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Abstract—Proper management of emergency rooms is needed
to improve healthcare and patient satisfaction, guiding resource
allocation. Predicting access and hospitalisation rates through
Machine Learning appears feasible and promising, especially
when coupled with air pollution and weather data. This work fur-
ther investigates, in a more detailed way, a previously presented
approach that applied predictive algorithms to data related to
Brescia’s clinical and environmental data from 2018 to 2022 to
predict daily accesses or daily hospitalisations for cardiovascular
or respiratory disorders. Starting from the previous work, that
analysis was improved and widened to a greater geographical
area. The applied algorithms’ performances satisfactorily adhere
to the actual data, especially when using the Support Vector
Machine and Random Forest’s models as regressors on daily
accesses and respiratory disease-caused hospitalisations. Even if
the specific value is not always correctly predicted, generally, the
overall trend seems to be rightly forecasted, and performance
metrics are rather satisfying. Although additional work could
still be encouraged to improve the models’ performances, results
are rewarding and represent a new point of view on a complex
and relevant matter. The real-life application of this One Health
approach is now possible and could quite easily be adapted to
other areas, too, with the final objective of improving the quality
of healthcare and people’s quality of life.

Keywords-Forecasting; ER accesses; Hospitalisations; Pollution;
Weather; One Health; Environmental exposure.

I. INTRODUCTION

This work is an extension of our previous research presented
at the AIHealth 2024 conference that took place in Athens,
Greece [1].

It aimed to enable the forecast of the Emergency Department
(ED) and Emergency Room (ER) fluxes of patients based
on their geographically fixed short-term exposure to pollution
agents and weather conditions.

Here, this approach is further investigated and broadened to
a larger geographical area, extending the applied methods and
reaching a more detailed analysis.

Properly managing ED and ER is crucial to providing
functional healthcare and improving patients’ satisfaction [2].
It leads to a strong need for accurate prediction of visitor

volume and patient admissions to facilitate the planning of
resources and staff for the whole hospital.

Multiple researchers have tried to predict access and ad-
mission rates based on historical ED data by creating scores
or using Deep Learning (DL) or Machine Learning (ML)
models (like Recurrent Neural Networks, Logistic Regression,
Random Forest or Extreme Gradient Boosting) to forecast
daily accesses to the ER [3]–[5], the possibility of a patient’s
hospital admission after going through the triage [6] or even
the risk of death [7]. Results are so encouraging that others
continue to look for associations with the surrounding envi-
ronment.

There is proof that weather affects one’s health, especially
for people with specific illnesses or healthcare needs. For ex-
ample, there seems to be a link between the daily temperature
and ED admissions for cardiovascular diseases or significant
exacerbation of asthma in adults that visit ED [8][9]. Generally
speaking, regarding cardiovascular disorders, a worsening of
the patient’s well-being and cardiac arrests appear to be
influenced by temperature and other stressors like humidity
and atmospheric pressure [10][11]. Moreover, there is also
proof of links between air pollution and specific illnesses. Sub-
stances like PM2.5, PM10, NOx, O3 and SO2 influence cardiac
arrests [12], cardiac arrhythmia [13], cognitive decline in adult
population [14], COVID-19 incidence [15], development of
chronic kidney disease [16] or Type 2 diabetes [17]. PM2.5 and
PM10 are also linked to hospital admissions for cardiovascular
[18] and respiratory diseases [19]. PM2.5 levels also seem to be
directly associated with increased daily ED visits for ulcerative
colitis [20], while solar radiation is inversely associated with
inflammatory bowel disease admissions [21]. There also seems
to be a correlation between the number of hospitalised asthma
patients and both weather (i.e., temperature and humidity)
and pollution (i.e., PM2.5, PM10 and NOx) [22]. Finally, ML
models (i.e., AutoRegressive Integrated Moving Average and
Multilayer Perceptron) have also been used to try to predict
accesses to the ER by patients affected by infecting respiratory
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diseases after being exposed to PM2.5 [23].
Some of these investigations are based on long-term expo-

sure to pollution (even 20-years long [14]), while others on
a few days or even same day’s exposure [15] [18] and some
even on both [13].

The amount of days linked to long- or short-term exposure
differs for each study and group of researchers, leading to
different temporal definitions and freedom of choice when fix-
ing it. For example, when considering only climatic variables,
greater exposure can be seven days long [5], meaning that the
forecast based on today’s data will be projected one week in
the future.

Based on these literary pieces of evidence, trying to predict
all accesses to the ED or hospitalisation post-triage for specific
illnesses, working on climate, pollution and historical accesses
time-series belonging to the same area, seems feasible, even
if complex.

Indeed, one of the underlying issues of ED visits’ prediction
is how non-homogeneous and inconstant patients’ emergency
accesses are. An urgent crisis can suddenly arise without
any clear previous sign or from a multitude of variables that
are difficult to constantly monitor simultaneously: inpatients’
fluxes in ERs and hospitals are ever-changing and subject
to the influence of factors like seasons, outbreaks and social
conditions [5].

Each year, between 77000 and 80000 patients visit the ER
of the largest Brescia hospital [24], and 24% of them get
admitted. This is the reason why this ED seemed like the
perfect place where to start our attempt at accurately predicting
future accesses based on historical and local meteorological
and pollution data.

This paper contains a description of the analysed materials
and applied methods (i.e., the datasets and the ML approaches
applied to them) in Section II, the reached results in Section
III, a comment on them in Section IV and a few final remarks
in Section V.

II. MATERIALS AND METHODS

This section describes the study design, analysed datasets
(both clinical and environmental data) and applied algorithms.

A. Study Design

This study primarily aims to daily predict the volume of
patients going through the ER of a precise hospital in Brescia,
Italy.

Forecasting algorithms were designed for ER accesses and
hospitalisations from triage for cardiovascular or respiratory
diseases.

This retrospective study applies to daily data (clinical and
environmental) for a period going from January 1, 2018, to
December 31, 2022. A four-year (i.e., 2018–2021) dataset was
used to train the forecasting models, while the remaining data
were used to test its forecasting capability. The final datasets
used to feed the predictive algorithms combine the clinical and
the environmental data.

DATA COLLECTION

The following subsections describe the datasets of interest
analysed in this study.

B. Clinical Data

The original clinical dataset was given by a hospital in
Brescia to GPI for research purposes.

The dataset contained all anonymous ER access data for the
period going from 2018 to 2022. For each access (i.e., a person
on a specific day), there were as many rows as the exams the
person had undergone; pre-processing was made to have only
one row for each ED visit while maintaining the patient’s data
(like the date of ER visit, their age, sex and zip code of their
home address, the list of medical exams they underwent and,
in case they went through hospitalisation, their diagnosis as
an ICD9-CM code).

The patients came from different cities: most came from the
area surrounding the hospital, while others came from other
Italian regions or even from abroad. This study’s focus was the
area for which environmental data had been collected: Brescia.
This work presents two different population divisions based on
how the Brescia area is geographically identified by the Italian
bureaucracy and due to differences in how environmental data
were computed to get the best granularity possible. This will
be further described in Subsection II-C.

Table I describes the original overall dataset.

TABLE I
BRIEF DESCRIPTION OF CLINICAL DATA.

Year Total
accesses

Median
age

Male
percentage

Female
percentage

2018 60176 55 49% 51%
2019 60106 56 49% 51%
2020 47205 58 52% 48%
2021 49571 57 50% 50%
2022 56631 56 51% 49%

In 2018, 12% of patients were below 18 years old, 31%
between 19 and 49, 23% between 50 and 69, 34% above 70.
In 2019, 11% of patients were below 18 years old, 30%
between 19 and 49, 24% between 50 and 69, 35% above 70.
In 2020, 9% of patients were below 18 years old, 29% between
19 and 49, 27% between 50 and 69, 35% above 70.
In 2021, 10% of patients were below 18 years old, 30%
between 19 and 49, 26% between 50 and 69, 34% above 70.
In 2022, 12% of patients were below 18 years old, 29%
between 19 and 49, 25% between 50 and 69, 34% above 70.
Amongst the most recurrent diagnoses of the hospitalised
patients, through all years, were pneumonia and chronic heart
failure.

Table II reports the different percentages of ER accesses in
the quarters of each analysed year.

The variables included in our final dataset are:
• Categorical information about the date (as described in

Table III), from which dummies were computed
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TABLE II
DISTRIBUTION OF ER ACCESSES IN THE DIFFERENT YEARS QUARTERS.

Year 1st quarter 2nd quarter 3rd quarter 4th quarter
2018 25.7% 25.3% 24.2% 24.8%
2019 26.7% 24.5% 23.7% 25.1%
2020 29.7% 23.4% 24.7% 22.2%
2021 22.7% 24.8% 25.8% 26.7%
2022 23.1% 25.7% 25.0% 26.2%

• Daily number of accesses to the ER or hospitalisations
coming from it, limited to those patients coming either
from just the city of Brescia or also from its entire
province

• The rolling mean of the number of accesses or hospital-
isations, applying a seven-day window for calculation.

TABLE III
DESCRIPTION OF CALENDRICAL INFORMATION.

Calendrical variable Definition
Day of the week Monday, Tuesday, [...], Saturday, Sunday
Day of the month 1, 2, 3, 4, [...], 28, 29, 30, 31

Month January, February, [...], November, December
Year 2018, 2019, 2020, 2021, 2022

The subdivisions in different pathological groups were done
by selecting the correct hospitalisations through the ICD9-CM
codes reported as the primary diagnosis for their access.

Table IV describes the dataset restricted to the city of
Brescia.

TABLE IV
BRIEF DESCRIPTION OF CLINICAL DATA (CITY OF BRESCIA).

Year Total
accesses

Median
age

Male
percentage

Female
percentage

2018 10389 56 46% 54%
2019 10963 58 47% 53%
2020 9835 61 50% 50%
2021 11082 60 49% 51%
2022 12597 60 49% 51%

In 2018, 11% of patients were below 18 years old, 30%
between 19 and 49, 24% between 50 and 69, 35% above 70.
In 2019, 10% of patients were below 18 years old, 29%
between 19 and 49, 24% between 50 and 69, 37% above 70.
In 2020, 8% of patients were below 18 years old, 27% between
19 and 49, 27% between 50 and 69, 38% above 70.
In 2021, 9% of patients were below 18 years old, 28% between
19 and 49, 25% between 50 and 69, 38% above 70.
In 2022, 11% of patients were below 18 years old, 27%
between 19 and 49, 23% between 50 and 69, 39% above 70.

Table V describes the dataset widened to Brescia’s province.
In 2018, 12% of patients were below 18 years old, 31%

between 19 and 49, 24% between 50 and 69, 33% above 70.
In 2019, 11% of patients were below 18 years old, 30%
between 19 and 49, 24% between 50 and 69, 35% above 70.
In 2020, 9% of patients were below 18 years old, 28% between

TABLE V
BRIEF DESCRIPTION OF CLINICAL DATA (BRESCIA’S PROVINCE).

Year Total
accesses

Median
age

Male
percentage

Female
percentage

2018 53378 55 48% 52%
2019 53678 57 49% 51%
2020 43445 59 49% 51%
2021 46386 58 50% 50%
2022 52518 57 50% 50%

19 and 49, 27% between 50 and 69, 36% above 70.
In 2021, 10% of patients were below 18 years old, 29%
between 19 and 49, 26% between 50 and 69, 35% above 70.
In 2022, 12% of patients were below 18 years old, 28%
between 19 and 49, 25% between 50 and 69, 35% above 70.

A little contextualisation of the clinical dataset: it is fun-
damental to note that the area around Brescia suffered sub-
stantially from the outbreak of the COVID-19 pandemic, and
the number of cases affected by coronavirus pneumonia far
exceeds the occurrences of any other diagnosis during 2020.

It is possible to observe from Table I and Table V, and this is
something already reported in other studies [25] [26], that the
number of accesses to ER significantly decreased from 2019 to
2020: this is explainable because Italy was in a strict lockdown
for several months that year. Hence, it was less likely, for
example, for car accidents to happen or for people wearing
masks to get the flu.

Note that, regarding our data of interest, while this trend
is observable for both the general accesses and those from
Brescia’s province, it is not valid for the patients from the
city itself.

C. Environmental Data

The environmental data have been supplied by the startup
Hypermeteo [27] under GPI’s specific request to match the
spatio-temporal dimension of the already-at-disposal clinical
dataset.

The environmental data for the city of Brescia are defined
per day and zip (the Italian CAP) code, guaranteeing spatial-
temporal precision. On the contrary, the province area is
defined by ISTAT codes, while the corresponding zip code
was also reported, aggregating them.

Two different codes describe Italian municipalities: CAP
and ISTAT. The first is a postal code, while the other links to
the homonymous Italian statistics authority [28].

These environmental data were obtained employing a math-
ematical model with a resolution of 10kmx10km, corrected
through normalisation and down-scaling, and applied to data
by Lombardia’s Regional Environmental Protection Agency
(ARPA [29]) weather stations.

While the model was built for the entire Lombardia region,
environmental data were extracted for the province of Brescia
only, and our study was divided into two phases.

In fact, at first, only data from the city of Brescia itself
were analysed, and the results of this approach were reported
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in our previous publication [1]. Now, we have re-approached
the same city data but also widened our analysis to the entire
province.

When working with the sole city of Brescia, its 15 zip codes
were differentiated both in the clinical and environmental data
and were all linked to only 1 ISTAT code. This, unfortunately,
was not the case for the province data.

In this sense, the city of Brescia and its province are
differently identified. While every municipality is linked to
one and only one ISTAT code, Brescia’s city is further defined
into 15 different CAP codes, where one CAP code can define
multiple of its province’s municipalities.

Since the ISTAT code can be linked to many different CAP
codes and the environmental province data was defined based
on the former, if we wanted to link the clinical dataset to the
environmental one, we had to find a way to reduce the latter
to one row per zip code.

For this reason, for the same zip code, we computed the
mean of each environmental variable for each day, enabling
the later merge between this dataset and the clinical one.

Apart from the different identifying geographical codes, the
rest of the datasets are precisely the same for both approaches,
describing the same variables.

Specifically, the reported environmental variables are:
• Temperature (min and max values) (Tmin, Tmax [°C])
• Humidity (min and max percentage values) (RHmin,

RHmax [%])
• Precipitations (Prec [mm])
• PM10 and PM2.5 [µg/m3]
• NOx, SO2, NMVOC and O3 [µg/m3]
• Total solar irradiance (SSWtot) [Wh/m2].
For each variable, safety ranges, provided along with the

dataset, were considered in order to give a label (i.e., zero
or one) to each value to indicate if a value could be safe or
not, respectively. Depending on the variable, either lower or
upper bounds were considered, as reported in Table VI. These
safety ranges have been chosen with Hypermeteo based on
institutional guidelines [30].

TABLE VI
SAFETY RANGES FOR ENVIRONMENTAL VARIABLES.

Environmental Lower and Upper Bounds
variable Min value Max value

NOx - 25 µg/m3

PM2.5 - 15 µg/m3

PM10 - 45 µg/m3

SO2 - 40 µg/m3

NMVOC - 1000 µg/m3

O3 - 100 µg/m3

Tmin -10 °C -
Tmax - 35 °C

RHmin 15% -
RHmax - 95%

Prec - 10 mm
SSWtot - 8500 Wh/m2

Subsequently, we computed the number of occurrences in
which the data were out of range for the city and province

datasets. Occurrences are a single day of the five years
considered per single zip code.

In the city of Brescia, in around the 71% of occurrences
NOx was out of range, it was the 60% of cases for PM2.5, 20%
for PM10, 17% for RHmax, 8% for the precipitations, 7.5%
for O3, 2% for Tmax, 0.5% for SSWtot, 0.3% for RHmin and
0 cases out of range for NMVOC, SO2 and Tmin.

In its province, in around the 44% of occurrences NOx was
out of range, it was the 46% of cases for PM2.5, 13% for
PM10, 21% for RHmax, 8% for the precipitations, 5% for O3,
0.8% for Tmax, 0.4% for SSWtot, 0.4% for RHmin, 0.4 for
Tmin and 0 cases out of range for NMVOC and SO2.

The issue of having multiple rows of data for the same date
(i.e., one row for each zip code) has been handled similarly as
in a project [31] found during our bibliographic research: each
environmental variable has been labelled with the zip code it
is referred to, and it is used as a column with daily values,
thus grouping all data belonging to the same date on one row.

Again, a clarification on the context: the area surrounding
Brescia is densely inhabited and industrialised, resulting in one
of the most polluted areas in Europe [32].

PREDICTIVE ALGORITHMS

The following subsections describe the different predictive
algorithms applied to the analysed datasets: Random Forest,
Artificial Neural Network, Support Vector Machine and Au-
toRegressive Integrated Moving Average.

D. Random Forest

In order to predict future ER accesses or hospitalisations,
based on our clinical and environmental data, the first al-
gorithm to be applied was the same as the one used in the
previous study [1].

A Random Forest (RF) approach was implemented in
Python with the application of the open-source library Scikit-
learn [33]. This model was chosen based on an article [34] that
applied it to a temperature prediction problem: the analogy
with our dataset highlighted this approach as a fascinating
candidate for this type of analysis.

RFs apply sequential splits to the data such that the sep-
aration is maximised in regards to a homogeneity criterion,
resulting in a combination of tree predictors so that each
tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in
the forest [4].

The random forest algorithm picks N random records from
the dataset and builds a decision tree based on them, repeating
the process for the selected number of trees. The topic has
been tackled as a regression problem as we have considered
the target variable (i.e., daily accesses) as continuous.

The main goal of our modelling approach was to create
an algorithm that improved the error compared with the
average baseline one (Average Baseline Error, ABE), which
we computed as the mean absolute difference between the
actual values and the rolling mean. We considered the latter the
most basic prediction to be produced since it simply uses the
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rolling mean of the target variable calculated for the previous
seven days as the predicted future value.

To find the best parameters to set the RF model to, we
applied a Python optimisation library called Optuna [35] that,
through multiple trials, finds the values that minimise or
maximise a specific metric of interest. In our case, we opted
to minimise the MAE.

Trying to improve performances (both in terms of metrics
and computational time), we applied Optuna to obtain the opti-
mal parameters (n estimators, max depth, min samples split,
min samples leaf) for the RF. For each case study, we ran
multiple trials to reach their best combination.

The results that are reported in Subsection III-A are based
on different combinations of the datasets, as we applied the
same model on both the city of Brescia’s and the entirety of its
province’s whole datasets, and then, again, for both of them,
on different data combinations and only on cardiovascular or
respiratory disorders data.

Since we also worked on the entire province, we widened
the application of the same logic used in our previous study
[1] to its data.

To predict the future values of interest, we, again, applied
a temporal lag to the datasets, but, this time, only one day
(and not five too). This means that the observed data from the
previous day is used to predict the volume of patient accesses
or hospitalisations on the subsequent one.

The different analyses that were carried out, trying to
improve the model’s performance and potentially spot specific
influential variables, can be divided into seven macro cases:

1) To enable further discussion over the preciseness of our
daily accesses’ predictions and validate our datasets’
composition, we decided to deepen our analysis on what
we considered to be our baseline.
Thus, in addition to computing the ABE, we also de-
cided to apply a model constructed using the same num-
ber of trees as applied during the previous study [1] to
each spatial dataset (city and province) reduced to only
contain the rolling mean and calendrical information,
thus without any environmental feature.

2) The RF algorithm was applied to the initial preprocessed
accesses’ dataset made up of patients from the city of
Brescia:

a) at first, the applied model was created using the
same number of trees as applied during the previ-
ous study [1],

b) then, the best model was searched, and the best
combination of its parameters was found in order
to produce the best achievable prediction,

c) finally, this last model was applied to only the two
most important (as computed by the best model
itself) features.

3) The RF algorithm was applied to the initial preprocessed
hospitalisations dataset made up of patients from the city
of Brescia and whose main diagnosis was a cardiovas-
cular disease:

a) at first, the best model was searched and found by
optimising its parameters,

b) then, it was applied to only the two most important
(as computed by the best model itself) features.

4) The RF algorithm was applied to the initial preprocessed
hospitalisations dataset made up of patients from the city
of Brescia and whose main diagnosis was a respiratory
disease:

a) at first, the best model was searched and found by
optimising its parameters,

b) then, it was applied to only the two most important
(as computed by the best model itself) features.

5) The RF algorithm was applied to the initial preprocessed
accesses’ dataset made up of patients from the entire
province of Brescia:

a) at first, the applied model was created using the
same number of trees as applied during the previ-
ous study [1],

b) then, the best model was searched, and the best
combination of its parameters was found in order
to produce the best achievable prediction,

c) later, trying to improve the metrics, we casually
divided the first four years (2018-2021) into train
(80%) and test (20%) that we input into a trial
for the best model and then used it to predict our
last available year (2022, our usual year of test).
We have done so as it looked like using a casual
division gave better metrics’ values,

d) then, a model with the same configuration as
the best one was applied to only the two most
important (as computed by the best model itself)
features,

e) finally, the study on the most important features
was reapplied, not to create a new RF model but
rather to study which environmental features have
the most influence on the prediction when discard-
ing the rolling mean or both the rolling mean and
calendrical information about the different days.

6) The RF algorithm was applied to the initial preprocessed
hospitalisations’ dataset made up of patients from the
entire province of Brescia and whose main diagnosis
was a cardiovascular disease:

a) at first, the best model was searched and found by
optimising its parameters,

b) then, again, a study on which environmental fea-
tures have the most influence on the prediction
(thus probably also on the hospitalisations) was
conducted.

7) The RF algorithm was applied to the initial preprocessed
hospitalisations’ dataset made up of patients from the
entire province of Brescia and whose main diagnosis
was a respiratory disease:

a) at first, the best model was searched and found by
optimising its parameters,
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b) then, again, a study on which environmental fea-
tures have the most influence on the prediction
(thus probably also on the hospitalisations) was
conducted.

To evaluate the performances of our models, we applied
different metrics.

First, we computed the ABE to be considered as the value
to be improved.

Then, we also computed the mean and standard deviation
(that will be reported as dispersion in Section III) of both the
actual and predicted values.

Here, the equations for the other metrics applied to evaluate
the models’ performances are reported. They were Mean
Absolute Error (MAE, 1), Mean Absolute Percentage Er-
ror (MAPE, 2), Symmetric Mean Absolute Percentage Error
(SMAPE, 3), and R² score (4) [36]:

MAE =

N∑
i=1

|ŷi − yi| (1)

MAPE =
100

N

N∑
i=1

yi − ŷi
yi

(2)

SMAPE =
100

N

N∑
i=1

|ŷi − yi|
(|yi|+ |ŷi|)/2

(3)

R2 = 1−

N∑
i=1

(yi − ŷi)
2

N∑
i=1

(yi − ȳ)2
(4)

where N is the test sample size, y is the actual values’ vector,
ŷi is the predicted values’ one and ȳ is the mean of the actual
test values.

Since the applied algorithm is a regressor, the usual Accu-
racy equation cannot be used. It was replaced with a value
we called Acc∗ that we computed using the MAPE subtracted
from 100% as reported in Equation 5. MAPE is sometimes
called Forecast Error Percentage, so it seemed fitting to create
such a metric.

Acc∗ = 100−MAPE (5)

We also plotted the comparison graphs between the actual
and predicted values for the daily accesses and hospitalisa-
tions. We also plotted their smoothed version to appreciate
the preciseness of the forecast more, as data were noisy. The
applied smoothing filter was Savitzky-Golay, with a temporal
window length of 31 days and a polynomial order of 2.

E. Artificial Neural Network

As in the previous study [1], trying to improve the results
given by the algorithm described in Subsection II-D, other
algorithms were applied to hospitalisation data.

Specifically, the first was an Artificial Neural Network
(ANN) [37] designed in Python. This model was only used

on hospitalisation data linked to cardiovascular or respiratory
diseases of patients from both the city and the province of
Brescia.

Since ANN is a distance-dependent model, trying to achieve
the best performance possible, we applied scaling on the data
through a specific library [38].

The used model was a 2-layer shallow neural network, and
an optimisation algorithm was, again, applied to search for the
best parameters possible.

The selected metrics to evaluate the performances were
MAE (1) and SMAPE (3).

Once more, we plotted the comparison graphs between the
actual and predicted values for the daily cardiovascular hospi-
talisations and their smoothed version computed by applying
the same filter described in Subsection II-D.

F. Support Vector Machine

Further trying to improve the prediction of hospitalisations,
a Support Vector Machine (SVM) [39] was implemented.

It is a supervised ML algorithm that, in this case, we used
for regression and applied in Python through its homonymous
library [40]. Its main aim is to find the optimal hyperplane in
an N-dimensional space that can separate the data points in
different classes, guaranteeing a margin between the closest
points of different classes to be the maximum possible.

When a Support Vector is applied to solve regression
problems, its produced model depends only on a subset of
the training data because the cost function ignores samples
whose prediction is close to their target.

Our implementation applied a Linear Support Vector Re-
gressor fine-tuned through the Python application of a Scikit-
learn library called GridSearchCV [41].

This model was applied only to the hospitalisation data for
both spatial (city and province) datasets.

The applied metrics to evaluate the performances were MAE
(1) and R² score (4).

We plotted the comparison graphs between the actual
and predicted values for the daily hospitalisations and their
smoothed version computed by applying the same filter de-
scribed in Subsection II-D.

G. AutoRegressive Integrated Moving Average

In the previous study [1], trying to improve the results given
by the algorithm described in Subsection II-D, a specific ML
model for multivariate time-series prediction was applied to
the hospitalisation data: an AutoRegressive Integrated Moving
Average (ARIMA) model [42].

It is a popular algorithm used in time series analysis and
forecast.

For the previous analysis, we applied the auto-ARIMA
process [43] in Python, while, this time, we applied another
library that enabled the guided research of the best parameters:
statsmodels’ ARIMA function [44].

The basic idea of the ARIMA model is to use a particular
mathematical algorithm to describe the random time series
of the data and then predict the future values based on the
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past and present values through a so-called autoregression. An
ARIMA (p, d, q) model can be described through Equation 6:

(1−
p∑

i=1

φiL
i)(1− L)dXt = (1 +

q∑
i=1

θiL
i)εt (6)

where L represents the lag operator, p represents the number
of autoregressive terms, q represents the number of moving
average terms, d represents the degree of differencing, and ϕ,
θ and ϵ are relevant parameters.

Since the achieved results were, again, not promising, we
are not going to report all of them, but just an interesting
aspect about the city’s respiratory hospitalisations’ time-series
prediction from this model that highlights a peculiar charac-
teristic of the actual data.

The reported results come from the application of the
ARIMA model on hospitalisations due to respiratory diseases
of patients from the city of Brescia.

III. RESULTS

This section reports the obtained results from the various
predictive algorithms.

Even if the algorithms have been fed with different datasets,
they always include only data related to patients whose home
address’ zip code is either inside the city of Brescia or its entire
province, based on their objective as described in Subsections
II-D, II-E, II-F and II-G.

As already declared, the presented results are performance
metrics’ values or plots.

The second ones show the curves representing the daily
predicted values (always plotted in magenta) versus the actual
values for the testing year (i.e., 2022), plotted in different
colours based on the predictive algorithm they come from.

Note that when metrics could not be computed due to data
sparsity, they were not reported for that specific case study.

A. Random Forest

This subsection presents the results of the RF application
to our datasets of interest.

CITY OF BRESCIA

Please note that the results reported for the datasets consti-
tuted by accesses and hospitalisations of patients from the zip
codes of Brescia (the same dataset analysed in the previous
study [1]) have been improved and newly computed.

1) Daily accesses’ baseline: As previously anticipated, to
further evaluate the goodness of our RF models for the daily
accesses’ predictions, we analysed datasets reduced to only
the rolling mean and calendrical information.

The first metric to be computed was the ABE, as it was
considered to be the value to improve. It was equal to 4.92.

Here are the results for the 1000 trees model:
• MAE = 4.83
• R² score = 0.21
• Acc∗ = 85.63%
• MAPE = 14.37%
• SMAPE = 6.9%

• Mean of actual accesses = 34.51
• Dispersion of actual accesses = 6.69.
2) Daily accesses: The following values are the metrics

computed for the model created using the original number of
trees (i.e., 1000):

• MAE = 4.75
• MAPE = 14.37%
• SMAPE = 6.9%
• Acc∗ = 85.63%
• R² score = 0.21
• Mean of predicted accesses = 34.20
• Dispersion of predicted accesses = 3.22.
The following reported values are the metrics computed for

the best model coming from the optimisation (i.e., 423 trees):
• MAE = 4.63
• MAPE = 13.91%
• SMAPE = 6.8%
• Acc∗ = 86.09%
• R² Score = 0.24
• Mean of predicted accesses = 33.89
• Dispersion of predicted accesses = 2.78.
Figures 1 and 2 plot the actual (in blue) and predicted (in

magenta) accesses and their smoothed version, respectively.

Figure 1. Random Forest’s predicted (as computed by the best model) and
actual values of daily ER accesses for Brescia.

Figure 2. Random Forest’s smoothed predicted (as computed by the best
model) and actual values of daily ER accesses for Brescia.

The following metrics are the ones computed from the
model whose input were just the two most important features
(resulting from the best model):

• MAE = 5.56
• Acc∗ = 82.82%.

These features were the rolling mean and the day of the month.
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3) Daily hospitalisations for cardiovascular diseases: We
computed the ABE to use as the value to be improved, and it
was equal to 0.49.

The following reported values are the metrics computed for
the best model coming from the optimisation (i.e., 855 trees):

• MAE = 0.51
• SMAPE = 77.86%
• R² Score: 0.08
• Mean of actual hospitalisations: 0.45
• Mean of predicted hospitalisations = 0.48
• Dispersion of actual hospitalisations = 0.68
• Dispersion of predicted hospitalisations = 0.31.
Figures 3 and 4 plot the actual (in blue) and predicted (in

magenta) cardiovascular hospitalisations and their smoothed
version, respectively.

Figure 3. Random Forest’s predicted (as computed by the best model) and
actual values of daily hospitalisations for cardiovascular diseases for Brescia.

Figure 4. Random Forest’s smoothed predicted (as computed by the best
model) and actual values of daily hospitalisations for cardiovascular diseases
for Brescia.

The value of MAE computed from the model whose input
were just the two most important features (resulting from the
best model) was 0.49. These features were the rolling mean
and the day-of-the-month information.

4) Daily hospitalisations for respiratory diseases: We com-
puted the ABE to use as the value to be improved: it was equal
to 1.05.

The following reported values are the metrics computed for
the best model coming from the optimisation (i.e., 991 trees):

• MAE = 1.05
• SMAPE = 33.7%
• R² Score = 0.22
• Mean of actual hospitalisations = 2.02
• Mean of predicted hospitalisations = 1.99

• Dispersion of actual hospitalisations = 1.48
• Dispersion of predicted hospitalisations = 0.79.
Figures 5 and 6 plot the actual (in blue) and predicted

(in magenta) respiratory hospitalisations and their smoothed
version, respectively.

Figure 5. Random Forest’s predicted (as computed by the best model) and
actual values of daily hospitalisations for respiratory diseases for Brescia.

Figure 6. Random Forest’s smoothed predicted (as computed by the best
model) and actual values of daily hospitalisations for respiratory diseases for
Brescia.

The value of MAE computed from the model whose input
were just the two most important features (resulting from the
best model) was 1.23. These features were the rolling mean
and the day-of-the-month information.

BRESCIA’S PROVINCE

This section presents the analysis conducted on data of
patients from the entire province of Brescia, which was never
considered in the previous study [1].

5) Daily accesses’ baseline: The computed value of ABE,
the metric to be improved, was 12.79.

Again, here are reported the reached results for the 1000
trees model analysis of the baseline dataset:

• MAE = 10.49
• R² score = 0.51
• Acc∗ = 92.58%
• MAPE = 7.42%
• SMAPE = 3.69%
• Mean of actual accesses = 143.88
• Dispersion of actual accesses = 18.23.
6) Daily accesses: The following values are the metrics

computed for the model created using the original number of
trees (i.e., 1000):

• MAE = 9.81



154
International Journal on Advances in Life Sciences, vol 16 no 3 & 4, year 2024, http://www.iariajournals.org/life_sciences/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• MAPE = 6.95%
• SMAPE = 3.45%
• Acc∗ = 93.05%
• R² Score = 0.55
• Mean of predicted accesses = 142.72
• Dispersion of predicted accesses = 12.56.
The following reported values are the metrics computed for

the best model coming from the optimisation (i.e., 396 trees):
• MAE = 9.58
• MAPE = 6.81%
• SMAPE = 3.36%
• Acc∗ = 93.19%
• R² Score = 0.57
• Mean of predicted accesses = 143.15
• Dispersion of predicted accesses = 12.30.
Figures 7 and 8 plot the actual (in blue) and predicted (in

magenta) accesses and their smoothed version, respectively.

Figure 7. Random Forest’s predicted (as computed by the best model) and
actual values of daily ER accesses for the whole province of Brescia.

Figure 8. Random Forest’s smoothed predicted (as computed by the best
model) and actual values of daily ER accesses for the whole province of
Brescia.

Computing a new best model (i.e., 940 trees), we tried a new
approach. We divided the first four years of the dataset into
the train and test portions casually rather than chronologically,
and the obtained metrics were:

• MAE = 9.63
• R² Score = 0.74.
If we then used this same model to predict, as usual, the

accesses for 2022 (as they represented completely new data
for the algorithm), the metrics were:

• MAE = 9.84
• R² Score = 0.54.

The following metrics are those computed from the model
whose input were just the two most important features (re-
sulting from the best model). These features were the rolling
mean and the Monday label.

• MAE = 12.78
• Acc∗ = 90.77%.
We were also interested to see which environmental vari-

ables were the most influential on the daily accesses, so we
computed the best model and the feature importance for a
dataset extracted from the original one without the rolling
mean and on another where we removed the information about
the days, too.

In the first case, the most important environmental variable
was NOx, while in the second case, the most important
variables were NOx, PM10, RHmax, PM2.5 and Tmin.

7) Daily hospitalisations for cardiovascular diseases: The
computed value of ABE was 0.81.

The following reported values are the metrics computed for
the best model coming from the optimisation (i.e., 1112 trees):

• MAE = 0.87
• SMAPE = 39.8%
• R² Score = 0.06
• Mean of actual hospitalisations = 1.37
• Mean of predicted hospitalisations = 1.38
• Dispersion of actual hospitalisations = 1.13
• Dispersion of predicted hospitalisations = 0.49.
Figures 9 and 10 plot the actual (in blue) and predicted (in

magenta) cardiovascular hospitalisations and their smoothed
version, respectively.

Figure 9. Random Forest’s predicted (as computed by the best model) and
actual values of daily hospitalisations for cardiovascular diseases for the whole
province of Brescia.

We were also interested to see which environmental vari-
ables were the most influential on the daily cardiovascular
hospitalisations, so we computed the best model and the
feature importance for a dataset extracted from the original one
without the rolling mean and on another where we removed
the information about the days, too.

In the first case, the most important environmental variables
were NOx, RHmax, Tmin and PM10; in the second case they
were the same, with the addition of PM2.5.

8) Daily hospitalisations for respiratory diseases: The
computed value of ABE was 1.95.

The following reported values are the metrics computed for
the best model coming from the optimisation (i.e., 105 trees):
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Figure 10. Random Forest’s smoothed predicted (as computed by the best
model) and actual values of daily hospitalisations for cardiovascular diseases
for the whole province of Brescia.

• MAE = 1.96
• SMAPE = 14.3%
• R² Score = 0.45
• Mean of actual hospitalisations = 7.60
• Mean of predicted hospitalisations= 7.53
• Dispersion of actual hospitalisations = 3.35
• Dispersion of predicted hospitalisations = 2.37.

Figures 11 and 12 plot the actual (in blue) and predicted
(in magenta) respiratory hospitalisations and their smoothed
version, respectively.

Figure 11. Random Forest’s predicted (as computed by the best model) and
actual values of daily hospitalisations for respiratory diseases for the whole
province of Brescia.

Figure 12. Random Forest’s smoothed predicted (as computed by the best
model) and actual values of daily hospitalisations for respiratory diseases for
the whole province of Brescia.

We were also interested to see which environmental vari-
ables were the most influential on the daily respiratory hospi-
talisations, so we computed the best model and the feature
importance for a dataset extracted from the original one

without the rolling mean and on another where we removed
the information about the days, too.

In the first case, the most important environmental variables
were NOx and Tmin, while in the second case, they were
Tmin, PM2.5, NOx, PM10, O3 and RHmax.

B. Artificial Neural Network
Here will be reported the metrics and plots resulting from

the application (described in Subsection II-E) of a shallow 2-
layer ANN to the hospitalisations caused by cardiovascular or
respiratory disorders for patients coming both from only the
city of Brescia and those from its entire province too.

Again, both numerical results of metrics and graphs are
reported.

CITY OF BRESCIA

1) Daily hospitalisations for cardiovascular diseases: The
ABE to be improved was equal to 0.49, and the computed
MAE for the ANN applied to the hospitalisations for cardio-
vascular diseases for Brescia was equal to 0.53. The SMAPE
was 78.51%.

Figures 13 and 14 plot the actual (in green) and predicted
(in magenta) Brescia’s cardiovascular hospitalisations and their
smoothed version, respectively.

Figure 13. Artificial Neural Network’s predicted and actual values of daily
hospitalisations for cardiovascular diseases for Brescia.

Figure 14. Artificial Neural Network’s smoothed predicted and actual values
of daily hospitalisations for cardiovascular diseases for Brescia.

2) Daily hospitalisations for respiratory diseases: The
ABE to be improved was equal to 1.05, and the computed
MAE for the ANN applied to the hospitalisations for respira-
tory diseases for Brescia was equal to 1.19. The SMAPE was
39.46%.

Figures 15 and 16 plot the actual (in green) and predicted
(in magenta) Brescia’s respiratory hospitalisations and their
smoothed version, respectively.
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Figure 15. Artificial Neural Network’s predicted and actual values of daily
hospitalisations for respiratory diseases for Brescia.

Figure 16. Artificial Neural Network’s smoothed predicted and actual values
of daily hospitalisations for respiratory diseases for Brescia.

BRESCIA’S PROVINCE

3) Daily hospitalisations for cardiovascular diseases: The
ABE to be improved was equal to 0.81, and the computed
MAE for the ANN applied to the hospitalisations for cardio-
vascular diseases for the province of Brescia was equal to 1.17.
The SMAPE was 47.79%.

Figures 17 and 18 plot the actual (in green) and predicted (in
magenta) cardiovascular hospitalisations and their smoothed
version, respectively.

Figure 17. Artificial Neural Network’s predicted and actual values of daily
hospitalisations for cardiovascular diseases for the whole province of Brescia.

4) Daily hospitalisations for respiratory diseases: The
ABE to be improved was equal to 1.95, and the computed
MAE for the ANN applied to the hospitalisations for respira-
tory diseases for the province of Brescia was equal to 3.34.
The SMAPE was 20.00%.

Figures 19 and 20 plot the actual (in green) and predicted
(in magenta) respiratory hospitalisations and their smoothed
version, respectively.

Figure 18. Artificial Neural Network’s smoothed predicted and actual values
of daily hospitalisations for cardiovascular diseases for the whole province of
Brescia.

Figure 19. Artificial Neural Network’s predicted and actual values of daily
hospitalisations for respiratory diseases for the whole province of Brescia.

C. Support Vector Regression

Here are the results of the approach described in Subsection
II-F to analyse and improve the predictions of daily hospitali-
sations for both cardiovascular and respiratory diseases for the
city and province of Brescia.

As always, both numerical results of metrics and graphs are
reported.

CITY OF BRESCIA

1) Daily hospitalisations for cardiovascular diseases: The
ABE to be improved was equal to 0.49, and the computed
MAE for the SVR applied to the hospitalisations for cardio-
vascular diseases from Brescia was 0.50. The R² Score was
0.09.

Figures 21 and 22 plot the actual (in grey) and predicted (in
magenta) cardiovascular hospitalisations and their smoothed
version, respectively.

Figure 20. Artificial Neural Network’s smoothed predicted and actual values
of daily hospitalisations for respiratory diseases for the whole province of
Brescia.
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Figure 21. Support Vector Machine’s predicted and actual values of daily
hospitalisations for cardiovascular diseases for Brescia.

Figure 22. Support Vector Machine’s smoothed predicted and actual values
of daily hospitalisations for cardiovascular diseases for Brescia.

2) Daily hospitalisations for respiratory diseases: The
ABE to be improved was equal to 1.05, and the computed
MAE for the SVR applied to the hospitalisations for respira-
tory diseases from Brescia was 1.04. The R² Score was 0.39.

Figures 23 and 24 plot the actual (in grey) and predicted
(in magenta) Brescia’s respiratory hospitalisations and their
smoothed version, respectively.

Figure 23. Support Vector Machine’s predicted and actual values of daily
hospitalisations for respiratory diseases for Brescia.

BRESCIA’S PROVINCE

3) Daily hospitalisations for cardiovascular diseases: The
ABE to be improved was equal to 0.81, and the computed
MAE for the SVR applied to the hospitalisations for cardio-
vascular diseases from Brescia was 0.83. The R² Score was
0.12.

Figures 25 and 26 plot the actual (in grey) and predicted (in
magenta) cardiovascular hospitalisations and their smoothed
version, respectively.

Figure 24. Support Vector Machine’s smoothed predicted and actual values
of daily hospitalisations for respiratory diseases for Brescia.

Figure 25. Support Vector Machine’s predicted and actual values of daily
hospitalisations for cardiovascular diseases for the whole province of Brescia.

4) Daily hospitalisations for respiratory diseases: The
ABE to be improved was equal to 1.95, and the computed
MAE for the SVR applied to the hospitalisations for respira-
tory diseases from Brescia was 1.94. The R² Score was 0.66.

Figures 27 and 28 plot the actual (in grey) and predicted
(in magenta) respiratory hospitalisations and their smoothed
version, respectively.

D. ARIMA

As already noted in Subsection II-G, here will be reported
only one striking aspect of the daily hospitalisations for
respiratory diseases of patients from Brescia.

Figure 29 plots the actual values coming from the train
(2018-2021) portion of the respiratory hospitalisation dataset
for the city, while Figure 30 the predictions (in magenta) of
the 2022’s test values (in brown).

Figure 26. Support Vector Machine’s smoothed predicted and actual values
of daily hospitalisations for cardiovascular diseases for the whole province of
Brescia.
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Figure 27. Support Vector Machine’s predicted and actual values of daily
hospitalisations for respiratory diseases for the whole province of Brescia.

Figure 28. Support Vector Machine’s smoothed predicted and actual values
of daily hospitalisations for respiratory diseases for the whole province of
Brescia.

Figure 29. Actual daily hospitalisations caused by respiratory diseases for
patients from Brescia from 2018 to 2021.

Figure 30. ARIMA’s predicted and actual values of daily hospitalisations for
respiratory diseases for Brescia.

IV. DISCUSSION

The results, obtained applying the different predictive algo-
rithms, reported in Section III will now be discussed.

A. Random Forest

The following are evaluations and comments on the results
reported in Subsection III-A.

CITY OF BRESCIA

1) Daily accesses: The results reported in Subsubsection
III-A2, referring to the daily accesses of patients coming only
from the city of Brescia, will now be discussed.

The error to improve (i.e., ABE) was 4.92. The achieved
results for the baseline model represent the goodness of a poor
prediction and can be used to evaluate if and how adding
environmental data can improve the forecast.

The RF with the same number of estimators as the previous
paper [1] already had better performances as its MAE was
lower (i.e., 4.75).

The Acc∗ of this prediction, as computed from MAPE, was
an appreciable 85.63%, and SMAPE was 6.9%. Since SMAPE
accounts for the relative and balanced difference between
predicted and actual values, such a low score indicates that
the model predicts rather well.

Trying different approaches to evaluate how close the pre-
dictions were to the actual values, we computed their mean and
dispersion. The obtained results confirm that, even though the
dispersion is not as large, the mean is quite close, indicating
that the general trend has been rightly forecasted.

The R² score (i.e., 0.21) was not high, but it was positive
and, considering the complexity of the analysed scenario, can
be deemed acceptable.

In an attempt to improve the performances further, the best
model was computed over several trials, and the achieved
MAE was even lower and equal to 4.63.

Even though the mean and dispersion of the actual and
predicted values were not as good, our main objective was
to minimise the MAE, and this model succeeded. Moreover,
the Acc∗ was higher (i.e., 86.09%), so the MAPE was minor,
and the SMAPE value was slightly too.

Unfortunately, the R² score was still not especially solid, as
it was only 0.24.

The plots visually confirm the predictor’s considerably
satisfactory ability to follow the general trend.

Comparing these results with the analysis done on the
dataset without environmental features, we can see how adding
this type of information results in better metrics, thus produc-
ing a more precise forecast.

The metrics resulting from the best model applied to only
the two most important features (none of which was environ-
mental) were not as satisfying as the ones from the whole
dataset, further proving that adding climate and pollution data
influences the prediction positively.
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2) Daily cardiovascular hospitalisations: The results re-
ported in Subsubsection III-A3, referring to the daily hospi-
talisations due to cardiovascular diseases of patients coming
only from Brescia, will now be discussed.

Since the model was, in this case, applied to sparse data,
the Acc∗ could not be computed.

The error to improve was 0.49. The smaller MAE value was
0.51, obtained by applying the best model with 855 trees, and
still worse than the ABE.

The R² score was too small (and the smallest yet) to be ad-
equate, as it was too close to 0. Confirming this consideration,
SMAPE, reaching 77.86%, was significantly greater than the
others.

It appears clear that the approach needed to be changed to
reach a better forecast of these accesses.

Regarding the mean and dispersion of the actual and pre-
dicted values, the former only had a 0.03 difference, while
the latter had a 0.37 one. It means the forecast has a close but
slightly narrower point cloud of accesses.

Still, the plots, especially the smoothed one, show that the
model forecasts the general trend with acceptable precision.

The MAE resulting from the application only to the two
most important features (none of which was environmental)
was smaller than the one coming from the whole dataset but
still not lower than ABE, so it cannot be considered successful.

3) Daily respiratory hospitalisations: The results reported
in Subsubsection III-A4, referring to the daily hospitalisations
due to respiratory diseases of patients coming only from
Brescia, will now be discussed.

Since the model was, again, applied to sparse data, the Acc∗

could not be computed.
The error to improve was 1.05, and the best model (with

991 trees) achieved a MAE value equal to it. Since the value
has remained equal and not lowered, the model cannot yet be
considered satisfying.

R² score and SMAPE were not satisfying either: the ap-
proach needed to be changed to better forecast these accesses.

Regarding the mean and dispersion of the actual and pre-
dicted values, the former only had a 0.03 difference, and the
latter a 0.69 one.

Even though the metrics are not ideal, the plots, especially
the smoothed one, show that the general trend has been quite
rightly forecasted.

The MAE resulting from the application on only the two
most important features (none of which was environmental)
was even higher than the one coming from the whole dataset,
which was merely equal to the ABE. It further proves that
adding climate and pollution data influences the predictor
performances positively.

BRESCIA’S PROVINCE

4) Daily accesses: The results reported in Subsubsection
III-A6, referring to the daily accesses of patients from the
entire province of Brescia, will now be discussed.

The error to improve was 12.79. The RF with the same
number of estimators as the previous paper already had better
performances as its MAE was lower (i.e., 9.81).

The Acc∗ of this prediction, as computed from MAPE, was
a satisfying 93.05%.

Trying different approaches to evaluate how close the pre-
dictions were to the actual values, we computed their mean and
dispersion. The obtained results confirm that, even though the
dispersion is not as large, the mean is quite close, indicating
that the general trend has been rightly forecasted.

Even if the R² score was only 0.55, the model seems valid,
and SMAPE was only 3.45%, so the prediction’s errors are
reasonably negligible, resulting in the best values reached for
these metrics yet, thus the most precise model.

In trying to improve these performances further, the best
model was computed over several trials, and the achieved
metrics were, in fact, even better.

The MAE, equal to 9.58, was even lower, and the Acc∗ of
the prediction (i.e., 93.19%) was slightly higher.

Regarding the mean and dispersion of the actual and
predicted values, the first one was even closer, while the
dispersion marginally worsened. Still, the general trend has
been rightly forecasted.

Even if the R² score was only 0.57, it is still the best
achieved one, considering all previous case studies, while
SMAPE was the smallest one, as it was equal to only 3.36%.

The plots visually confirm the predictors’ ability to follow
the general trend.

When trying to divide the train and test datasets casually
instead of chronologically, the metrics appeared to be better
as we reached, through its own best model, an R² Score as
high as 0.74.

For this reason, we tried further using this different ap-
proach, but we also had to test it on future chronologically
presented data, as that is how future input data would look.

Unfortunately, though, when tested on 2022 data, the model
performance returned to values closer to the ones from the
initial chronological division. So, we decided to discard this
plan and revert to the original one.

The metrics resulting from applying the best model on only
the two most important features (none of which was environ-
mental) were not as satisfying as the ones from the whole
dataset, proving further that adding climate and pollution data
influences the prediction positively.

Regarding the influence of environmental variables on ER
accesses, it is interesting to note that low temperatures and
humidity rates hold this much of an impact, as some polluting
substances do. The fact that minimum temperature and pollu-
tion substances appear together is unsurprising since heating
systems release pollutants like PM2.5 and PM10.

5) Daily cardiovascular hospitalisations: The results re-
ported in Subsubsection III-A7, referring to the daily hospi-
talisations due to cardiovascular diseases of patients from the
entire province of Brescia, will now be discussed.

Since, for this case study, the model was applied again to
sparse data, the Acc∗ could not be computed.

The error to improve was 0.81. The lower MAE value was
0.87, through the application of the best model having 1112
trees, nevertheless worse than the ABE.
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The R² score (i.e., 0.06) was even smaller than the city
(reported in Subsubsection III-A3) one, even if the SMAPE
(i.e., 39.8%) was minor. This worse R² score could be due
to the added sparsity of data from adding patients that follow
the same noisy general trend (way different than the whole
accesses’ one).

Clearly, the approach needed to be changed to forecast these
accesses better.

Regarding the mean and dispersion of the actual and pre-
dicted values, the former only had a 0.01 difference, while the
latter had a 0.64 one. It means that the forecast has a narrower
point cloud of accesses.

Still, the plots, especially the smoothed one, show that the
model forecasts the general trend with acceptable precision.

Regarding the influence of environmental variables on car-
diovascular hospitalisations coming from triage, it is interest-
ing to note that humidity and temperature have such an impact,
along with some polluting substances.

6) Daily respiratory hospitalisations: The results reported
in Subsubsection III-A8, referring to the daily hospitalisations
due to respiratory diseases of patients from the entire province
of Brescia, will now be discussed.

Since the model was, again, applied to sparse data, the Acc∗

could not be computed.
The error to improve was 1.95. The best model (with 105

trees) achieved a MAE value of 1.96, still slightly higher
than the ABE, an R² score of 0.45, and a SMAPE of 14.3%.
Even though these last two values were better than the ones
reached for the city’s respiratory hospitalisations and less
unsatisfactory than the MAE, the approach still needed to be
changed to achieve a valid forecast.

Regarding the mean and dispersion of the actual and pre-
dicted values, the former only had a 0.07 difference, and the
latter a 0.98 one.

Still, the plots, especially the smoothed one, show that the
general trend has been satisfyingly forecasted.

Regarding the influence of environmental variables on res-
piratory hospitalisations coming from triage, it is interesting
to note that minimum temperature has such an impact, along
with more polluting substances (compared with the other case
studies). It was expected because of evidence that respiratory
disorders flares link to air pollution [9] [19].

B. Artificial Neural Network

The following are evaluations and comments on the results
reported in Subsection III-B.

CITY OF BRESCIA

1) Daily cardiovascular hospitalisations: The results re-
ported in Subsubsection III-B1, referring to the daily hospital-
isations of patients affected by cardiovascular diseases coming
from Brescia, will now be discussed.

The ABE to improve was 0.49, but, unfortunately, the
network’s MAE (i.e., 0.53) was higher, even more than the
RF one.

SMAPE was 78.51%, again, worse than the RF one.

It further proved that the best predictive algorithm approach
for this analysis was yet to be found. The plots do not appear
remarkably different from the RF ones, but, nevertheless, not
as good as them.

2) Daily respiratory hospitalisations: The results reported
in Subsubsection III-B2, referring to the daily hospitalisations
of patients affected by respiratory diseases coming from Bres-
cia, will now be discussed.

The ABE to improve was 1.05, but, unfortunately, the
network’s MAE (i.e., 1.19) was higher and even more than
the RF one.

SMAPE was 39.46%, again, worse than the RF one.
It further proved that, even if the plots do not appear

tragically different from the actual values, the best predictive
algorithm approach for hospitalisations was yet to be found.

BRESCIA’S PROVINCE

3) Daily cardiovascular hospitalisations: The results re-
ported in Subsubsection III-B3, referring to the daily hospital-
isations of patients affected by cardiovascular diseases coming
from the entire province of Brescia, will now be discussed.

The ABE to improve was 0.81, but the network’s MAE (i.e.,
1.17) was still unsatisfactory and worse than the RF one. Same
for SMAPE as it was higher.

It deeply proved that the best predictive algorithm approach
for this analysis was yet to be found, as the plots appear clearly
different and worse than the RF ones.

4) Daily respiratory hospitalisations: The results reported
in Subsubsection III-B4, referring to the daily hospitalisations
of patients affected by respiratory diseases from the entire
province of Brescia, will now be discussed.

The ABE to improve was 1.94, and the network’s MAE
(i.e., 3.34) was absolutely unsatisfactory and way worse than
the RF one. SMAPE was surprisingly small as it was equal to
20%, but still higher than the RF one.

It further proved that the best predictive algorithm approach
for this hospitalisation analysis was yet to be found, as the
plots appear to diverge from the actual values significantly.

C. Support Vector Machine

The following are evaluations and comments on the results
reported in Subsection III-C.

Since ANN did not improve as hoped, we approached
another algorithm, finally obtaining better results for one of
the two hospitalisations’ groupings.

CITY OF BRESCIA

1) Daily cardiovascular hospitalisations: The results re-
ported in Subsubsection III-C1, referring to the daily hospi-
talisations due to cardiovascular diseases of patients coming
only from Brescia, will now be discussed.

The ABE was 0.49, and the reached MAE was 0.50. Even
if it is not better than the baseline error, it is still slightly an
improvement, compared to the RF error.

Instead, the R² score was dramatically lower because it was
0.09.
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By visually analysing the plots, it can be commented that
the SVR prediction underestimates the daily hospitalisations.

2) Daily respiratory hospitalisations: The results reported
in Subsubsection III-C2, referring to the daily hospitalisations
due to respiratory diseases of patients coming only from
Brescia, will now be discussed.

The ABE was 1.05, and the reached MAE was 1.04. It
represents a case study where the application of a different
model did, indeed, improve performances.

Further proving this point, the RF’s R² score was only 0.22,
while SVR’s was 0.39.

The plots appear way more adherent, too, resulting in a
satisfying forecast of a notably complex application.

BRESCIA’S PROVINCE

3) Daily cardiovascular hospitalisations: The results re-
ported in Subsubsection III-C3, referring to the daily hospital-
isations due to cardiovascular diseases of patients coming only
from the entire province of Brescia, will now be discussed.

The ABE was 0.81, and the reached MAE was 0.83. Even if
it is not better than the baseline error, it is still an improvement
compared to the RF one.

The same goes for the R² score since it even doubled.
Compared with the RF plots, these appear less adherent to

actual data, and they are slightly underestimating.
4) Daily respiratory hospitalisations: The results reported

in Subsubsection III-C4, referring to the daily hospitalisations
due to respiratory diseases of patients coming only from the
whole province of Brescia, will now be discussed.

The ABE was 1.95, and the reached MAE was 1.94. Again,
this represents another time when applying a predictive model
improved performances. Even the best RF model did not
obtain a MAE value smaller than ABE.

Further proving this point, the R² score was a striking 0.66,
the highest value of this metric we reached in any trial, as we
discarded the non-chronological approach.

The plots appear way more adherent, too, especially the
smoothed one.

It resulted in the best forecast of all, even though we must
highlight that we have not applied SVR to daily accesses as
we had already found valid models, so we do not know which
results would have come out of that.

D. ARIMA

The following are evaluations and comments on the results
reported in Subsection III-D.

Based on the previous findings [1], we already knew that
ARIMA was not the ideal model to improve the performances
of our forecast, but we still decided to run it to see if we could
find any aspect of interest.

Since ARIMA is a time-series-based analysis, trend fluxes
heavily influence it: this resulted in a peculiar prediction graph
for respiratory diseases-caused hospitalisations of patients
coming from Brescia, as it predicted a phantom positive peak
around March.

As we investigated the reason for that, we found its
explanation in the observable trend of the previous years’
actual data: in fact, March 2020 and 2021 saw a surge in
hospitalisations due to respiratory disorders as more patients
contracted COVID-19.

The main drawback of time series models is that they rely
only upon the forecasted variable without comprehending and
looking for the concealed causes of its behaviour. Still, they
can represent a suitable approach when dealing with real-life
daily chronological data.

V. CONCLUSION AND FUTURE WORK

When analysing metrics and graphs from the different
models, we can appreciate how, in the end, for both the city of
Brescia and its province, we could manage to validly predict
daily accesses and hospitalisations due to respiratory diseases.

The same cannot be said for cardiovascular hospitalisations,
plausibly due to the high sparsity of these data, meaning
that further research needs to be undertaken. Note that the
number of hospitalisations for specific pathologies is limited
to a few people every day and, sometimes, even none, and this
is particularly noticeable for cardiovascular disorders.

Still, the main objective of this work, which was to upgrade
and deepen the previously reported analysis [1], was generally
reached. Even the worst result, coming from the analysis of
cardiovascular hospitalisations of patients, still represents an
improvement from the previous study, and the latter’s findings
have been validated.

Focusing on comparing the different predictive algorithms,
we can state that, for these specific datasets, SVR seems to
be the best one, followed by RF. ANN, instead, results in
performances closer to the ones of ARIMA.

Visually analysing the plots, our best forecasts of daily
accesses and respiratory hospitalisations appear to adhere quite
well to the actual data, and their metrics are quite satisfying,
too.

In fact, generally speaking, even if the specific values are
not always correctly predicted, the overall trend seems to be
rightly followed, and peak values (like surges in accesses or
hospitalisations) are captured.

Another significant result to highlight is the confirmation of
how adding environmental data can improve the prediction.

When we tried to apply the same models to reduced versions
of the datasets that only contained calendrical information
or, instead, discarded it, we generally achieved better perfor-
mances.

Based on these observations, this work represents a coherent
deep-dive that further analyses the previous approach.

The prediction of ER accesses and hospitalisations from a
specific geographical area through the analysis of clinical and
environmental data is feasible.

The previous promising results have been confirmed and
improved, even if this method’s application on cardiovascular
hospitalisations could still benefit from further investigation.

Nevertheless, we cannot generalise the results since we
obtained them by analysing a period majorly made up of
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COVID-19-ridden years and a limited geographical area. Thus,
we can only use them to comment on this specific frame.

The performances could dramatically differ if the analogous
pre-processing and the same models were applied to other
contexts or just even on a longer and more stable period.

In summary, our hypothesis of enabling forecasting of
ER volumes by combining historical clinical, weather and
pollution data, linked by a detailed geographical indication,
has been proven to be suitable and also given more than
encouraging results.

Although additional work could still be encouraged to
improve the achieved performances, this represents a new
point of view on such a complex and poignant matter.

The real-life application of this approach is now possible,
and its adaptation to other areas appears simple, even if we
cannot predict how accurate that forecast would be.

To conclude, future developments of this work will widen to
other areas, with the hope of moving to ever-growing datasets,
and additional algorithm testing will be conducted to improve
the best-achieved predictions further.

Nevertheless, any additional attempt will gather supplemen-
tary valuable insight on this topic and shed light on how our
surrounding environment influences human health.

This One Health approach may offset a new way of
managing ER worldwide, enabling the monitoring of entire
populations and geographical areas, with the final objective
of improving the quality of healthcare and people’s quality of
life.
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