging stations, depend-
ing on the user’s subscriptions. For this, the User object is

86

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Service orchestration in the e-mobility use-case.

passed as an input parameter or as a context object to the ser-
vice matcher, and the different services, having a precondition
like hasSubscription(?user, "Provider X"), can
then be selected by the semantic service matcher. This match-
ing can be either be done a-priori, at design time, using the
SSM for finding a set of matching services for one specific
provider, or it can be deferred to runtime, making the selected
services depending on the current user.

Of course, this required the relevant services not only to
be semantically annotated, but to be so using the same domain
model, or ontology, as used in the rest of the system. Since this
is usually not the case, particularly when dealing with service
provided by third parties (such as e-mobility providers) some
of those services have to be wrapped accordingly.

B. Semantic Service Management for Augmented Reality
Another technical domain where semantic service manage-

ment has the potential to lead to a boost of development is
the area of augmented reality (AR) services. In the project
AcRoSS (Augmented-Reality-based Product-Service Systems,
more information available at: www.across-ar.de) we aim to
set up a library for AR-services that can be used together
with the software components presented in this paper in order
to develop problem tailored solutions for small and medium-
sized enterprises, for whom it is currently extremely hard and
expensive to develop such specific solutions.

However, services for AR-glasses do have very strict re-
quirements that have to be met. For instance, the hardware
on the devices is currently still limited. Therefore, there has
to be a very efficient concept for adaptive service processes.
Furthermore, in many scenarios the glasses that will be used
will be offline, meaning that the matching procedure and the
services have to be located on the device itself. These issues
as well as service specific aspects, like the quality of object
recognition services, lead to the need for a service management
concept that takes Quality-of-Service aspects into account.

One scenario within the AcRoSS project is about mainte-
nance and repair of exposure machines, which are used for
the creation of printing plates for the newspaper industry.
The maintenance task includes the cleaning of exposure rolls,
which means that they have to be taken out of the machine,
maintained and correctly set into place again afterwards.
Although this task sounds simple in first place, it is quite
error-prone, since the rolls can also be set into place with the
wrong direction or at the wrong place within the machine. The
same challenge holds for even more complicated repair tasks.
Currently, very experienced employees have to do these tasks
at the client side, which is expensive. Using AR, the employee
will be supported by services that recognize each part of the

machine, search for related manuals in the backend, guide the
employee what to do with the component and also check and
display the machine’s status. In order not to redevelop each
process again and again for every machine, the process will be
designed in an adaptive way, meaning that specific services like
the retrieval of manuals will be selected dynamically as well
as the request for the machine’s status. Furthermore, at design
time the developer will be able to select object recognition
services via given Quality-of-Service parameters.

At the time this paper has been written the project was in
the specification phase. A thorough evaluation will be done
and published at a later point in time.

VIII. CONCLUSION

In this article, we presented an approach for semanti-
cally matching services and for combining those services
to complex plans, both at design-time and at runtime, as
well as a set of development tools and an accordant runtime
environment for generating adaptive and flexible systems in
service-oriented environments. Those planning components,
development tools and runtime have been integrated into a
methodology for semantic service management and engineer-
ing, covering all phases from semantic service description and
service development up to testing and runtime monitoring. In
this approach, semantic services are orchestrated in adaptive
business processes, based on BPMN, where service templates
can be specified within the process and dynamically matched
to concrete services at runtime. This method has successfully
been applied, among others, in a research project in the e-
mobility sector. Currently, the same approach is adapted and
extended for services in the augmented reality domain.

In the future, we plan to address a number of challenges
related to automated service composition and planning [32].
Among others, we want to extend service matching and plan-
ning by taking quality-of-service aspects into account. Also,
we want to investigate the use of heuristics for more efficient
planning, to foster the usefulness of service planning in real-
world applications.

ACKNOWLEDGEMENTS

This work is based on projects funded by the German
Federal Ministry of Economic Affairs and Energy under the
funding reference numbers 16SBB007A and 01MD16016F.

REFERENCES
[1] J. Fähndrich, T. Küster, and N. Masuch, “Semantic service management

for enabling adaptive and evolving processes,” in Proc. of 11th Int. Conf.
on Internet and Web Applications and Services (ICIW 2016), Valencia,
Spain, May 22–26 2016, pp. 46–53.

[2] M. Klusch, U. Küster, A. Leger, D. Martin, and M. Paolucci,
“5th International Semantic Service Selection Contest - Performance
Evaluation of Semantic Service Matchmakers,” Nov. 2012, last
access: 2016/11/28. [Online]. Available: http://www-ags.dfki.uni-sb.de/
∼klusch/s3/s3c-2012-summary-report.pdf

[3] J. Fähndrich, N. Masuch, H. Yildirim, and S. Albayrak, “Towards auto-
mated service matchmaking and planning for multi-agent systems with
OWL-S – approach and challenges,” in Service-Oriented Computing
- ICSOC 2013 Workshops, ser. Lecture Notes in Computer Science,
A. Lomuscio, S. Nepal, F. Patrizi, B. Benatallah, and I. Brandi, Eds.
Springer International Publishing, 2014, vol. 8377, pp. 240–247.

[4] J. Fähndrich, S. Weber, and S. Ahrndt, “Design and Use of a Semantic
Similarity Measure for Interoperability Among Agents,” in Multiagent
System Technologies. Springer International Publishing, 2016, pp.
41–57.

87

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] P. A. Morris, “Combining expert judgments: A Bayesian approach,”
Management Science, vol. 23, no. 7, 1977, pp. 679–693.

[6] M. Stone, “The opinion pool,” The Annals of Mathematical Statistics,
vol. 32, no. 4, 1961, pp. 1339–1342.

[7] C. Genest, “Pooling operators with the marginalization property,” The
Canadian Journal of Statistics/La Revue Canadienne de Statistique,
vol. 12, no. 2, 1984, pp. 153–163.

[8] D. Dyer. Watchmaker Framework. Last access: 2016/05/11. [Online].
Available: http://watchmaker.uncommons.org/ (2006)

[9] W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of
statistical functions with simulated annealing,” Journal of Econometrics,
vol. 60, no. 1-2, Jan. 1994, pp. 65–99.

[10] M. Klusch and P. Kapahnke. The Semantic Web Service Matchmaker
Evaluation Environment (SME2). Last access: 2016/11/28. [Online].
Available: http://projects.semwebcentral.org/projects/sme2/ (2008)

[11] M. Klusch, P. Kapahnke, and I. Zinnikus, “SAWSDL-MX2: A machine-
learning approach for integrating semantic web service matchmaking
variants,” in 2009 IEEE International Conference on Web Services
(ICWS), IEEE Computer Society. IEEE, 2009, pp. 335–342.

[12] M. Klusch and P. Kapahnke, “The iSeM matchmaker: A flexible
approach for adaptive hybrid semantic service selection,” vol. 15, Sep.
2012, pp. 1–14.

[13] M. Klusch, B. Fries, and K. Sycara, “OWLS-MX: A hybrid semantic
web service matchmaker for OWL-S services,” Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, vol. 7, no. 2, Apr.
2009, pp. 121–133.

[14] F. E. Gmati, N. Y. Ayadi, A. Bahri, S. Chakhar, and A. Ishizaka, “A
framework for parameterized semantic matchmaking and ranking of
web services,” in Proc. of 12th Int. Conf. on Web Information Systems
and Technologies, 2016, pp. 54–65.

[15] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: Theory
& Practice, D. E. M. Penrose, Ed. Morgan Kaufmann, 2008.

[16] H. Saboohi and S. A. Kareem, “A resemblance study of test collec-
tions for world-altering semantic web services,” in Int. MultiConf. of
Engineers and Computer Scientists (IMECS), vol. I, 2011, pp. 716–720.

[17] P. Doherty, W. Lukaszewicz, and A. Szalas, “Efficient reasoning using
the local closed-world assumption,” in Agents and Computational
Autonomy. Springer Berlin Heidelberg, Jan. 2003, pp. 49–58.

[18] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semant., vol. 5, no. 2, Jun. 2007,
pp. 51–53.

[19] G. Rodrı́guez, Á. Soria, and M. Campo, “Artificial intelligence in
service-oriented software design,” Engineering Applications of Artificial
Intelligence, vol. 53, no. C, Aug. 2016, pp. 86–104.

[20] G. Markou and I. Refanidis, “Non-deterministic planning methods for
automated web service composition,” Artif. Intell. Research, vol. 5,
no. 1, 2016, p. 14.

[21] G. Zou, Y. Gan, Y. Chen, and B. Zhang, “Dynamic composition of
Web services using efficient planners in large-scale service repository,”
Knowledge-Based Systems, vol. 62, May 2014, pp. 98–112.

[22] G. Zou et al., “QoS-aware dynamic composition of Web services using
numerical temporal planning,” 2012.

[23] G. Zou, Y. Chen, Y. Xu, R. Huang, and Y. Xiang, “Towards automated
choreographing of web services using planning,” AAAI, 2012.

[24] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic web
service composition with a heuristic-based search algorithm,” in 2011
IEEE International Conference on Web Services (ICWS). IEEE, 2011,
pp. 81–88.

[25] H. Meyer and M. Weske, “Automated Service Composition Using
Heuristic Search,” in Agents and Computational Autonomy. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 81–96.

[26] J. Hoffmann and B. Nebel, “The FF Planning System: Fast Plan
Generation Through Heuristic Search,” Journal of Artificial Intelligence
Research, vol. 14, no. 1, 2001.

[27] M. Klusch and A. Gerber, “Fast Composition Planning of OWL-S
Services and Application,” in Proc. of European Conference on Web
Services (ECOWS ’06). IEEE, 2006, pp. 181–190.

[28] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial
Intelligence, vol. 129, no. 1-2, Jun. 2001, pp. 5–33.

[29] A. Mediratta and B. Srivastava, “Applying planning in composition of
web services with a user-driven contingent planner,” IBM Research,
2006.

[30] Y.-Y. FanJiang and Y. Syu, “Semantic-based automatic service compo-
sition with functional and non-functional requirements in design time:
A genetic algorithm approach,” Information and Software Technology,
vol. 56, no. 3, Mar. 2014, pp. 352–373.

[31] F. Lécué, A. Léger, and A. Delteil, “DL Reasoning and AI Planning
for Web Service Composition,” in 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology.
IEEE, 2008, pp. 445–453.

[32] M. Lützenberger, T. Küster, N. Masuch, and J. Fähndrich, “Multi-agent
systems in practice – when research meets reality,” in Proc. of 15th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, and S. Marsella, Eds. Singapore:
IFAAMAS, May 2016, pp. 796–805.

[33] Eclipse Foundation. Eclipse. Last access: 2016/11/28. [Online].
Available: http://www.eclipse.org/ (2016)

[34] L. de Silva, S. Sardiña, and L. Padgham, “First Principles Planning in
BDI Systems,” in Proccedings of the 8th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2009),
C. Sierra, K. S. Decker, and J. S. Sichman, Eds. Budapest, Hungary:
IFAAMAS, May 2009, pp. 1105–1112.

[35] D. Martin et al., “OWL-S: Semantic Markup for Web Services,”
Website, Tech. Rep., Nov. 2004. [Online]. Available: http://www.w3.
org/Submission/2004/SUBM-OWL-S-20041122/

[36] N. Masuch, C. Kuster, and S. Albayrak, “Semantic service manager–
enabling semantic web technologies in multi-agent systems,” in Pro-
ceedings of the Joint Workshops on Semantic Web and Big Data
Technologies, INFORMATIK 2014, Stuttgart, Germany, 2014, pp. 499–
510.

[37] M. Lützenberger, T. Konnerth, and T. Küster, “Programming of multi-
agent applications with JIAC,” in Industrial Agents – Emerging Appli-
cations of Software Agents in Industry, P. Leitão and S. Karnouskos,
Eds. Elsevier, 2015, pp. 381–400.

[38] D. Elenius et al., “The OWL-S editor – a development tool for semantic
web services,” in The Semantic Web: Research and Applications.
Springer, 2005, pp. 78–92.

[39] N. Srinivasan, M. Paolucci, and K. Sycara, “Semantic web service
discovery in the OWL-S IDE,” in Proceedings of the 39th Annual
Hawaii International Conference on System Sciences - Volume 06, ser.
HICSS ’06. Washington, DC, USA: IEEE Computer Society, 2006.

[40] OMG, “Business process model and notation (BPMN) version 2.0,”
Object Management Group, Specification formal/2011-01-03, 2011.

[41] T. Küster and A. Heßler, “Towards transformations from BPMN to
heterogeneous systems,” in Business Process Management Workshops,
ser. LNBIP, D. Ardagna, M. Mecella, and J. Yang, Eds. Springer Berlin
Heidelberg, 2009, vol. 17, pp. 200–211.

[42] T. Küster, A. Heßler, and S. Albayrak, “Process-oriented modelling, cre-
ation, and interpretation of multi-agent systems,” International Journal
of Agent-Oriented Software Engineering, 2016, to appear.

[43] T. Küster, M. Lützenberger, and S. Albayrak, “A formal description of
a mapping from business processes to agents,” in Engineering Multi-
Agent Systems, ser. LNAI, M. Baldoni, L. Baresi, and M. Dastani, Eds.
Springer International Publishing, 2015, vol. 9318, pp. 153–170.

[44] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede,
and J. Mendling, “From business process models to process-oriented
software systems,” ACM Transactions on Software Engineering and
Methodology, vol. 19, no. 1, August 2009, pp. 1–37.

[45] J. Mendling, K. B. Lassen, and U. Zdun, “On the transformation of
control flow between block-oriented and graph-oriented process mod-
elling languages,” International Journal of Business Process Integration
and Management (IJBPIM), vol. 3, no. 2, 2008, pp. 96–108.

[46] K. Jander, L. Braubach, A. Pokahr, W. Lamersdorf, and K. Wack, “Goal-
oriented processes with GPMN,” International Journal on Artificial
Intelligence Tools, vol. 20, no. 6, 2011, pp. 1021–1041.

[47] F. Bergenti, G. Caire, and D. Gotta, “Interactive workflows with
WADE,” 2012 IEEE 21st International Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, vol. 0, 2012, pp.
10–15.

88

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[48] N. Barnickel, J. Böttcher, and A. Paschke, “Semantic mediation of
information flow in cross-organizational business process modeling,” in
Proc. of 5th Int. Workshop on Semantic Business Process Management
SBPM 2010, held in conjunction with the European Semantic Web
Conference (ESWC 2010), Heraklion, Greece, May 2010, pp. 21–28.

[49] T. Küster, A. Heßler, and S. Albayrak, “Towards process-oriented
modelling and creation of multi-agent systems,” in Engineering Multi-
Agent Systems, ser. LNAI, F. Dalpiaz, J. Dix, and M. B. van Riemsdijk,
Eds. Springer International Publishing, 2014, vol. 8758, pp. 163–180.

[50] N. Braun, R. Cissée, and S. Albayrak, “An agent-based approach to

user-initiated semantic service interconnection,” in Service-Oriented
Computing: Agents, Semantics, and Engineering: AAMAS 2007 In-
ternational Workshop, SOCASE 2007, Honolulu, HI, USA, May 14,
2007. Proceedings, J. Huang et al., Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 49–62.

[51] Stanford. Protégé. Last access: 2016/11/28. [Online]. Available:
http://protege.stanford.edu/ (2016)

[52] Eclipse Foundation. Eclipse Modeling Framework (EMF). Last
access: 2016/11/28. [Online]. Available: https://eclipse.org/modeling/
emf/ (2016)

