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Abstract—We have developed a theoretical model for 
managing predator–prey ecosystems undergoing climate-
related changes. This model estimates the amount of 
information transferred between the number of predator and 
prey categories, and the uncertainty of the number of the prey 
categories in a predator–prey ecosystem as measured by 
Shannon entropy, which is achieved by predation events and 
decay in the ecosystem. We examined the model with a 
numerical experiment using a well-studied bass–crayfish 
predator–prey ecosystem in a closed lake. Furthermore, we 
have evaluated the model comparison using Lotka-Volterra 
equation, which is a conventional predator–prey ecosystem 
model.  
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I.  INTRODUCTION 
This article is a revised version of conference paper 

presented at the Eleventh International Conference on 
Bioinformatics, Biocomputational Systems and 
Biotechnologies [1]. This extended version of the original 
paper offers results from our preliminary studies on a 
mathematical model for predator–prey ecosystems facing 
climate changes. 

Over the past three decades, environmental changes, such 
as global warming, desertification, and air pollution have 
become much worse, raising the concerns of their effects on 
life systems [2]. Previous studies on the environmental 
responses of life systems focused on specific networks such 
as the genetic and ecological networks [3,4]. 

Life system takes orderliness from its environment and 
sustains itself at a fairly high level of orderliness, or at a 
fairly low level of thermodynamic entropy [5]. Kauffman 
investigated on how the dynamic behavior of a Boolean 
network suddenly becomes orderly. He made the analogy 
that the behavior approximates cell fate which is 
characterized by expression patterns of multiple genes in an 
organism [6,7]. Barabási and Albert found that generic 
mechanisms form an ordered network structure with a scale-
free property [8]. However, the previous observations were 
not validated by a mathematical model that clarifies the 
varying orderliness of biological systems undergoing 
environmental changes.  

Recent studies for mathematical model of predator-prey 
ecosystems, examined the model with double free 
boundaries [9], developed an agent-based model of an 
ecosystem to predict interactions of competition and 
predation [10]. Further studies showed a simple two-species 
predator-prey ecosystem that can display rich dynamical 
complexity when the prey evolves in response to predation, 
based on coupled differential equations [11] . 

Environmental factors including air pollution could 
influence the prey-predators relation [12,13]. Atmospheric 
change may influence predator-prey interactions by altering 
prey quality, defensive behavior of prey, predator location, 
prey community structure and/or predator competition [12]. 
Fish behavior can be altered by contaminants as a means that 
the mummichog from more contaminated areas are poor 
predators and slower to capture active prey, the grass shrimp 
[13]. Thus, to study the simultaneous effect of pollution 
stress and the effect of infection in an interacting species is 
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important for deriving the feasible situations of an ecosystem 
[14].  

In this study, we quantify the environmental stimuli and 
orderliness achieved in state variables in life systems with 
Shannon entropy based on their probability distributions. 
The state variables represent the state of the system, such as 
expression levels in a genetic network. We then hypothesize 
a relationship between environmental changes and 
orderliness in the life systems. We validate the hypothetical 
relationship using numerical experiments based on a 
computational model of differential equations for the 
ecosystem with the climate-shift model [15]. In the model, a 
climate-attribute change is modeled as a shift in the 
probability distribution of the climate attribute. We evaluate 
control performance by a difference of Shannon entropy as 
ΔH≡H(X)−H(X′), where X and X′ represent the state variable 
X at t0 and at t1 (unit time after t0), respectively [16]. The 
Shannon entropy H(X) indicates the uncertainty of X [17]. 
We elucidate predator–prey ecosystem degradation, which is 
unavoidable, in the current progression of climatic changes 
and develop an information-theoretic framework for 
performing systematic countermeasures against climate 
change. The details are given below under Section II: 
formulation, Section III: numerical experiments, and Section 
IV: comparison with Lotka-Volterra equations. Finally, in 
Section V, we conclude with final remarks and discuss future 
works. 

II. FORMULATION 
A closed lake is considered in our study as a predator–

prey ecosystem (Figure 1a). The probability distribution of 
the number of viable predators, known as “capacity”, varies 
according to the climate shift of a climate attribute against a 
range of climate attributes (survival region) in which the 
predator is viable. The predator capacity decreases with an 

increase in climate shift (Figure 1b). We derived Equation 
(1), which shows that the Shannon entropy (H(Y)) of the 
number of predators decreases with an increase in the 
climate shift (Figure 1c) based on a numerical analysis (see 
“Numerical Analysis for Equation (1)” at the end of this 
section):  

  ( ) ( )e e eH Y H Yδ+ ≤ , (1) 

where e and δe indicate the level of the climate attribute and 
its increment. Generally, I(X;Y)≤min{H(X),H(Y)}, thus  

 
 ( ; ) ( ; )U U

e e eI X Y I X Yδ+ ≤ , (2) 

where I(X;Y)U(≡H(Y)) denotes an upper bound of the mutual 
information between X and Y. The causal relationship in the 
ecosystem model shown in Figure 1a is derived and shown 
as in Figure 2. Predators limit the growth of prey by 
consuming the prey [18]. Increases or decreases in the prey 
population lead to corresponding increase or decrease in the 
number of predators. This scenario configures a closed-loop 
circuit into which an environmental stimulus can be 
introduced. An information–theoretic limit (3) for closed-
loop control systems [16]:  

 max
closed open ( ; )H H I X Y∆ ≤ ∆ + , (3) 

where ΔHclosed and max
openH∆  are the Shannon entropy 

reduction of the state variable X in a closed-loop control 
system and the maximum Shannon entropy reduction of the 
state variable X in a general open-loop control system, 
respectively, over the transition X→X´ between t0 and t1 
(unit time after t0). We merged Equation (2) with the 
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Figure 1. An ecosystem model: (a) Predator–prey ecosystem in a closed lake. The arrow denotes feeding relationship. (b) Number of viable predators 
and climate shift. (c) Probability distribution of the number of predators before (upper panel) and after (lower panel) an increase in climate shift by δe. 
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information–theoretic limit for closed-loop control systems 
(Equation (3)), to derive Equation (4): 

 
 U U

e e eH Hδ+∆ ≤ ∆ , (4) 

where ΔHU(≡ max
openH∆ +I(X;Y)U) denotes an upper bound of 

the Shannon entropy reduction of the state variable X (the 
number of prey individuals) over the transition X→X´ 
between t0 and t1. It represents the control performance of 
the predator–prey ecosystem. Equations (2) and (4) suggest 
that the mutual information between the number of prey 
individuals (X) and predators (Y), as well as the control 
performance of the predator–prey ecosystem, decreases with 
an increase in climate shift. Furthermore, the control 
performance of the predator–prey ecosystem appears to 
degrade from the level of a closed-loop control system to an 
open-loop control system, based on the information–
theoretic limits of control (Equation (3)).  

The derived inequalities of Equations (1), (2) and (4) are 
independent of the dynamics of the target ecosystem. Thus, 
our model can be applied to analyses of unknown dynamics 
in ecosystems.  

It should be noted that the decrease in the reduction of 
uncertainty in the state variable (represented by ΔHU in 
Equation (4)) is unavoidable under the progressive 
environmental change (δe ≥0). 

Numerical Analysis for Equation (1) 
We calculated the Shannon entropy of the number of 

predators H(Y) against the climate shift (Figure 3). We 

assumed that Y (number of predators) follows a normal 
distribution, and calculated a normalized H(Y). The 
normalized H(Y) =1 and 0 indicate that the Shannon entropy 
H(Y) is equivalent to the Shannon entropy at E=0 (the region 
between μ−3σ and μ+3σ of the normal distribution lies inside 
of the capacity of the predator) and 1 (the region between μ−
3σ and μ+3σ of the normal distribution gets out of the 
capacity of the predator), respectively. Where, μ and σ are 
the mean and the standard deviation of the normal 
distribution of the number of predators, respectively. As the 
result the normalized H(Y) continuously decreases (Figure 
3). 

III. NUMERICAL EXPERIMENTS  
Equations (2) and (4) suggest the two relationships: 

mutual information between the number of prey and predator 
individuals decreases with an increased climate shift 
(relationship-1). Control of the number of prey individuals 
becomes worse in a predator–prey ecosystem with an 
increased climate shift (relationship-2).  

A. Numerical Experiment Methods 
To validate these two relationships and evaluate 

management actions for protecting predator–prey ecosystems 
against climate-related changes, we conducted numerical 
experiments in which we used a well-studied 
nondimensionalized bass–crayfish predator–prey ecosystem 
in a closed lake [20]:  

 

2

2 2

2

2 2

(1 )

(1 )

dx yxx x y
dt x
dy yxy x y
dt x

δα
κ

δγ β ε
κ

= − − −
+

= − − −
+

  (5) 

where x = X/Kx, y = Y/Ky (X and Y: crayfish and bass 
biomass, Kx and Ky: crayfish and bass carrying capacity), 
and α, β, δ, γ, ε, and κ are model parameters (positive real 
constants), and were set to 0.7, 0.9, 0.075, 1.5, 0.01, and 0.1, 
respectively. Random noise with normal distribution with 
mean=0, and variation=0.022 was added to x and y. The right 
side of Equation (5) represents Lotka–Volterra-style intra- 
and interspecific competition and predation [4]. 

B. Validation of the Degradation of the Mutual 
Information and the Control Performance Suggested by 
the Model 
The nondimensionalized biomass of bass y was limited to 

mimic the decreased capacity by the increasing climate shift. 
The decrease of the mutual information between the 
nondimensionalized biomass of crayfish x and bass y by the 
decreasing capacity for the nondimensionalized biomass of 
bass was observed (Figure 4). The result suggests the 
relationship-1 is valid. The increase of the control bias by the 
decreasing capacity for the nondimensionalized biomass of 
bass was observed (Figure 5). This result suggests the 
relationship-2 is valid. 

E (Environmental 
change)

X
(Prey)

Y (Predator)

t0 t1

X′

Figure 2. Causal relationship in the ecosystem model represented in a 
directed acyclic graph [19]. 

Figure 3. Normalized H(Y) against the climate shift. 
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C. Evaluation of the Management Actions for Protecting 
Predator–Prey Ecosystems Against Climate-Related 
Changes 
From the definitions I(X;Y)U ≡ H(Y) and 

ΔHU≡ max
openH∆ +I(X;Y)U in Formulation, ΔHU depends on Y 

but independent of X.  
We mimic two types of management actions, (i) reduce 

the number of crayfish, and (ii) increase the number of bass, 
and conducted numerical experiments using Equation (5) to 
compare the efficiency by the two management actions 
(Figure 6a–6c). The deviation from the average without 
limitation of the biomass of bass was improved with the 
management action for bass (Figure 6c) better than with the 
management action for crayfish (Figure 6b). The proposition 
mentioned in the previous paragraph, which is based on our 
model, validates the numerical experiment results. 

IV. COMPARISON WITH LOTKA-VOLTERRA EQUATIONS 
The Lotka–Volterra equations are a pair of first-order 

nonlinear differential equations, frequently used to describe 
the dynamics of predator-prey ecosystems [21,22,23]. 
Assumptions made in the creation of the Lotka-Volterra 
equations include: 
(i) There is no shortage of food for the prey population. 
(ii) The amount of food supplied to the prey is directly 
related to the size of the prey population. 
(iii) The rate of change of population is directly proportional 
to its size. 
(iv) The environment is constant and genetic adaptation is 
inconsequential. 
(v) Predators will never stop eating. 
Under the assumptions, the Lotka-Volterra equations are 
written as:  

   
dx x xy
dt
dy xy y
dt

α β

δ γ

= −

= −

   (6) 

 
where x and y are the number of prey and predators, 
respectively, and α, β, δ, γ are model parameters (positive 
real constants) [24]. As the differential equations are used 
(Equation (6)), it is implied that births, deaths, and 
movements are continuous, and there are overlapping 
generation [25].  

Compared to the Lotka–Volterra equations, our model 
(Figure 2) only assumes the number of prey and predator 
interact. The continuity about the births, deaths, and 
movements is similarly implied in our model. The important 
thing is that our model allows the effect of the environmental 
change by the capacity for the number of predator (Figure 2). 

V. CONCLUSIONS AND FUTURE WORKS 
We have developed an information–theoretic predator–

prey ecosystem model that is independent of the dynamics of 
the ecosystem and validated the model through numerical 
experiments. Numerical experiment results also suggested 
our model is effective for evaluating management actions for 

predator-prey ecosystems against environmental changes, 
which include the uncertainties of the environmental factors 
such as air pollution. We compared our model with Lotka–
Volterra equations and clarified our model that needs a few 
assumptions but, nevertheless, still adequately predicts 
environment-related changes in predator-prey ecosystems. 
The information-theoretic framework will be useful to the 
environmental responses of other life systems such as genetic 
regulatory networks. Studies on more comparisons between 
the environmental responses of the life systems and 
elucidation of universal rules over them are needed to 
validate the theory.  
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