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Abstract—To reduce the development time and the cost of 

Internet of Thing (IoT) products, vendors leverage Third-Party 

Components (TPCs) to manufacture various types of IoT 

products. However, such third-party software might not be 

validated with proper software testing or might contain 

vulnerabilities. Furthermore, existing research rarely proposed 

a cross-architecture solution for detecting both top IoT 

vulnerabilities. Therefore, this study proposes a cross-

architecture IoT vulnerability detection method that identifies 

vulnerable third-party components used in IoT firmware. This 

study leverages a Siamese Neural Network (SNN) architecture 

and designs a similarity algorithm to identify vulnerable 

functions on different processor architectures. The evaluation 

results demonstrate that the proposed method can identify 

vulnerable TPCs effectively. 
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I.  INTRODUCTION  

With the prevalence of the Internet of Things (IoT) and its 
flourishing development, about 83% of organizations rely on 
IoT technologies to boost their productivity [1]. IoT devices 
are becoming increasingly ubiquitous. In 2025, the IoT market 
is expected to reach 27 billion active connections [2], and the 
IoT-related services will grow to 58 billion dollars [3]. Such 
network-connected devices in enterprise networks are hard for 
security teams to properly identify and monitor them, which 
may become security blind spots for the organizations.  

To reduce development costs and to shorten the time to 
market for a new device, the functionalities of the IoT device 
typically are provided through previously developed software. 
Furthermore, the current development leverages third-party 
software heavily to improve development efficiency. The use 
of TPCs in IoT products tripled during the recent years [4]. 
Including TPCs in an IoT device implies that the device 
inherits the vulnerabilities existing within the TPCs. Such 
external components mostly are not secure, and their 
vulnerabilities influence IoT security [5]. TPCs play an 
imperative role in IoT firmware development.  

IoT devices commonly adopt embedded Linux systems. 
Examining such embedded systems requires a comprehensive 
understanding of the operating systems and the experience of 
reverse engineering. In addition, manufacturers adopt various 
processor architectures.  

Based on the literature review, past research paid little 
attention to the vulnerabilities caused by TPCs, so an 

automatic and effective solution to identify vulnerable TPCs 
used in IoT firmware is desired. In addition, existing work 
mostly focused on a single architecture and rarely provided a 
solution for multiple architectures. Even though the recent 
work proposed solutions for cross-architecture, their detection 
performance needed to be improved.  

To fill in the aforementioned research gaps, this study 
designs an automatic firmware analysis and vulnerability 
detection approach for multi-architecture IoT devices, which 
integrates several Open-Source Software (OSS) solutions to 
automate the firmware analysis process and facilitates the 
state-of-the-art machine learning technologies to extract 
features of function codes and to identify vulnerable 
components.  

The remainder of this paper is constructed as follows. 
Section 2 reviews the related research. Section 3 presents the 
proposed detection method, followed by the performance 
evaluation in Section 4. The last section draws the conclusion 
remark and the future directions of this study. 

II. LITERATURE REVIEW 

To enhance detection performance, some research adopted 
ensemble approach which aggregates the multiple classifiers. 
Essa and Bhaya [6] applied two feature selection approaches: 
mean and hard-voting schemes, with ensemble soft voting 
classifier. According to the evaluation, their method achieved 
better results than other ensemble and individual classifiers. 

Zhao et al. [7] conducted a large-scale analysis of TPC 
usage in IoT firmware. During the analysis process, their 
approach requires several stages of manual work to facilitate 
the detection. It applied the tool Binwalk [8] for file system 
decomposition, extracted the features from Control Flow 
Graphs (CFGs), and utilized the version check to determine if 
a target TPC contains vulnerabilities. Even though this past 
work involved intensive human analysis effort, it provided 
statistical analysis results and highlighted the IoT cyber risk. 

Ngo et al. [9] reviewed the existing IoT malware detection 
work based on static analysis and pointed out that most 
existing solutions only detect malware in a single architecture. 
They summarized commonly used static features including 
function call graphs, CFGs, operation codes (opcodes), strings, 
and file headers. 

A control flow graph is a directed graph G(V, E) that 
represents all the possible execution paths of a code piece, 
where V is a set of basic execution blocks and E is a set of 
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edges representing the connections between these basic blocks. 
Recent work adopted a CFG variation that contains extra 
information about a code piece. An Attributed Control Flow 

Graph (ACFG), G(V, E,  M), is an extended version of CFG, 
where M is the labeling function that maps a basic execution 
block in V to a set of attributes in A. The attribute set A can be 
tailored to capture the semantic meaning of the basic blocks 
or to characterize the blocks. 

Feng et al. [10] adopted ACFGs to represent binary 
functions and extracted their statistical and structural 
attributes, such as the number of calls, the number of 
instructions, and the number of offspring. They utilized the 
bipartite graph matching algorithm to measure the similarity 
of two ACFGs. 

Xu et al. [11] improved the previous work by employing 
the structured data embedding technique Structure2Vec to 
transfer ACFGs into feature spaces. They utilized a large-
scale training dataset obtained from compiling the same 
source code on different architectures and with different 
compiler optimization techniques to train an SNN for code 
similarity detection. Sun et al. [12] also concluded that 
ACFGs can capture relevant features of binary codes and 
SNNs measure cross-architecture code similarity efficiently. 

Feature selection plays an important role in the 
construction of efficient detection classifiers. The literature 
review concluded that most existing solutions only detect 
malware in a single architecture and commonly adopted static 
features. An improved CFG, ACFG, can extract better 
semantic features to represent the algorithm, instead of 
platform-dependent features. Therefore, it is suitable for 
detecting cross-platform TPCs. 

III. METHODOLOGY 

The proposed solution is outlined in Figure 1. As 
mentioned above, the tools for firmware image decomposition 
and binary analysis are available, but some are unstable. After 
a preliminary investigation, this study selects reliable tools 
(Binwalk [8] and Angr [13]) to automate the binary code 
extraction process.  

The Firmware Decomposition module applies Binwalk to 
decompose firmware images. The module identifies file types 
through the file header and then extracts executable files for 
vulnerable TPC inspection. The executable files serve as 
inputs for the ACFG Conversion module are converted into 
ACFGs, where the conversion applies the binary analysis tool 
Angr to convert binary codes into ACFGs. The Feature 
Embedding module adopts Struc2Vec [14] to encode the 
graphic structure features of ACFGs, and the detection 
module applies a SNN to compare the similarity of two 
embedded ACFGs: a known vulnerable TPC and a function 
code to be examined. 

A. Firmware Decomposition 

The Firmware Decomposition module utilizes Binwalk to 
disassemble firmware and retrieves the file system and image 
files. IoT firmware mostly uses the file system SquashFS to 
compress a Linux operating system, where most research 
applied Binwalk to perform the decompression. This module 
searches for all the file directories recursively, starting from 
the root directory. The file format Executable Linkable 
Format (ELF) is a common standard file format for executable 
files, object codes, and shared libraries. By using the ELF 
information, this module identifies the above executable files 
to be inspected. 

B. ACFG Conversion 

The ACFG Conversion module applies the tool Angr [13] 
to convert executables into ACFGs. Angr decomposes a target 
executable file into binary functions and then converts each 
binary function into its corresponding ACFG, where a basic 
block in ACFGs uses program control-related instructions, 
such as Jump, Call, or Return, as an edge connecting to 
another basic block. In other words, the ACFG represents the 
target binary function. Angr translates binary codes of 
different processor architectures in a set of intermediate 
instructions so that opcodes from different architectures map 
to the same or similar intermediate instructions. Based on 
Angr’s instruction set, this study defines two types of relevant 
instructions: data movement and arithmetic & logic, to 
represent the functionaflity of a basic block.  

C. Feature Embedding 

This study applies Struc2Vec [14] to embedding the 
structural feature of ACFG and the features of a basic block in 
the graph, namely to encode the ACFG features. Struc2Vec 
learns latent representations that capture the structural identity 
of nodes in a graph. It measures node similarity hierarchically 
at different scales, constructs a multilayer graph to encode 
structural similarities, and generates the embeddings for nodes.  

Struc2Vec consists of the following main steps to learn 
latent representations for a graph G(V, E). (1) It determines 
the structural similarity between each node pair in the graph 
for different neighborhood sizes, where the structural distance 
is explained in the following paragraph. In this way, it 
measures node similarity hierarchically at different scales. (2) 

 

Figure 1. The proposed system architecture. 
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It constructs a weighted multi-layer graph hierarchically, 
where each layer corresponds to a level of the hierarchy in 
measuring structural similarity. (3) it applies a biased random 
walk to generate node sequences, where the sequences include 
more structural similarity of the graph. (4) It learns the latent 
representation from the node sequences.  

D. Similarity Detection 

The above feature embedding module encodes ACFGs 
into graph-embedded networks. This study employs a SNN to 
learn the similarity of two ACFGs, where the two networks in 
the SNN are designed as ACFG graph embedded networks 
and convert the input, a pair of ACFGs, into vectors.  

To detect binary codes of cross-architecture, the binary 
functions of the same category have similar control flows and 
similar ACFGs. Hence, the loss function is defined as the 
cosine distance of the two vectors. 

IV. SYSTEM EVALUATION 

This study designs the experiment that investigates the 
performance of the proposed system in two aspects: the 
success rate of firmware decomposition and detection 
efficiency, as automatic decomposition is as important as 
vulnerability detection. It collects 50 firmware samples from 
two sources (FirmAE [15] and DD-WRT [16]) in order to 
examine diversified IoT devices.  

This experiment employs AUC to evaluate the model 
efficiency, as it counts as a measure of the ability of the 
detection model to distinguish between the classes. A high 
AUC implies that the model distinguishes between the 
positive and negative classes efficiently. The AUC values 
between 0.9~1 are considered excellent; those between 0.8-
0.9 are good; those between 0.7-0.8 are fair; those between 
0.6-0.7 are poor. Figure 2 illustrates the ROC curves. The 
evaluation results show that the proposed method yields 
AUC-ROC value of 0.971 and achieves efficient detection 
performance.  

For inspecting the detection performance on cross-
platform, this experiment targets OpenSSL vulnerabilities in 
multiple architecture environments. The proposed system can 
automatically decompose firmware images with a high 

success rate of 94%. Table 1 lists the detected vulnerable 
firmware and functions that contain the OpenSSL 
vulnerabilities. The proposed detection method identifies the 
vulnerabilities with high similarity scores over multiple 
architecture environments, which implies that the proposed 
system can identify vulnerable functions effectively. 

V. CONCLUSION 

This study proposes a cross-architecture vulnerability 
detection method for IoT devices that discovers vulnerable 
TPC functions. Most past studies address one of the above IoT 
cyber risks, which motivates this research to discover these 
two critical IoT vulnerabilities. By evaluating the proposed 
system with real-world firmware images, the experimental 
results show that the proposed method can identify efficiently 
the aforementioned IoT vulnerabilities.   

The proposed method employs the graphical 
representation ACFG to represent the semantic meaning of a 
binary function and the graph embedding technique 
Struc2Vec to extract the structural and code features of a 
function code. It applies a Siamese network to identify a 
function. The evaluation demonstrates that the proposed 
solution can identify the top IoT vulnerabilities mentioned 
above effectively. The real-world case studies demonstrate 
that the proposed system can automatically decompose 
firmware effectively. 

Future work directions can investigate hybrid analysis 
approaches or extract more features from function codes to 

TABLE I.  THE DETECTION RESULTS OF THE OPENSSL VULNERABILITY. 

Firmware Executable file Vulnerable function Similarity 

DAP-1562 wpa_supplicant ssl3_get_new_session_ticket 0.8913 

E1550USB-

NVRAM60K 
libssl.so.1 ssl3_get_new_session_ticket 0.8602 

E4200USB-

NVRAM60K 
libssl.so.1 ssl3_get_new_session_ticket 0.8602 

ddwrt.v24-23838 openvpn ssl3_get_message 0.8491 
E3000USB-

NVRAM60K 
libssl.so.1 ssl3_get_message 0.8133 

K26-1.28.RT-MIPSR1 libssl.so.1 ssl3_get_new_session_ticket 0.8084 

Tomato-K26USB-

1.28RT-N5X 
libssl.so.1 ssl3_get_new_session_ticket 0.8084 

 

 

Figure 2.  AUC-ROC 
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improve detection performance. Furthermore, investigating 
other similarity detection models is another possible research 
direction as well. IoT devices are prevailing. Hence, reducing 
IoT cyber risks can improve network security for businesses 
and users. 
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