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Abstract—With modern advances in  high-
throughput technologies to measure gene expression
profiles, researchers are eager to identify biomarkers
that indicate pathogenic processes or pharmacologic
responses. However, insufficient statistical power, often
due to the limited sample sizes in real experiments, has
hindered progress in this area. Realistic simulations
can provide data to better estimate sample sizes and
better evaluate analytical methods. Existing simulation
tools have focused more on the technology and less on
the biological complexity of patients and outcomes.
In this paper, we describe an R package of gene
expression simulation tools to address this problem.
Our model incorporates both biological and technical
noise on top of the true signal, transcriptional status,
and block structures that mimic gene networks. More
importantly, to simulate the multi-hit model of cancer
development, our tool contains latent variables that
link gene expression with binary outcome and survival
data. We demonstrate the use of this R package
by providing examples of simulated cancer subtype
recovery and biomarker discovery.
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I. INTRODUCTION

The “Ultimate Microarray Prediction, Inference, and
Reality Engine” (Umpire) is an R package that allows
researchers to simulate complex, realistic microarray data
[1]. Simulations are useful for designing experiments and
for evaluating proposed analytical methods. The simula-
tion of microarray gene expression data sets has a long
history: many of the earliest simulation tools focused
on the simulation of microarray images, and were useful
for developing better image processing algorithms [2]—[4].
Other simulation tools have attempted to explicitly model
the steps in a microarray experiment, including printing,
hybridization, dye effects, and scanning [5], [6]. As with
many of the early statistical simulations [7]-[10], however,
most tools use a model that simply compares two homoge-
neous populations of samples. Even more recent and more
detailed simulations still assume that the data come from
two homogenous populations [11]-[14]. Moreover, none of
the existing simulation tools was designed to focus on the

biological diversity related to such important outcomes as
treatment response or survival.

To address this gap, we developed the Umpire package,
which incorporates a heterogeneous model consistent with
the multiple hit theory of carcinogenesis [15], [16]. Our
package uses latent variables to simulate the connections
between gene expression and either binary or time-to-event
outcomes. Latent variables, also called hidden variables,
are usually inferred from other variables rather than being
observed directly [17]. For example, the latent variables in
our simulation can be cancer subtypes that correspond to
different survival rates, or biomarker expression levels that
are linked with different treatment effects.

Advances in high-throughput technologies for gene ex-
pression measurement have spurred the development of
analytical methods for dealing with the explosion of large
amounts of biological data [18]-[21]. Three major ques-
tions addressed by these technologies are class comparison,
class discovery, and class prediction [22]. The goal in class
comparison is to find biological entities whose distributions
differ among some pre-defined sample groups. Methods for
class comparison include gene-by-gene t-tests or ANOVA
coupled with multiple testing adjustments [23]. Class
discovery involves performing unsupervised analyses to
“learn” or “discover” subgroup structures in the data. The
current state-of-the-art has evolved reasonable methods
for class discovery, such as hierarchical clustering coupled
with resampling techniques to assess robustness [24]. The
goal of class prediction is to formulate gene signatures from
a training data set, and then use the signatures to assign
new samples to known classes [25]. The performance of
class prediction methods is assessed with a rigorous ap-
proach involving independent testing data. There are some
known pitfalls to building predictive models from microar-
ray gene expression data that need special attention [26],
[27]. Some studies have tried different strategies to boost
the performance of class prediction [28], [29]. However,
even though class prediction is the most important of the
three problems, there is less agreement on the best (or
even cousistently good) methods for discovering complex
models that can accurately predict biologically relevant
outcomes such as treatment response or survival.
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In spite of the difficulty in class prediction, there is an
explosion of interest in biomarker research with the goal
of incorporating biomarkers into drug development and
leading to personalized medicine [30]-[37]. For example,
about 30% of patients with breast cancer over-express the
protein HER2, a member of the human epidermal growth
factor receptor family. These patients do not respond to
standard therapy, but benefit from Herceptin treatment
in combination with chemotherapy [38]. This example
illustrates the potential utility of biomarkers for patient
selection. By selecting patients based on their biomarker
profiles, we hope to enrich the pool of patients who have
a greater probability of response to alternative treatment
plans. If successful, this approach could lead to cheaper
and faster clinical trials than the conventional ones.

Appropriate experimental designs are crucial to the
biomarker discovery process. Sample size determination is
a critical step in experimental design to ensure sufficient
statistical power for making inferences about a population
from a sample [39]. It is conceivable that the number
of samples (typically between 100 and 300) included in
most current studies is simply inadequate to learn effective
predictive models. On one hand, the soundness of analyt-
ical tools cannot be evaluated accurately given the small
sample size and the unknown “ground truth” of biology.
On the other hand, biological changes can be masked by
noise, which requires large number of samples in order to
reveal the true signal. It is, however, extremely difficult to
assess the possibility that more samples (and how many
more) would convey sufficient predictive power. Although
some progress has been made for binary classifiers [13],
[40], [41], we do not have general theoretical methods to
justify formal sample size computations that address the
combination of feature selection and model building that
goes into the discovery of predictive models from high-
throughput biological data sets. Nor is it possible to collect
gene expression data on 10,000 patients in order to test
empirically how many samples are really needed to learn
good predictive models.

The obvious solution is to use simulation. If we can
simulate many data sets, of different sizes, with realistic
biological properties, then we can use those data sets
to evaluate proposed methods for class prediction. Using
the Umpire simulation package, we can generate realistic
data to help answer the questions above. In the following
sections, we first elaborate the design of Umpire and
the parameters we implemented in the current version.
We then discuss results from two sets of simulations to
demonstrate the use of Umpire for cancer subtype recovery
and biomarker discovery, respectively.

II. HOMOGENEOUS GENE EXPRESSION MODEL

We begin by describing the underlying statistical model
for simulating gene expression data that is implemented in
the Umpire package. The fundamental object is a “random-
vector generator” (RVG), which represents a specific mul-
tivariate distribution from which random vectors can be
generated.
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A. Additive and Multiplicative Noise

The observed signal, Yy;, for gene g in sample % is:
Ygi = eXp(Hgi)Sgl' + By

where
Sgi = true biological signal

H,; = multiplicative noise
E4; = additive noise.

The noise model represents technical noise that is layered
on top of any biological variability when measuring gene
expression in a set of samples. Usually the microarray noise
is considered a combination of additive and multiplicative
components [42]. We modeled additive and multiplicative
noise as normal distributions:

E,; ~ Normal(v, T)
Hg; ~ Normal(0, ¢)

Note that we allow the additive noise to include a bias
term (v) that may represent, for example, a low level
of cross-hybridization contributing some level of signal at
all genes. The noise model is represented in the Umpire
package by the NoiseModel class. The object-oriented and
modular design makes it possible to add more elaborate
noise models in the future, such as those described by
Nykter and colleagues [5].

B. Active and Inactive Genes

We model the true biological signal Sg; as a mixture:
Sgi ~ (1 — 29)50 + Zngi

In this model, dp is a point mass at zero, z, defines the
activity state (1 = active, 0 = inactive), and Ty; is the
expression of a transcriptionally active gene. By allowing
for some genes to be transcriptionally inactive, this design
takes into account that the transcriptional activity of most
genes is conditional on the biological context. Activity is
modeled in Umpire using a binomial distribution, z, ~
Binom(py).

C. Expression Distributions

For most purposes, we assume that the expression, Tg;,
of a transcriptionally active gene follows a log-normal
distribution, log(Ty) ~ Normal(ug,o4). In a class of
samples, the mean expression of gene g on the log scale is
denoted by p;, and the standard deviation on the log scale
is 04. Both pg and o, are properties of the gene itself and
the sample class. Within a given simulation, we typically
place hyperdistributions on the log-normal parameters pg
and o,. We take py ~ Normal(p,o0) to have a normal
distribution with mean pg and standard deviation oy. We
take o, to have an inverse gamma distribution with rate
and shape parameters. Reasonable values for the hyper-
parameters can be estimated from real data. For instance,
1o = 6 and o9 = 1.5 are typical values on the log scale of a
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microarray experiment using the Affymetrix GeneChip®
human arrays. The parameters for the inverse gamma
distribution are determined by the method of moments
from the desired mean and standard deviation; we have
found that a mean of 0.65 and a standard deviation of
0.01 (for which rate = 28.11 and shape = 44.25) produce
reasonable data.

D. Correlated blocks of genes

Biologically, genes are usually interconnected in net-
works and pathways. In fact, clustering methods are of-
ten used to group genes into correlated blocks. Thus, it
is natural to simulate microarray experiments from this
perspective. In our simulations, we usually allow the mean
block size, &, to range from 1 to 1000, and the sizes of
gene blocks to vary around the pre-defined mean block
size. To be more specific, the block size follows a normal
distribution with mean £ and standard deviation 0.3 €. The
case £ = 1 is special, since we take the standard deviation
of the block size to be zero so all genes are independent.
At the other extreme, £ = 1000 simulates large networks
involving many genes.

The correlation matrix (£2) for a block b, has 1’s on
the diagonal and p, or —p, in the off-diagonal entries.
We usually allow p ~ Beta(pw, (1 — p)w) to follow a beta
distribution with parameters p = 0.6 and w = 5. We let
# denote the portion of negatively correlated genes within
a block. In the simplest scenario, all genes in the same
block have the same positive correlation p,. In a more
complicated scenario, § = 0.5 — |x — 0.5] where « follows
a beta distribution. Three types of = are considered: (1)
x ~ Beta(1,1), so € is uniformly distributed between 0
and 0.5; (2) x ~ Beta(5,5), so 6 is likely to be close to
0.5; or (3) x ~ Beta(0.5,0.5), so  is likely to be close to
0. Our pilot study showed that different 6’s do not have
a pronounced impact on the parameters of interest (data
not shown). So, we only discuss the results obtained from
0 = 0.5 — |z — 0.5 where z ~ Beta(1,1).

The log expression values of genes within a block follow a
multivariate normal (MVN) distribution. The mean vector
is defined by ug4 as defined previously, and the covariance
matrix 3 is defined as:

Yij = x 04, *0g,

where o, defines the standard deviation of gene ¢, which
follows the inverse gamma distribution as described pre-
viously. More elaborate models can also be generated, by
altering the variances or the correlation structure within
the block.

We mentioned above that some genes would be tran-
scriptionally inactive under certain biological conditions.
Instead of simulating this active status for genes individ-
ually, we simulate whole blocks of genes being transcrip-
tionally active or inactive. This models the idea that the
entire pathway or network could be turned on or off under
certain biological conditions.
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III. THE MULTI-HIT MODEL OF CANCER

The multiple hit theory of cancer was first proposed
by Carl Nordling in 1953 [15] and extended by Alfred
Knudson in 1971 [16]. The basic idea is that cancer can
only result after multiple insults (mutations; hits) to the
DNA of a cell. We use the combinatorics of multiple hits
to simulate heterogeneity in the population.

Let H be the number of possible hits (typically on
the order of 10 to 20). We define a cancer subtype as a
collection of hits (usually 5 or 6 out of those possible).
Each subtype has a prevalence; by default, each subtype is
equally likely to occur in the population. To simulate a set
of patients, we start by assigning them to one of the cancer
subtypes (with probabilities equal to the prevalences). We
then use the individual hits as (unobserved) latent vari-
ables that influence gene expression, survival, and binary
outcomes.

Specifically, let Z; be a binary variable that indicates
the presence (Z, = 1) or absence (Z, = 0) of a hit h.
Then the probability p of an unfavorable (binary) outcome
is simulated from a logistic model

H
p
log| — | = VAR
g(l—p) };B

where the parameters §; ~ N(0,0p5) are simulated from a
normal distribution.

We simulate survival times from a Cox proportional
hazards model [43], with

h=1

where ho(t) can be taken to be any desired survival model
(usually exponential) and the coefficients a; ~ N(0,04)
can be taken to be either independent of or related to the
B; depending on the goal of the simulation.

Finally, each hit is assumed to affect the expression
of one correlated block of genes (representing the effect
on a single biologically pathway) by altering the mean
expression of the genes in that block. The absolute change
of the mean expression values on log scale for a block of
genes is given by A, ~ Gamma(c, 3). Both parameters for
this gamma distribution are set to 10 so that the absolute
fold change on the log2 scale is 1, and the long tail on the
right hand side of the distribution allows a few genes to
have large fold changes. A gene in the changed block is
randomly assigned to be up-regulated or down-regulated
in cancer patients.

IV. IMPLEMENTATION

The statistical model that we have just described is
implemented using S4 classes in the R statistical soft-
ware programming environment. Version 1.2.3 of the
Umpire package is available from the R repository at
http://bioinformatics.mdanderson.org/OOMPA; detailed
instructions on how to install the package can be
found at http://bioinformatics.mdanderson.org/Software/
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Fig. 1. UML diagram of classes in the Umpire package.

OOMPA. Figure 1 presents a diagram of the class struc-
ture using the Unified Modeling Language (UML). The
main class, CancerEngine, contains one CancerModel and
two Engine objects. The CancerModel object is used to
simulate clinical data, including cancer subtypes, binary
outcomes, and survival times. This object contains a
matrix of hit patterns and a vector of prevalences that
characterize the cancer subtypes being simulated.

The basic survival model assumes that the survival
times follow an exponential distribution; other survival
distributions can be simulated by deriving a subclass of
SurvivalModel. The rand () method for SurvivalModels
takes an optional extra parameter, 3, that represents a
vector of logarithmic hazard ratios to modify the survival
distributions for individual patients depending on the
latent pattern of hits and, possibly, the treatment they
receive.

Each Engine is used to simulate vectors of gene ex-
pression data. An Engine is a list of components; for the
simulations described in this paper, we use a combination
of IndependentNormal and MVN (multivariate normal)
components. Additional components can be derived from
the abstract Component class to simulate data from other
distributions. For example, one might use Poisson dis-
tributions or negative binomial distributions to simulate
the kinds of count-based gene expression data that are
produced by next generation sequencing technologies. The
pair of Engine objects in a CancerEngine represent the
baseline gene expression (with no hit) and the altered
gene expression that occurs in the presence of a hit;
which expression pattern is used for any simulated sample
depends on the subtype and hit pattern generated by the
associated CancerModel.

Noise is applied to simulated gene expression data, using
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TABLE 1
NUMBER OF SIGNIFICANT GENES, BY SAMPLE SIZE AND FDR.

N =100 N =300 N =500

FDR = 0.01 12 86 144

FDR = 0.05 22 135 209

FDR = 0.1 37 169 253

FDR = 0.2 74 249 354

FDR = 0.3 127 346 446

the blur () method, after the “true” signal is simulated.
In the simulation presented here, we use a straightforward
model of additive and multiplicative white noise. The gen-
eral design, however, allows for the incorporation of more
elaborate noise models by deriving additonal subclasses of
the abstract Noise class.

The block structure is only indirectly specified by the
class structure. For the simulations presented here, we
implement it by constructing Engine objects consisting of
MVN components with block sizes drawn from an appropri-
ate distribution.

V. SIMULATION RESULTS

To illustrate the usage of the Umpire package, we per-
formed two sets of simulation of microarray data with
associated survival data.

A. Cancer Subtype Recovery

In the first simulation, we assumed that there are 20
possible hits (H1 to H20), and that 5 hits at a time define
a cancer subtype. We also assumed that there were 6
distinct, equally likely, cancer subtypes. As above, each
of the 20 hits corresponds to a correlated block of gene
expression and also affects survival. We assumed that there
were 100 additional correlated blocks of genes that were
unrelated to cancer or to survival. Blocks were simulated
to contain a mean of 100 genes with a standard deviation
of 30. Gene means, standard deviations, and correlation
structures were simulated using the distributions and hy-
perparameters described above. We simulated survival by
assuming an exponential baseline hazard function.

We analyzed the simulated data using an approach that
is common in the field. Specifically, we fit gene-by-gene
univariate Cox proportional hazards models. We recorded
the p values for a log-rank test of the significance of each
gene. We then fit a beta-uniform mixture (BUM) model
[44] to the set of p-values, and used the BUM model to
estimate the false discovery rate (FDR). Table I shows the
number of genes called significant as a function of the FDR
and the sample size. For an FDR of 20%, Table II separates
these results into groups depending on the membership of
genes in different correlated blocks. Recall that 20 corre-
lated blocks of genes were associated with cancer-related
hits; the blocks of “irrelevant” genes are collected in the row
of the table labeled “FP” to denote obvious false positive
findings. The first column of Table II shows the number
of cancer subtypes (patterns) that included each hit; the
second column shows the coefficient of that (latent) hit
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TABLE II
NUMBER OF SIGNIFICANT GENES AS A FUNCTION OF THE SAMPLE SIZE
AND THE TRUE HIT STATUS.

Patterns Alpha | N=100 N =300 N = 500

H1 4 0.291 0 8 10

H2 2 0.366 0 5 11

H3 1 0.090 0 3 11

H4 0 0.278 0 1 0

H5 1 1.428 0 2 2

H6 3 0.313 0 1 2

H7 0 0.496 0 0 0

H8 1 -0.428 1 5 13

H9 3 -2.135 6 34 40

H10 0 0.631 2 1 0
H11 1 0.047 17 38 44
H12 2 0.422 0 13 27
H13 2 1.062 1 7 12
H14 0 1.433 0 2 0
H15 2 2.514 0 6 15
H16 1 -0.384 0 3 3
H17 1 -0.841 1 10 14
H18 2 0.299 0 13 16
H19 2 1.358 10 25 32
H20 2 -1.674 6 35 41
FP 0 0.000 30 37 61

in the simulated survival model. Note that even though
there were 20 possible hits, four of them (G4, G7, G10,
and G14) were not actually included in the patterns of 5
hits that defined the 6 cancer subtypes in this simulation.
Using 100 samples, we only discovered multiple genes that
represented 5 of the cancer-related gene blocks. Using 500
samples, we discovered multiple genes representing all 16
“active” cancer-related gene blocks.

Figure 2 displays heatmaps of the genes selected as
significant at the 20% FDR level using either 100 or
500 samples. The color bar along the top reflects the
true cancer subtype for each patient. The color bar along
the side displays the gene memberships in cancer-related
gene blocks, with white representing genes belonging to
non-cancer-related blocks, which are false positives. When
using 100 samples, not all patients with different cancer
subtypes are well separated. We observe distinct gene
expression patterns in patients with subtype 1 and 5, but
not in other patients. On the gene level, the 74 significant
genes come from 8 cancer-related gene blocks. With 500
samples, all six cancer subtypes are well separated by
clustering, and their distinct gene expression patterns are
visible in the heatmap. On the gene level, the 354 signifi-
cant genes cover 16 out of 20 cancer-related gene blocks.
In both heatmaps, the false positive genes, represented
by the white color bar, are recognizable by their lack of
correlation with other selected genes.

B. Patient Selection In Clinical Trials

The second set of simulations involves biomarker iden-
tification and patient selection during clinical trials. We
assume that a randomized clinical trial is conducted with
two arms with equal probability to compare the per-
formance of some standard therapy with a potentially
better alternative therapy. The hazard ratio between the
alternative treatment and the standard treatment in the
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Fig. 2. Heatmaps of the significant genes at FDR = 20% using 100
(top) or 500 (bottom) samples.

full population is called HRy.;. We simulated time-to-
event outcome, which might represent overall survival,
progression-free survival, or other similar clinically rele-
vant endpoints, between the two arms. Note that other
types of endpoints can be easily added to the Umpire
package. A latent variable L indicates whether each patient
is marker-positive (M+) or marker-negative (M—). The
time-to-event outcome is linked with the treatment and
the latent variable. Only M+ patients will benefit from
the alternative treatment.

Genes in five correlated blocks out of 100 total blocks are
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differentially expressed between M+ and M — groups. The
goal is to identify some complex (probably multivariate)
marker that separates the initial patient population into
two groups (M+ and M—), such that the hazard ratio
between treatment arms in the M+ group, HR4, is a
substantial improvement over the hazard ratio H R7,; in
the full population.

We simulated survival using an exponential baseline
hazard function with a median progression-free survival
time of 18 weeks. The true benefit in the patients who
have the marker is simulated as HRjy;y = 0.55. Assuming
that 30% of patients contain this marker, as in the example
of HER2 described above, we simulated different sizes of
patient cohorts ranging from 100 to 1500. Each scenatio
was simulated 10 times for variance estimation. We also
simulated independent testing data sets of size 200.

For each training data set, we performed K-means
clustering [45] on each gene with K = 2. To select
potential biomarkers, we searched for genes whose two
groups corresponded to different hazard ratios between the
two treatment arms. We fit gene-by-gene univariate Cox
proportional hazards models. The p-values corresponding
to the interaction term between treatment and the gene
grouping are further modeled using the BUM model to
estimate the FDR. With FDR cutoff 20%, we selected
significant genes for each set of training data. Similarly,
K-means clustering was performed on each gene in the
test data sets. We then calculated the percentage of sig-
nificant genes voting for M+ as a multivariate predictor
that a patient is M+. Figure 3 shows receiver operating
characteristic (ROC) curves [46] of the predictions in the
testing data sets for different size training data sets. We
observe that more training samples yield more accurate
predictions. In this simulation, the area under the ROC
curve (AUC) is larger than 0.9 when the number of
patients is at least 500.

VI. CONCLUSION

We have described the Umpire R package and shown
that it can be used to simulate microarray data that
is related to survival outcomes in complex ways. In our
simulation, many assumptions are based on our extensive
experience derived from working with real Affymetrix
GeneChip® data sets. We recognize that some of the
modeling assumptions that we used might seem simplified
considering the complex biology. However, one advantage
of implementing Umpire with S4 classes in R is that the
package is flexible enough to allow easy addition of compo-
nents representing alternative models of gene expression.

The two sets of simulations that we have presented,
which use a plausible set of biologically meaningful pa-
rameters, suggest that both class discovery studies and
biomarker discovery studies looking for signatures to pre-
dict time-to-event outcomes may need more than the 100
300 samples that have frequently been used in practice. In
order to elucidate the true subgroup structure, our first
simulation required about 500 samples. In order to dis-
cover biomarker signatures that could identify a subgroup
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Fig. 3.  ROC curves for patient selection with markers identified
from different sized patient cohorts. The vertical bars correspond to
standard error from 10 simulation, and the AUCs are shown in the
legend.

of patients more likely to respond to an alternative treat-
ment, our second simulation also0 required at least 500
patients. In this context, it is interesting to note that the
ongoing effort of The Cancer Genome Atlas (TCGA) to
apply comprehensive high-throughput molecular biology
techniques to a variety of different cancers intends to study
about 500 samples of each type [47].

The results of the simulation also suggest that we may
need better methods for combining gene expression values
into predictive signatures. First, the common statistical
approach that tries to optimize the coefficients of all 354
selected genes using 500 samples is unlikely to succeed.
Moreover, since we know “ground truth” for this particular
simulation, we know that there are 16 independent factors
that influence survival. From the heatmap on the bottom
of Figure 2, we would also estimate that there are many
distinct expression patterns that contribute to survival.
This observation suggests two possible approaches. On the
one hand, we could group correlated genes together into
simpler factors that can be included in predictive models.
For example, we could perform a principal components
analysis and use the first few principal components (PCs)
as predictors. For our simulated data, there are approxi-
mately five non-random PCs; the appropriate number of
PCs in a real data set could potentially be estimated from
a scree plot of the amount of variance explained by each
PC. The selected PCs could then be used as predictors
in a Cox proportional hazards model. On the other hand,
the same heatmap indicates the presence of six subtypes
of cancer. An alternative approach would be to use those
six subtypes as a categorical predictor; these could also be
tested in a Cox model. In this case, the obvious next step
would be to develop a robust multi-category classifier.

We do not pursue these approaches further in the
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current paper. However, the Umpire package provides the
tools that are necessary to evaluate a range of analytical
methods on data sets with different sizes and properties.
The availability of this tool should contribute to the
development of better methods to learn useful predictors
of biologically relevant outcomes.
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