
Identifying Vulnerable Third-party Components in IoT Firmware

Using Deep Learning

Chia-Mei Chen, Sheng-Hao Lin

and Zheng-Xun Cai

Department of Information

Management

National Sun Yat-Sen University

Kaohsiung, Taiwan

Gu-Hsin Lai

Department of Technology Crime

Investigation

Taiwan Police College

Taipei, Taiwan

Ya-Hui Ou

General Competency Center

National Penghu University

Penghu, Taiwan

Abstract—To reduce the development time and the cost of

Internet of Thing (IoT) products, vendors leverage Third-Party

Components (TPCs) to manufacture various types of IoT

products. However, such third-party software might not be

validated with proper software testing or might contain

vulnerabilities. Furthermore, existing research rarely proposed

a cross-architecture solution for detecting both top IoT

vulnerabilities. Therefore, this study proposes a cross-

architecture IoT vulnerability detection method that identifies

vulnerable third-party components used in IoT firmware. This

study leverages a Siamese Neural Network (SNN) architecture

and designs a similarity algorithm to identify vulnerable

functions on different processor architectures. The evaluation

results demonstrate that the proposed method can identify

vulnerable TPCs effectively.

Keywords- IoT attacks; vulnerability detection; deep learning.

I. INTRODUCTION

With the prevalence of the Internet of Things (IoT) and its
flourishing development, about 83% of organizations rely on
IoT technologies to boost their productivity [1]. IoT devices
are becoming increasingly ubiquitous. In 2025, the IoT market
is expected to reach 27 billion active connections [2], and the
IoT-related services will grow to 58 billion dollars [3]. Such
network-connected devices in enterprise networks are hard for
security teams to properly identify and monitor them, which
may become security blind spots for the organizations.

To reduce development costs and to shorten the time to
market for a new device, the functionalities of the IoT device
typically are provided through previously developed software.
Furthermore, the current development leverages third-party
software heavily to improve development efficiency. The use
of TPCs in IoT products tripled during the recent years [4].
Including TPCs in an IoT device implies that the device
inherits the vulnerabilities existing within the TPCs. Such
external components mostly are not secure, and their
vulnerabilities influence IoT security [5]. TPCs play an
imperative role in IoT firmware development.

IoT devices commonly adopt embedded Linux systems.
Examining such embedded systems requires a comprehensive
understanding of the operating systems and the experience of
reverse engineering. In addition, manufacturers adopt various
processor architectures.

Based on the literature review, past research paid little
attention to the vulnerabilities caused by TPCs, so an

automatic and effective solution to identify vulnerable TPCs
used in IoT firmware is desired. In addition, existing work
mostly focused on a single architecture and rarely provided a
solution for multiple architectures. Even though the recent
work proposed solutions for cross-architecture, their detection
performance needed to be improved.

To fill in the aforementioned research gaps, this study
designs an automatic firmware analysis and vulnerability
detection approach for multi-architecture IoT devices, which
integrates several Open-Source Software (OSS) solutions to
automate the firmware analysis process and facilitates the
state-of-the-art machine learning technologies to extract
features of function codes and to identify vulnerable
components.

The remainder of this paper is constructed as follows.
Section 2 reviews the related research. Section 3 presents the
proposed detection method, followed by the performance
evaluation in Section 4. The last section draws the conclusion
remark and the future directions of this study.

II. LITERATURE REVIEW

To enhance detection performance, some research adopted
ensemble approach which aggregates the multiple classifiers.
Essa and Bhaya [6] applied two feature selection approaches:
mean and hard-voting schemes, with ensemble soft voting
classifier. According to the evaluation, their method achieved
better results than other ensemble and individual classifiers.

Zhao et al. [7] conducted a large-scale analysis of TPC
usage in IoT firmware. During the analysis process, their
approach requires several stages of manual work to facilitate
the detection. It applied the tool Binwalk [8] for file system
decomposition, extracted the features from Control Flow
Graphs (CFGs), and utilized the version check to determine if
a target TPC contains vulnerabilities. Even though this past
work involved intensive human analysis effort, it provided
statistical analysis results and highlighted the IoT cyber risk.

Ngo et al. [9] reviewed the existing IoT malware detection
work based on static analysis and pointed out that most
existing solutions only detect malware in a single architecture.
They summarized commonly used static features including
function call graphs, CFGs, operation codes (opcodes), strings,
and file headers.

A control flow graph is a directed graph G(V, E) that
represents all the possible execution paths of a code piece,
where V is a set of basic execution blocks and E is a set of

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-183-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IoTAI 2024 : The First International Conference on IoT-AI

edges representing the connections between these basic blocks.
Recent work adopted a CFG variation that contains extra
information about a code piece. An Attributed Control Flow

Graph (ACFG), G(V, E, M), is an extended version of CFG,
where M is the labeling function that maps a basic execution
block in V to a set of attributes in A. The attribute set A can be
tailored to capture the semantic meaning of the basic blocks
or to characterize the blocks.

Feng et al. [10] adopted ACFGs to represent binary
functions and extracted their statistical and structural
attributes, such as the number of calls, the number of
instructions, and the number of offspring. They utilized the
bipartite graph matching algorithm to measure the similarity
of two ACFGs.

Xu et al. [11] improved the previous work by employing
the structured data embedding technique Structure2Vec to
transfer ACFGs into feature spaces. They utilized a large-
scale training dataset obtained from compiling the same
source code on different architectures and with different
compiler optimization techniques to train an SNN for code
similarity detection. Sun et al. [12] also concluded that
ACFGs can capture relevant features of binary codes and
SNNs measure cross-architecture code similarity efficiently.

Feature selection plays an important role in the
construction of efficient detection classifiers. The literature
review concluded that most existing solutions only detect
malware in a single architecture and commonly adopted static
features. An improved CFG, ACFG, can extract better
semantic features to represent the algorithm, instead of
platform-dependent features. Therefore, it is suitable for
detecting cross-platform TPCs.

III. METHODOLOGY

The proposed solution is outlined in Figure 1. As
mentioned above, the tools for firmware image decomposition
and binary analysis are available, but some are unstable. After
a preliminary investigation, this study selects reliable tools
(Binwalk [8] and Angr [13]) to automate the binary code
extraction process.

The Firmware Decomposition module applies Binwalk to
decompose firmware images. The module identifies file types
through the file header and then extracts executable files for
vulnerable TPC inspection. The executable files serve as
inputs for the ACFG Conversion module are converted into
ACFGs, where the conversion applies the binary analysis tool
Angr to convert binary codes into ACFGs. The Feature
Embedding module adopts Struc2Vec [14] to encode the
graphic structure features of ACFGs, and the detection
module applies a SNN to compare the similarity of two
embedded ACFGs: a known vulnerable TPC and a function
code to be examined.

A. Firmware Decomposition

The Firmware Decomposition module utilizes Binwalk to
disassemble firmware and retrieves the file system and image
files. IoT firmware mostly uses the file system SquashFS to
compress a Linux operating system, where most research
applied Binwalk to perform the decompression. This module
searches for all the file directories recursively, starting from
the root directory. The file format Executable Linkable
Format (ELF) is a common standard file format for executable
files, object codes, and shared libraries. By using the ELF
information, this module identifies the above executable files
to be inspected.

B. ACFG Conversion

The ACFG Conversion module applies the tool Angr [13]
to convert executables into ACFGs. Angr decomposes a target
executable file into binary functions and then converts each
binary function into its corresponding ACFG, where a basic
block in ACFGs uses program control-related instructions,
such as Jump, Call, or Return, as an edge connecting to
another basic block. In other words, the ACFG represents the
target binary function. Angr translates binary codes of
different processor architectures in a set of intermediate
instructions so that opcodes from different architectures map
to the same or similar intermediate instructions. Based on
Angr’s instruction set, this study defines two types of relevant
instructions: data movement and arithmetic & logic, to
represent the functionaflity of a basic block.

C. Feature Embedding

This study applies Struc2Vec [14] to embedding the
structural feature of ACFG and the features of a basic block in
the graph, namely to encode the ACFG features. Struc2Vec
learns latent representations that capture the structural identity
of nodes in a graph. It measures node similarity hierarchically
at different scales, constructs a multilayer graph to encode
structural similarities, and generates the embeddings for nodes.

Struc2Vec consists of the following main steps to learn
latent representations for a graph G(V, E). (1) It determines
the structural similarity between each node pair in the graph
for different neighborhood sizes, where the structural distance
is explained in the following paragraph. In this way, it
measures node similarity hierarchically at different scales. (2)

Figure 1. The proposed system architecture.

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-183-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IoTAI 2024 : The First International Conference on IoT-AI

It constructs a weighted multi-layer graph hierarchically,
where each layer corresponds to a level of the hierarchy in
measuring structural similarity. (3) it applies a biased random
walk to generate node sequences, where the sequences include
more structural similarity of the graph. (4) It learns the latent
representation from the node sequences.

D. Similarity Detection

The above feature embedding module encodes ACFGs
into graph-embedded networks. This study employs a SNN to
learn the similarity of two ACFGs, where the two networks in
the SNN are designed as ACFG graph embedded networks
and convert the input, a pair of ACFGs, into vectors.

To detect binary codes of cross-architecture, the binary
functions of the same category have similar control flows and
similar ACFGs. Hence, the loss function is defined as the
cosine distance of the two vectors.

IV. SYSTEM EVALUATION

This study designs the experiment that investigates the
performance of the proposed system in two aspects: the
success rate of firmware decomposition and detection
efficiency, as automatic decomposition is as important as
vulnerability detection. It collects 50 firmware samples from
two sources (FirmAE [15] and DD-WRT [16]) in order to
examine diversified IoT devices.

This experiment employs AUC to evaluate the model
efficiency, as it counts as a measure of the ability of the
detection model to distinguish between the classes. A high
AUC implies that the model distinguishes between the
positive and negative classes efficiently. The AUC values
between 0.9~1 are considered excellent; those between 0.8-
0.9 are good; those between 0.7-0.8 are fair; those between
0.6-0.7 are poor. Figure 2 illustrates the ROC curves. The
evaluation results show that the proposed method yields
AUC-ROC value of 0.971 and achieves efficient detection
performance.

For inspecting the detection performance on cross-
platform, this experiment targets OpenSSL vulnerabilities in
multiple architecture environments. The proposed system can
automatically decompose firmware images with a high

success rate of 94%. Table 1 lists the detected vulnerable
firmware and functions that contain the OpenSSL
vulnerabilities. The proposed detection method identifies the
vulnerabilities with high similarity scores over multiple
architecture environments, which implies that the proposed
system can identify vulnerable functions effectively.

V. CONCLUSION

This study proposes a cross-architecture vulnerability
detection method for IoT devices that discovers vulnerable
TPC functions. Most past studies address one of the above IoT
cyber risks, which motivates this research to discover these
two critical IoT vulnerabilities. By evaluating the proposed
system with real-world firmware images, the experimental
results show that the proposed method can identify efficiently
the aforementioned IoT vulnerabilities.

The proposed method employs the graphical
representation ACFG to represent the semantic meaning of a
binary function and the graph embedding technique
Struc2Vec to extract the structural and code features of a
function code. It applies a Siamese network to identify a
function. The evaluation demonstrates that the proposed
solution can identify the top IoT vulnerabilities mentioned
above effectively. The real-world case studies demonstrate
that the proposed system can automatically decompose
firmware effectively.

Future work directions can investigate hybrid analysis
approaches or extract more features from function codes to

TABLE I. THE DETECTION RESULTS OF THE OPENSSL VULNERABILITY.

Firmware Executable file Vulnerable function Similarity

DAP-1562 wpa_supplicant ssl3_get_new_session_ticket 0.8913

E1550USB-

NVRAM60K
libssl.so.1 ssl3_get_new_session_ticket 0.8602

E4200USB-

NVRAM60K
libssl.so.1 ssl3_get_new_session_ticket 0.8602

ddwrt.v24-23838 openvpn ssl3_get_message 0.8491
E3000USB-

NVRAM60K
libssl.so.1 ssl3_get_message 0.8133

K26-1.28.RT-MIPSR1 libssl.so.1 ssl3_get_new_session_ticket 0.8084

Tomato-K26USB-

1.28RT-N5X
libssl.so.1 ssl3_get_new_session_ticket 0.8084

Figure 2. AUC-ROC

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-183-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IoTAI 2024 : The First International Conference on IoT-AI

improve detection performance. Furthermore, investigating
other similarity detection models is another possible research
direction as well. IoT devices are prevailing. Hence, reducing
IoT cyber risks can improve network security for businesses
and users.

REFERENCES

[1] S. Bennett. "IoT security statistics 2023 - Everything you need to
know." [Online]. Available from: https://webinarcare.com/best-iot-

security-software/iot-security-statistics/ [retrieved: May, 2024].

[2] M. Hasan. "State of IoT 2022: Number of connected IoT devices
growing 18% to 14.4 billion globally." [Online]. Available from:

https://iot-analytics.com/number-connected-iot-devices/ [retrieved:

May, 2024].

[3] Gartner. "Forecast: IT services for IoT, worldwide, 2019-2025."

[Online]. Available from:
https://www.gartner.com/en/documents/4004741 [retrieved: May,

2024]

[4] F. Baldassari. "IoT developers can't afford to ignore third-party code."
[Online]. Available from:

https://www.techtarget.com/iotagenda/post/IoT-developers-cant-

afford-to-ignore-third-party-code [retrieved: May, 2024].

[5] Micro.ai. "The risk of using third-party components in IoT devices."

[Online]. Available from: https://micro.ai/blog/the-risk-of-using-third-

party-components-in-iot-devices [retrieved: May, 2024].

[6] H. A. Al Essa and W. S. Bhaya, "Ensemble learning classifiers hybrid

feature selection for enhancing performance of intrusion detection
system," Bulletin of Electrical Engineering and Informatics, vol. 13, no.

1, pp. 665-676, 2024.

[7] B. Zhao et al., "A large-scale empirical analysis of the vulnerabilities

introduced by third-party components in IoT firmware," Proceedings
of the 31st ACM SIGSOFT International Symposium on Software

Testing and Analysis, 2022, pp. 442-454.

[8] ReFirm Labs. "Binwalk." [Online]. Available from:

https://github.com/ReFirmLabs/binwalk [retrieved: May, 2024].

[9] Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H. Nguyen, "A survey of
IoT malware and detection methods based on static features," ICT

Express, vol. 6, no. 4, pp. 280-286, 2020/12/01/ 2020, doi:

https://doi.org/10.1016/j.icte.2020.04.005.

[10] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, "Scalable

graph-based bug search for firmware images," Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications

Security, 2016, pp. 480-491.

[11] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, "Neural
network-based graph embedding for cross-platform binary code

similarity detection," Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.

363-376.

[12] H. Sun, Y. Tong, J. Zhao, and Z. Gu, "DVul-WLG: Graph Embedding
Network Based on Code Similarity for Cross-Architecture Firmware

Vulnerability Detection," Cham, 2021: Springer International

Publishing, in Information Security, pp. 320-337.

[13] Y. Shoshitaishvili et al., "Sok:(state of) the art of war: Offensive

techniques in binary analysis," 2016 IEEE Symposium on Security and

Privacy (SP), 2016: IEEE, pp. 138-157.

[14] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo, "struc2vec:

Learning node representations from structural identity," Proceedings of
the 23rd ACM SIGKDD international conference on knowledge

discovery and data mining, 2017, pp. 385-394.

[15] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, "Firmae:

Towards large-scale emulation of iot firmware for dynamic analysis,"
Annual Computer Security Applications Conference, 2020, pp. 733-

745.

[16] DD-WRT. "Router Database." [Online]. Available from: https://dd-

wrt.com/support/router-database/ [retrieved: May, 2024].

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-183-1

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IoTAI 2024 : The First International Conference on IoT-AI

