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Abstract—Latest medical diagnostics, such as
genome sequencing, generate increasing amounts of
"big medical data". Healthcare providers and medical
experts are facing challenges outside of their original
field of expertise, such as data processing, data anal-
ysis, or data interpretation. Specific software tools
optimized for the use by the target audience as well as
systematic processes for data processing and analysis
in clinical and research environments are still missing.
Our work focuses on the integration of data acquired
from latest next-generation sequencing technology,
its systematical processing, and instant analysis for
researchers and clinicians in the course of precision
medicine. We focus on the medical field of oncology to
optimize the time spent on acquiring, combining, and
analyzing relevant data to make well-informed treat-
ment decisions based on latest international knowl-
edge. We share our research results on building a dis-
tributed in-memory computing platform for genome
data processing, which enables instantaneous analysis
of genome data for the first time. For that, we present
our technical foundation and building blocks of in-
memory technology as well as business processes to
integrate genome data analysis in the clinical routine.

Keywords-Genome Data Analysis, Process Inte-
gration, In-Memory Database Technology, Precision
Medicine, Next-Generation Sequencing, Alignment,
Variant Calling.

I. Introduction

We present our findings in providing specific software
tools for clinicians and researchers in the course of
precision medicine for integration of high-throughput
genome data as source of diagnostic insights [1]. Preci-
sion medicine aims at treating patients specifically based
on individual dispositions, e.g., genetic or environmental
factors [2]. For that, researchers and physicians require a
holistic view on all relevant patient specifics when mak-
ing treatment decisions. Thus, the detailed acquisition of
medical data is the foundation for personalized therapy
decisions. The more fine-grained the available data is,
the more specific the gained insights will be, but the
complexity of data processing will rise as well. It requires

Figure 1. Data processing steps involved in the analysis of genome
data. Sequencing the samples results in chunks of DNA available
in digital form. During alignment their position within the whole
genome is mapped. Variant calling results in a list of differences of
a fixed reference. The analysis obtains new insights based on the
list of detected variants.

tool support to identify the relevant portion of data out
of the increasing amount of acquired diagnostic data [3].

Figure 1 depicts the genome data workflow in the
course of precision medicine. After a sample has been
acquired, it is sequenced, which results in short chunks
of Deoxyribonucleic Acid (DNA) in digital form. The
DNA chunks need to be aligned to reconstruct the
whole genome and variants compared to a reference, e.g.,
normal vs. pathologic tissue, are detected during variant
calling. The analysis of genome data builds on the list of
detected variants, e.g., to identify driver mutations for a
medical finding [4].

Nowadays, Next-Generation Sequencing (NGS) de-
vices are able to generate diagnostic data with an in-
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creasing level of detail. In contrast to the first draft of the
human genome, which involved thousands of institutes
for more than one decade, modern NGS devices process
a whole human genome within hours [5]. Nowadays, a
sample of human tissue can be processed with more
than 30x coverage in approx. 27 hours [6]. However,
the increased level of detail results in additional data
processing challenges. The following list summarizes se-
lected data processing challenges, which are discussed in
more detail in the remainder of our contribution.

‚ The sheer amount of generated DNA data is a
challenge even for modern computer systems, e.g.,
per sequenced sample of a human tissue approx.
300-500GB of raw data is generated digitalizing the
human DNA with approx. 30x coverage.

‚ Raw DNA data needs to be processed prior to its
analysis, which takes hours to days, i.e., alignment
of DNA chunks to reconstruct a complete genome
and identify variants compared to a known reference
in the variant calling phase as depicted in Figure 1.
Reducing the time for data processing would result
in earlier start of data analysis.

‚ The availability of hundreds or thousands of indi-
vidual cores in a modern computer cluster requires
on the one hand the partitioning of the available
data so that on the other hand specific algorithms
can process this data in parallel.

‚ The analysis of genome data still involves big data,
e.g., hundreds or millions of individual genetic vari-
ants. However, only a minority of these variants
is connected to a certain disease, the majority of
variants are not responsible for any malign changes.
Thus, the analysis of genome data is an iterative and
not a batch-oriented process. It consists of creating
new hypotheses and their verification and requires
software tools that support this kind of interactive
analysis and exploration of genome data.

Figure 2 provides a comparison of costs for sequencing
and main memory modules on a logarithmic scale. Both
graphs follow a steadily declining trend, which facilitates
the increasing use of NGS for whole genome sequencing
and In-Memory Database (IMDB) technology for data
analysis. Latest NGS devices enable the processing of
whole genome data within hours at reduced costs [9].
The time consumed for sequencing is meanwhile a com-
parable small portion of the time consumed by the
complete workflow. As a result, data processing and
its analysis consume a significantly higher portion of
the time and accelerating them would affect the overall
workflow duration.

Our contribution focuses on how to optimize the time-
consuming data processing and analysis aspects of the
workflow by combining latest software and hardware
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Figure 2. Costs for next-generation sequencing and main memory
2001-2014 adapted from [7], [8].

trends to create an integrated software system, which
supports life science experts in their daily work.

The rest of this contribution is structured as follows:
In Section II our work is set in the context of related
work. We give a deeper understanding of in-memory
computing in Section III and share concrete design de-
cisions of our software architecture in Section IV. In
Section V we outline our experiment setup and acquired
results. An evaluation and discussion of our obtained
results is given in Section VI while our work concludes
in Section VII.

II. Related Work

The amount of related work in the field of genome data
processing has increased in the last years. However, work
focusing on the implementation of end-to-end processes
and the improvement of scientific work is still rare. Thus,
our work focuses on the integration of these aspects.

Pabinger et al. evaluated workflow systems and anal-
ysis pipeline tools [10]. They observed that existing
tools either miss flexibility or the end-user needs specific
know-how to install and operate them properly. We
address this by introducing a combined system for mod-
eling and execution of individual pipeline configurations
without the need to adapt command line scripts as
presented in Section IV-D.

Additionally, Pabinger et al. analyzed a variety of
variant analysis tools and evaluated their functionality.
For web-based tools they see a drawback in the required
data preparation before the desired analysis can start,
because "[. . . ] files need to be packed, sorted and in-
dexed before they can be used" [10]. We address time-
consuming data transformations and preparations by
replacing them by native database operations within our
incorporated IMDB as outlined in Section IV.
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Wandelt et al. observed in their evaluation a trend
towards more and more cloud-based NGS data manage-
ment solutions [11, Section 4.3]. We also believe that
cloud-based software systems for processing and analysis
of NGS data have advantages over local installations.
For example, the setup, configuration, and operation of
such systems requires trained personnel with specific
bioinformatics background, which can be reduced by
using cloud-based services. Cloud-based approaches also
reduce costs for permanent local hardware resources,
maintenance, and operation [12].

Wandelt et al. also identified the efficient mapping of
workflow tasks in distributed computing environments
and the adjustment of a given workflow to a dynamic
environment as open issues. Our contribution addresses
the modeling of workflows with a dedicated modeling
notation as outlined in Section IV-D and their execution
and resource allocation with a dedicated framework for
scheduling as discussed in Section IV-G.

A first approach to distribute genome data analysis on
a cluster of machines is Crossbow [13]. They use Hadoop
for parallelization and built a pipeline that uses Bowtie
for alignment and SOAPsnp for SNP detection [14], [15].
Their analysis pipeline took less than three hours on
Amazon’s Elastic Compute Cloud (EC2) with 320-cores
distributed across 40 nodes for a 38x coverage genome.
However, their approach was designed for a specific
pipeline setup and requires extra work for adaptations,
e.g., by adding additional variant calling algorithms. We
enable users of our platform to adapt their pipelines
individually using a graphical modeling notation as de-
scribed in Section IV-D.

Our work contributes by providing a system architec-
ture that combines processing and analyzing of genome
data within a single system as outlined in Section IV.
As part of our system architecture, we created a worker
framework developed with the Python programming lan-
guage, which enables integration of computing resources
across platform and Operating System (OS) borders.
Furthermore, our task scheduler controls the execution
of a given workflow, e.g., prioritized processing of in-
dividual pipeline steps, as described in Section IV-G.
It enables parallel data processing of multiple tasks as
described in Section IV-E, e.g., to handle simultaneous
user requests or tasks from multiple departments at the
same point in time.

Galaxy, GenePattern, or Mobyle are selected related
projects in the field of Reproducible Research Systems
(RRS), which focus on enabling researchers to acquire,
process, and document scientific data in a systematic,
transparent, and reproducible way [16], [17], [18].

We address these fields with our platform as well as,
e.g., among others by the following aspects:

‚ Graphical modeling and exchange of analysis work-

flows using a standardized modeling notation as
described in Section IV-D,

‚ Enabling reproducible research results by sharing
data and workflows with other users as described in
Section IV-F, and

‚ Integration of latest international research
databases using our annotation framework as
described in Section IV-I.

III. Building Blocks of In-memory Computing

We refer to IMDB technology as a toolbox of IT
artifacts to enable processing of enterprise data in real-
time in the main memory of server systems [19]. Figure 3
depicts selected in-memory computing building blocks.
The use of IMDB technology for genome data analysis is
driven by the declining cost developments for NGS and
main memory modules as described in Section II.

In the following, we outline selected building blocks of
in-memory computing and their relevance for real-time
analysis of genomic data in the context of our work.

A. Combined Column and Row Store

Historically, separate database systems for processing
of analytical and transactional data evolved. The former
store and process data in a row-oriented format, i.e.,
attributes of one record are stored side by side, while an-
alytical database systems are optimized to scan selected
attributes of huge data sets rapidly, e.g., by maintaining
pre-aggregated totals.

If complete data of a single row needs to be accessed,
storing data in a row format is advantageous. For exam-
ple, the comparison of two customers involves all of their
database attributes, such as inquirer’s name, time, and
content need to be loaded. In contrast, columnar stores
benefit from their storage format when only a subset of
attributes needs to be processed. For example, adding up
the gender ratio of patients treated in a certain period
of time only involves the attributes date and gender,
but the remainder, such as name and birth date, are
not required. Using a row store for this purpose would
require processing of all attributes, although only two
of these attributes are required. Therefore, a columnar
store benefits from accessing only relevant data.

Combining column and row stores improves any kind
of analytical queries while keeping transactional re-
sponse times low. In our case, the use of columnar stores
supports the comparison of multiple genomes to identify
common mutations in the blink of an eye.

B. Complete History

Keeping the complete history of values even after
individual data points have been updated or changed is
the purpose of the insert-only or append-only technique.
Insert-only is a data management approach that stores
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Figure 3. Selected in-memory computing building blocks.

data changes as new entries. Traditional database sys-
tems support four operations for data manipulation, i.e.,
insert, select, delete, and update of data. The latter two
are considered as destructive operations since the origi-
nal data is no longer available after their execution [20,
Section 7.1]. In other words, it is neither possible to de-
tect nor to reconstruct the values for a certain attribute
after their execution since only the latest value is persis-
tently stored in the database. Insert-only database tables
enable storing the complete history of value changes
and the latest value for a certain attribute [3]. This
is the foundation of worldwide bookkeeping systems
guaranteeing transparency.

Insert-only can also be used to trace decisions, e.g.,
in course of incident analysis. For example, consider
a Clinical Information System (CIS) that is used to
store latest decisions on medical dosages. If you directly
replace the current value by a new value for the dosage,
it is impossible to track when a patient received what
dosage of a certain drug. Nowadays, updated dosages are
stored as a new entry with a dedicated timestamp when
they were applied. Using insert-only does not require
this workaround and you can easily update the current
dosage while the IMDB keeps a complete history of
all changes. Thus, the IMDB is capable to reconstruct
the global database state for any point in time using a
specific database query.

C. Lightweight Compression

Lightweight compression techniques refer to a data
storage representation that consumes less space than
its original pendant [19]. A columnar database storage
layout, as used in IMDBs, supports lightweight compres-
sion techniques, such as run-length encoding, dictionary

encoding, and difference encoding [21]. Typically, values
of a database attribute are within a limited subset of the
attribute’s full data domain, e.g., male and female for
the gender type. The lightweight compression technique
dictionary encoding, for example, maps all unique values
to a uniform format, e.g., male=1 and female=2.

The application developer can apply this technique
during design time. However, IMDBs automatically per-
form lightweight compression optimized for the specific
data to store. As a result, there is no longer an ex-
plicit need to map data from a human-readable format
to an optimal storage representation since it is done
transparently by the IMDB. Thus, the time to create
new applications is reduced, the maintainability of the
application code is improved since the source code is eas-
ier to understand, and any data stored in the database
benefits from this kind of optimization without the need
for explicit consideration in the application’s code by the
software developer.

For example, the International Code of Diseases (ICD)
is identical for patients suffering from the same disease.
Instead of storing the ICD redundantly in the database,
dictionary compression stores it once and maps it to
a smaller integer representation. Thus, only the corre-
sponding integer value is stored in the database and all
queries are rewritten to use the integer representation
instead. The original representation is replaced just be-
fore the result set is returned to the client. As a result,
the database executes all operations on compressed data
without the need for explicit decompression, which im-
proves cache-hit ratio since more compressed data fits
into the same amount of cache memory [19].
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D. Parallel Data Processing

Latest computer systems consist of multiple cores
per individual Central Processing Unit (CPU), which
is referred to as multi-core architecture [22, Chap. 2].
Additionally, a single server system can be equipped
with multiple CPUs multiplying the amount of avail-
able computing cores, which is referred to as multi-
CPU architecture [22, Chap. 2]. The hardware of a
single computer system is designed to perform multiple
processing tasks simultaneously. However, to use all
available computing resources most efficiently software
needs to incorporate specific instructions to explicitly
make use of parallelization features, e.g., when adding
up multiple values using the Parallel Addition (PADD)
instruction [23, Chap. 5.3].

Parallelization can be applied to various locations
within the application stack of software systems – from
within the application running on an application server
to query execution in the database system. For ex-
ample, multiple clinical departments access the data
of a single patient simultaneously. Processing multiple
queries can be handled by multi-threaded applications,
i.e., the application does not stall when dealing with
more than one query at the same time. OS threads
are a software abstraction that needs to be mapped to
physically available hardware resources [24, Chap. 2].

A CPU core is comparable to a single worker on a
construction area. If it is possible to map each query
to a single core, the system’s response time is optimal.
Query processing also involves data parallelization, i.e.,
the database needs to be queried in parallel, too. If the
database is able to distribute the workload across multi-
ple cores, a single server works optimal. If the workload
exceeds physical capacities of a single system, multiple
servers or blades need to be installed for distribution
of work to reach optimal processing behavior. From
the database point of view, data partitioning supports
parallelization since multiple CPU cores even on multiple
servers can process data simultaneously [25, Chap. 6].

This example shows that multi-core architectures and
parallelization depend on each other while data parti-
tioning forms the basis for parallel data processing.

E. Data Partitioning

We distinguish between vertical and horizontal data
partitioning [26].

Vertical partitioning refers to rearranging individual
database columns. It is achieved by splitting columns of
a database table in two or more sets of columns. Each of
the sets can be distributed individually, e.g., on separate
databases servers. This technique can also be used to
maintain the same database column in different ordering
to achieve better search performance for mixed work-
loads while guaranteeing high-availability of data [27].

Key to success of vertical partitioning is a thorough
understanding of data access patterns. Attributes that
are accessed in the same query should be located in the
same partition since identifying and joining additional
columns result in additional query processing overhead.

In contrast, horizontal partitioning addresses long
database tables and how to divide them into smaller
chunks of data. As a result, each portion of the database
table contains a disjoint subset of the complete data.
Splitting data into equivalent long horizontal partitions
is used to support parallel search operations across all
data of a database table and to improve scalability [19].

The identification of CpG Islands (CGIs) is a con-
crete application example: CGIs are known to represent
unstable chemical compounds [28]. Their identification
requires a full scan of the genome database table to
identify positions where the bases cytosine and guanine
are direct neighbors. Applying a horizontal partition per
chromosome for the genome table enables scanning of
all chromosomes in parallel. Furthermore, applying hor-
izontal partitioning to each of the chromosome database
tables enables processing of each individual chromosome
by individual CPU resources, e.g., CPU cores.

F. Active and Passive Data

We distinguish two categories of data: active and
passive. We refer to active data when it is frequently
accessed and updates are expected to occur on regular
basis, e.g., data of patients currently treated in a hos-
pital. In contrast, passive data is neither updated nor
accessed regularly. It is purely used for analytical and
statistical purposes or in exceptional situations where
specific investigations require this data. For example,
tracking events of a certain pharmaceutical product
that was sold five years ago can be considered as pas-
sive data. Firstly, from the business’ perspective, the
pharmaceutical can be consumed until the best-before
date, which is reached two years after its manufacturing
date. When the product is handled now, five years
after it’s manufacturing, it is not allowed to sell it any
longer. Secondly, the product was most probably sold
to a customer four years ago, i.e., it left the supply
chain and is typically already used within its best-before
data. Therefore, the probability that details about this
pharmaceutical are queried is very low. Nonetheless, the
tracking history is conserved and no data is deleted in
conformance to legal regulations. As a result, the passive
data can still be accessed but with a higher latency than
active data. Thus, passive data results in a classification
of data stores. For example, passive data can be used for
reconstructing the path of a product within the supply
chain or for a financial long-term forecast.

Dealing with passive data stores involves the definition
of a memory hierarchy including fast, but expensive, and
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slow, but cheap memory. A possible storage hierarchy
is given by: memory registers, cache memory, main
memory, flash storages, Solid State Disks (SSDs), Serial
Attached SCSI (SAS) hard disk drives, Serial Advanced
Technology Attachment (SATA) hard disk drives, and
magnetic tapes [3].

Thus, active data that needs to be accessed in real-
time can be separated from passive data that is ready for
archiving. When data is moved to a passive data store,
it frees fast accessible data stores, e.g., main memory.

To distinguish between active and passive data, rules
for migration of data from one store to another need
to be defined. We refer to them as data aging strategy
or aging rules. We consider the process of aging, i.e.,
the migration of data from a fast to a slower medium
as background task, which is performed regularly, e.g.,
once a month or once a week. Since this process involves
reorganization of the entire database, it should be per-
formed only during times of low database access, e.g., at
night or on weekends.

G. Text Search and Text Mining

We distinguish the following categories of data:

‚ Structured data sources: We define structured data
as data stored in a format, which can be used for
automatic processing by computers. Examples for
structured data are ERP data stored in relational
database tables, tree structures, and arrays.

‚ Unstructured data sources: We define unstructured
data as the opposite of structured data, which
cannot be processed automatically, e.g., all data
that is available as raw documents, such as videos
or pictures. In addition, any kind of unformatted
text, such as freely entered text in a text field, tex-
tual documents, or spreadsheets, are considered as
unstructured data unless a machine-readable data
model exists for automatic interpretation, e.g., a
possible semantic ontology.

In the following, we outline selected features of text
search that can be incorporated by IMDB technology.

Fuzzy search handles a specified level of fuzziness in
search queries automatically, e.g., typing errors. It blows
up the pool of words that are searched for by inverting
pairs of letters or scrambling them. With these methods
additional words can be found that are stored in a wrong
format in the data set to search in. This is very helpful
if humans added the data stored in the database, e.g.,
people, who search for terms, as well as people, who
create textual content may add misspelled data. For ex-
ample, a doctor’s letter can contain various descriptions
for the same result, e.g., “carcinoma”, “karzinom”, or
“carzinoma”. Fuzzy search helps to identify these entities
as relevant for the same search query.

Synonym search addresses the challenge that different
words can have identical meanings. These synonyms can
be used in various contexts, but the search query typi-
cally only contains a single representation. For example,
the medical abbreviation “ca.” and “carcinoma” can be
considered as synonyms. However, “ca.” can also be the
abbreviation for “circa”. In other words, synonyms have
individual meanings per context. To keep track of them,
abbreviations should be considered by their probability
in the active application context.

Entity and feature extraction refers to the identifica-
tion of relevant keywords and names of entities from
documents. This is comparable to tagging in online
web blogs when certain additional meta information
is associated to a document. Entity extraction can be
customized by dictionaries and individual extraction
rules. In this context, dictionaries are lists of entities
with an assigned entity type that enable the database
to recognize the listed entities in unstructured text. A
dictionary contains one or more entity types, each of
which contains any number of entities. Each entity in
turn contains one standard form name and any number
of synonyms. Extraction rules, define the entities of a
specific type using a formal syntax. Such syntax allows
formulating patterns that match tokens by using a literal
string, a regular expression, a word stem, or a word’s
part-of-speech.

IV. High-Performance In-Memory Computing

Platform

Figure 4 depicts the software system architecture of
our high-performance in-memory computing platform
with application, platform, and data layer as Funda-
mental Modeling Concepts (FMC) block diagram [29].
Our High-Performance In-Memory Computing Plat-
form combines data from various data sources, such as
patient-specific data, genome data, and annotation data
within a single system. Thus, it enables flexible real-time
analysis and combination of data in an interactive way
for the first time. In the following, we share details about
design decision and software components of our system.

A. Data Layer

The data layer holds all required data for performing
processing and analyzing of genomic data. The data can
be distinguished in the two categories master data and
transactional data [30]. For example, human reference
genomes and annotation data are referred to as master
data, whereas patient-specific NGS data and Electronic
Medical Records (EMR) are referred to as transactional
data [31], [32]. Their analysis is the basis for gathering
specific insights, e.g., individual genetic dispositions and
to leverage personalized treatment decisions in course of
precision medicine [2].
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Figure 4. Our system architecture consist of application, platform,
and data layer. Analysis and processing of data is performed in the
platform layer eliminating time-consuming data transfer.

The actual step of analyzing the genetic data requires
answering very specific questions. Thus, our application
layer consists of specific applications to answer these
questions. They make use of the platform layer to ini-
tialize and control data processing.

B. Application Layer

The application layer consists of special purpose
applications to answer medical and research ques-
tions. You can access our cloud services online at
http://www.analyzegenomes.com. We provide an Appli-
cation Programming Interface (API) that can be con-
sumed by various kinds of applications, such as web
browser or mobile applications. Figure 4 depicts the data
exchange via asynchronous Ajax calls and JavaScript
Object Notation (JSON) [33], [34]. As a result, accessing
data and performing analyses is no longer limited to a
specific location, e.g., the desktop computer of a clini-
cian. Instead, all applications can be accessed via devices
connected to the Internet, e.g., laptop, mobile phone, or
tablet computer. Thus, having access to relevant data
at any time enhances the user’s productivity. The end
user can access our cloud applications via any Internet
browser after registration. Selected cloud applications
are our clinical trials search and our patient cohort

Figure 5. The patient-specific clinical trial search results based on
the individual anamnesis of a patient. It extracts relevant entities
from the free-text description of the clinical trial with the help of
specific text-mining rules.

analysis, which are described in further details in the
following [35].

1) Clinical Trials Application: Our clinical trials
search assists physicians in finding adequate clinical
trials for their patients. It analyses patient data, such
as age, gender, preconditions, and detected genetic vari-
ants, and matches them with clinical trials descriptions
from clinicaltrials.gov [36]. Furthermore, it incorporates
details about the clinic a patient is treated in, e.g.,
to distinguish internal and external clinical trials to
emphasize the link to colleagues from the same clinic.
Our analysis incorporates more than 130,000 clinical
trial descriptions, which are processed and ranked in
real-time accordingly to the personal anamnesis of each
individual patient. The ranked results are summarized
on a single screen and provided to the researcher as
depicted in Figure 5.

The clinical trials search incorporates the extraction
of entities and features from the textual descriptions as
described in Section III-G. We developed a set of specific
dictionaries. For example, we use a dictionary for human
gene identifiers with more than 120,000 gene names and
synonyms and a dictionary for pharmaceutical ingre-
dients with more than 7,000 entries. Our dictionaries
incorporate a set of standardized vocabularies, e.g., the
Metathesaurus Structured Product Labels (MTHSPL)
of the Unified Medical Language System (UMLS) [37].

2) Patient Cohort Analysis: Figure 6 depicts our co-
hort analysis application. It enables researchers and
clinicians to perform interactive clustering on the data
stored in the IMDB, e.g., k-means and hierarchical
clustering as shown in Figure 6 [38, Chap. 13]. Thus,
they are able to verify hypotheses by combining patient
and genome, and annotation data in real-time.
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Figure 6. Results of an interactive analysis of a cohort of 220 colon
carcinoma patients using k-means clustering. It shows relevant
combinations of genomic loci, such as gene KRAS on chromosome
12 at position 25,289,551, which are present in the majority of
cohort members as depicted by the pie chart on the right.

C. Platform Layer

The platform layer holds the complete process logic
and consists of the IMDB system that enables real-
time data analysis. We developed specific extensions that
support processing of high-throughput genome data and
enables real-time analyses. Thus, we established selected
system components as follows:

‚ Graphical modeling of workflow and analysis
pipelines to improve reproducibility,

‚ Parallel execution of pipeline model instances to
enable high-throughput processing,

‚ Prioritized scheduling of jobs,
‚ Integration of existing tools in our system and

development of highly optimized tools for IMDB
technology, and

‚ Always up-to-date access to international knowl-
edge databases.

In the following, we outline details about selected com-
ponents and their relevance for our computing platform.

D. Modeling of Genome Data Processing Pipelines

Specific processing and analysis
tasks need to be performed to iden-
tify genetic variants from raw DNA
data acquired from sequencing de-
vices. Nowadays, various software
tools are used for each step of the processing and analysis
workflow while researchers and clinicians use individual
setups and parameters for their experiments. These se-
tups are commonly implemented as a number of software
scripts depending on each other. We refer to a concrete
implementation of a processing and analysis workflow as
Genome Data Processing Pipeline (GDPP).

In the following, we define a subset of a standardized
modeling notation for the definition of GDPPs to im-

prove maintainability, ease of modeling, and to establish
a common understanding of the workflow. Another goal
of our modeling approach is to enable external scientists
and physicians to model their pipelines accordingly to
their individual needs and have them executed on a
central computer cluster.

A specific runtime environment for GDPPs enables
the translation of models into executable code as de-
scribed in Section IV-E.

1) Requirements: We refer to the atomic unit of a
GDPP as job. A job refers to a concrete script that
can be executed to perform a specific task while activity
refers to the abstract representation of a job in the
process model. Thus, the most fundamental precondition
for modeling of GDPPs is a representation of a number of
jobs and their execution sequence. In order to allow reuse
of a group of logically associated jobs in several pipelines,
e.g., a specific combination of alignment algorithm and
post-processing steps, the modeling system should sup-
port hierarchically nested inclusion of pipelines to form
a new model.

Parallel data processing improves the execution time
for the overall pipeline as described in Section IV-E.
Therefore, the modeling approach should also support
the explicit definition of activities that should be exe-
cuted in parallel.

Some activities have a varying internal behavior or
outcome depending on their defined input parameters.
For example, an alignment job might support a dynamic
parameter for the reference genome that is used for the
alignment of chunks of DNA. Thus, modeling should
support the definition of input parameters and the link
to activities.

Additionally, the models should be stored in a stan-
dardized, machine-readable format, e.g., to ensure ex-
change and interpretation of models when sharing them
across institutions.

We defined our GDPP modeling approach as a sub-
set of Business Process Model and Notation (BPMN),
which is a standardized and widely adopted modeling
technique. In the following, we define the required subset
and mapping to our GDPP modeling notation.

2) Business Process Model and Notation: The Busi-
ness Process Management Initiative (BPMI) introduced
BPMN standard in 2004. Since 2006, it is an official
standard of the Object Management Group (OMG),
which released BPMN version 2.0 in 2011. The actual
work within a BPMN process is modeled by activity
elements. They represent the atomic unit of a model
that can be executed by either a human or a computer
system. The logic of a BPMN flow is defined by so-
called gateways, such as exclusive gateways representing
a logical XOR and parallel gateways representing a
logical AND. Each BPMN process is defined by a unique
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Figure 7. GDPP model of the general approach with file system
as primary storage. The input FASTQ file is first split up for
parallel processing during alignment. The outcome is merged again
and prepared additional processing steps before it is split up per
chromosome again for variant calling.

Figure 8. GDPP model incorporating an IMDB as primary storage.
In contrast to using a file system as primary storage, the interme-
diate processing steps are not required anymore.

start event and at least one end event [39].

A widespread and well-defined XML-based represen-
tation of BPMN models is the XML Process Definition
Language (XPDL). We incorporate the existing XPDL
standard to store and exchange our GDPP models.

3) Hierarchy of Activities: GDPPs can be hierarchi-
cally nested to any level of depth. Any set of logically
associated activities can be represented as a separate
model containing a sub process model. Sub process ac-
tivities are used as placeholders in the invoking process.
An example is shown in Figure 7, which contains a sub
process named Alignment[$splits] that is depicted
in Figure 10. The names of the sub process and the
corresponding process model are automatically replaced
during runtime based on their name. Figure 10 depicts
the concrete sub process for Alignment[$splits] in-

Figure 9. GDPP model using parallel gateways to perform variant
calling two-times parallel.

Figure 10. Modeling of parameters to acquire from end-users as
input for an activity prior to its execution. Here, the reference to
use during alignment is set to hg19.

cluded in the model depicted in Figure 7. The alignment
step consists of multiple jobs to be performed, e.g.,
transformation steps or sorting the alignment results.
In addition, each alignment algorithm modeled in our
GDPP has its distinct sub process, which encapsulates
further necessary transformation steps to receive output
in the standard format.

4) Parallel Processing of Activities: Parallel execution
of activities in BPMN can be defined as follows.

‚ Parallel multiple instances are modeled as an ac-
tivity with three vertical lines at the bottom as
depicted in Figure 7 for sub processes alignment
and variant calling. The parallel multiple instance is
executed as often as defined by the number defined
in square brackets following the activity’s name,
e.g., variant calling is executed 24 times in parallel.

‚ Parallel gateways are an alternative way of mod-
eling parallel workflows. They are used when no
specification of quantity of parallelization exists.
When a parallel gateway is signaled, all outgoing
edges of the gateway are signaled as well. When
the gateway consists of multiple incoming edges, the
gateway only signals once all incoming edges were
activated. Thus, the sequence flow can be split in
two or more parallel strands and resynchronized if
needed. Figure 9 illustrates an example for parallel
gateways. This time, variant calling is executed by
two activities in parallel.
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5) Parameters and Variables: We distinguish between
parameters and variables as follows. Parameters are set
during design time of the GDPP model and cannot be
changed afterwards. Variables are placeholders that are
assigned at the latest point in time just prior to the
execution of a GDPP model instance.

BPMN defines data objects for modeling of specific
input parameters of activities [40]. A parameter is stored
in a data object labeled as the parameter’s name followed
by its value separated by a colon. The parameter’s name
matches the input variable name of the corresponding
activity. A data object can be associated to one or
multiple activities.

We added support for variables in our GDPP models
by using a specific data object identified by a dollar sign
($) followed by the variable’s name. Figure 7 depicts
the use of variables in a GDPP model, i.e., the variable
splits has to be set to a concrete value prior to the
execution of the concrete GDPP model instance.

Parameters and variables can be assigned to multiple
activities. For example, Figure 8 depicts multiple usage
of parameter splits. On the one hand, it is required
by the first activity to know how many splits to create.
On the other hand, the parameter defines the amount of
alignment sub processes that will be executed in parallel.

E. Parallel Execution of Genome Data Processing
Pipelines

In context of precision medicine
the aspect of high-throughput pro-
cessing and analysis becomes essen-
tial to leverage a clinical solution.
Thus, we focus on parallel execu-
tion of GDPPs and for that, we de-
signed specific functionality within
our platform.

A distributed set of computing nodes each running
multiple workers forms our worker framework. Each
worker is directly connected the IMDB database land-
scape to access their local portion of the database
content. Relevant details about tasks that need to be
executed are added to the tasks database table by the
scheduler. Once a worker starts processing of a concrete
task, it updates the current status of the task within the
database. Incorporating the database for these purposes
reduces the complexity of the individual worker code
since specific exception handling can be processed by the
database, e.g., using built-in database locks can prevent
concurrent start of the identical task.

All workers and the scheduler use a specific commu-
nication protocol to exchange short messages between
each other’s, e.g., to reduce idle times. On the one hand,
workers can exchange relevant status information about
the load of a certain node and updated jobs. On the other

hand, the scheduler sends a wakeup signal to all workers
to inform about jobs ready to be executed. For further
details about the scheduler component, please refer to
Section IV-G.

F. Fair Use of Resources and Accounting

Processing and analyzing data
consumes resources of our plat-
form, such as computing time or
hard disk storage. Thus, we have
integrated a fine-grained account-
ing functionality to ensure fair us-
age of provided services and re-
sources. The atomic measurement unit for any kind of
service on our platform is called gene point. On the one
hand, users can spend gene points on platform services
or to access data provided by other users. On the other
hand, users can acquire gene points by providing services
or data to other users. This mechanism guarantees fair
resource allocation for all users and encourages active
data exchange. Furthermore, it builds the foundation
for sharing intellectual property and enables compensa-
tion [3, Chap. 5].

The prioritized scheduling of jobs is the key concepts
to implement fair use and accounting within our plat-
form as discussed in the following.

G. Prioritized Task Scheduling

We created a single scheduler
component coordinating the exe-
cution of multiple GDPPs. Thus,
it enables resource allocation and
distribution of workload across our
cluster of worker machines. The
scheduler stores its internal state
permanently within the IMDB, e.g., for global commu-
nication, logging, and for maintaining statistics. We im-
plemented specific scheduling algorithms optimized for
throughput that analyze the complete execution history
of all former runs in order to process shortest GDPP
instances first.

The scheduler node is responsible for managing all
aspects from reading the GDPP models to scheduling
all relevant activities and linked jobs.

Every scheduling decision is persisted in the database
prior to its executed, i.e., the database provides a con-
sistent transaction log, which enables controlled recovery
in case of a system failure.

We implemented specific scheduling policies to opti-
mize scheduling decisions depending on various aspects.
For example, we incorporate the Shortest Task First
(STF) scheduling policy to minimize turnaround time
and maximize throughput [24, Section 2.4.2].
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Our STF scheduling policy is adapted to estimate the
remaining execution time of all waiting tasks whenever a
scheduling decision needs to be taken. The incorporated
IMDB technology guarantees that the estimation can
be processed in real-time and does not delay decision
making significantly [3, Chap. 3].

The developed scheduler component is very generic
and can easily be adapted to fit individual require-
ments, e.g., to prioritize the execution of tasks from
a department or to keep a processing reserve for the
very important users. Furthermore, individual schedul-
ing policies can be developed to change the behavior
of the scheduling system. Each scheduling policy can
incorporate various input data, e.g., details about the
overall system load provided by the load balancer as
described in Section IV-H.

H. Load Balancing

The overall system load of all computing nodes incor-
porated by our computing platform depends on running
jobs and their assignment to individual nodes. This
becomes especially important if we assume a computing
pool that consists of a heterogeneous hardware. Thus,
we implemented a load balancer that incorporates the
current system status of available worker nodes. The
configuration of all attached worker nodes, e.g., how
many workers are running on each of them or how many
CPU cores are available, is stored in the configuration
database table.

The detailed view of the load balancer can be incor-
porated by the scheduler component during its decision-
making process as described in Section IV-G. For ex-
ample, the scheduler still can postpone the execution of
long-running jobs when short-running jobs are available.

I. Annotation Framework

We consider the use of latest
international research results as
enabler for evidence-based ther-
apy decisions [41]. Our annotation
framework is the basis for combin-
ing international research results.
It periodically checks all registered
Internet sources, such as public FTP servers or web
sites, for updated and newly added versions of annota-
tions, e.g., database exports as dumps or characteristic
file formats, such as Comma-Separated Values (CSV),
Tab-Separated Values (TSV), and Variant Call Format
(VCF) [42]. If the online version is newer than the
locally available version, the new data is automatically
downloaded and imported in the IMDB to extend the
knowledge base.

The import of new versions of research databases is
performed as a background job without affecting the

system’s operation. We import new data without any
data transformations in advance. Thus, data becomes
instantaneously available for real-time analysis [43], [44].

For example, the following selected research databases
are regularly checked by our annotation framework:
National Center for Biotechnology Information (NCBI),
Sanger’s Catalogue Of Somatic Mutations In Can-
cer (COSMIC), University of California, Santa Cruz
(UCSC) [45], [46], [47].

J. Combined Search in Unstructured and Structured
Data Sources

A significant amount of today’s
medical data is encoded in the
form of unstructured natural lan-
guage [48]. Scientific publications
and patents, medical reports, as
well as comments, keywords, or de-
scriptions in database records use natural language to
store information [48]. We consider this unstructured
data as a substantial part of the world’s medical knowl-
edge. However, comprehension, analysis and searching
of unstructured data are still challenging compared to
structured data, such as experiment results or genomic
variant data. So far, research to extract information
either from structured or unstructured medical data does
not investigate the advantages that can be gained by
combining results from both sources.

For example, a physician could receive information
contained in scientific publications that perfectly match
her or his patient’s current diagnosis. Additionally, re-
searchers face the challenge to identify relevant informa-
tion sources within a tremendously short timespan. With
the help of our IMDB technology, we enable researchers
to identify relevant data from structured and unstruc-
tured data sources. Our specific database extensions
recognize relevant entities within text documents and
extract them automatically.

This builds the foundation for applications that incor-
porate data from both worlds: structured and unstruc-
tured data. An example application that builds on the
combined search in structured and unstructured data is
our clinical trials search as described in Section IV-B1,
which incorporates unstructured textual information
from clinical trial descriptions and doctor letters as
well as structured information obtained from the genetic
biomarkers of a specific patient.

K. Development of Tools for In-Memory Computing vs.
Integration of Existing Tools

Existing tools for genome data analysis can be directly
integrated in our GDPPs. For that, we implemented a
new job that invokes the corresponding tool via com-
mand line and adapted the pipeline model as described
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in Section IV-D. This strategy facilitates an easy inte-
gration of new tools into our framework without caring
for distribution and scheduling. However, this improves
integrated algorithms only to a limited extent, e.g., since
these tools still access data from files located on disk
storage. Loading large files from disk into main memory
for processing still consumes additional processing time
prior to data analysis. In addition, the majority of tools
do not exploit computational resources fully to opti-
mize runtime performance. Analysis tools specifically
designed for our in-memory computing platform bene-
fit in terms of parallelization, compression, in-memory
storage, and distribution across multiple machines.

1) Benefits of Optimized Tools for In-Memory Com-
puting: Developing specific tools for genome data analy-
sis as built-in functionality of our in-memory computing
platform results in reduced setup and configuration in
addition to improved data processing. Furthermore, the
results of the data processing are directly available in our
IMDB. Thus, you can apply any analysis tools directly
to the results without the need for any data preparation.
The different building blocks presented in Section III
come along with further advantages that accelerate fast
data processing as follows.

Lightweight Compression: Sequencing data con-
sumes huge amounts of storage capacities, i.e., up to
hundreds of GB per single human genome. Therefore, it
is crucial to apply data compression techniques, e.g., as
currently done in genome data analysis by converting the
raw data from Sequence/Alignment Map (SAM) format
into its Binary Alignment Map (BAM) format [49].
Our incorporated IMDB technology applies lightweight
compression to genomic data in a transparent way.
Thus, data remains in a human readable format, e.g.,
during database queries, while the storage footprint is
automatically reduced.

Column Orientation: Storing data as complete tu-
ples in adjacent blocks, i.e., row-wise, is advantageous if
the complete data of a single row has to be accessed, for
instance by comparing two complete table entries to each
other. However, most often algorithms only require ac-
cess to particular attributes of a data record for analysis.
For example, when filtering read alignments in the first
phase of variant calling, only data quality indicators need
to be accessed such as mapping or base quality scores. If
all records were stored row-wise as it is the case for files,
all attributes need to be processed although only two of
them might be relevant for computation. Storing data
in columnar format, i.e., storing complete columns in
adjacent blocks facilitates direct access only to relevant
attributes and avoids cache misses [50], [51].

Multi-Core and Parallelization: When creating op-
timized analysis tools for our in-memory computing plat-
form, we can profit from already existing functionality

to apply parallelization and full exploitation of CPU
resources. Thus, we can focus on optimizing algorithms
instead of implementing resource management.

Data Partitioning: Regarding the optimization of
analysis tools, in- and output data can easily be hori-
zontally partitioned according to chromosomes and even
chromosome regions to distribute data and it’s process-
ing to computing nodes. When working with current
tools, distribution and selection of relevant data is a
time-consuming task that is carried out by specific tools,
e.g., SAMtools [49]. With data partitioning, the search
space for accessing data of a particular chromosome
or region reduces to only a small part of the original
data set. This improves search operations and facilitates
better scalability of our optimized algorithms.

2) Alignment on In-Memory Computing Platform:
Our genome data alignment algorithm optimized for
in-memory technology was designed with the following
requirements in mind:

‚ Use available main memory for faster index struc-
tures that allow accelerating the lookup process,

‚ Minimize the cache miss ratio since cache misses are
known to be a major cause for bad performance on
modern hardware architectures, and

‚ Optimize parallel code execution, e.g., by minimize
the need for process synchronization and avoid writ-
ing to shared data structures requiring locking.

We used a k-mer based index structure to find align-
ment position candidates and filled the unmatched gaps
using heuristics optimized for low error rates and a
variant of the Needleman-Wunsch and Smith-Waterman
algorithms [52], [53].

Structure of the Index: The commonly used in-
dex structures based on the proposed techniques by
Ferragina and Manzini (FM-index) have a very low
memory impact, but require at least two cache misses on
average per nucleotide even if only perfect matches are
required [54]. k-mer-based indexes are less error tolerant
since they usually require the whole k-mer to match
the reference genome. They are much faster than FM-
indexes though since complete k-mers can be identified
by a single access to the index structure. The price to be
paid is that the algorithm has to find sufficiently many
perfectly matching k-mers to get a strong signal. FM-
index-based algorithms are more tolerant in theory as
deviations from the reference can be included into the
search. But due to the large search space that has to be
covered in order to achieve this tolerance, their efficiency
on long reads is limited.

For example, 100 base pairs are nowadays standard
and already cause major problems to this approach.
Thus, additional assumptions need to be made, which
are comparably restrictive as k-mer-based indexes.
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While longer reads cause a stronger problem to FM-
index search they help with finding sufficiently many k-
mers without difference to the reference genome. Recent
advances in sequencing quality improve this further and
make k-mer indexes more attractive, which is the reason
we prefer this approach.

Finding Optimal Positions: By comparing multiple
k-mers from the read, the algorithm usually obtains
many index hits per read of which some are true positives
and others false positives. k-mers with too many hits
are not very decisive and blow up the search space
beyond their meaningful use. Therefore, k-mers with
more than 256 hits are ignored. The search space can also
be narrowed down by choosing longer k-mers, which is
done whenever too few k-mers with few hits were found.

The possible matching positions from all k-mers are
being matched with each other depending on the k-
mer position within the read and the distances of their
matches on the reference genome. The distance further-
more gives a lower limit for the number of insertions resp.
deletions required for the match. The missing k-mers
indicate that mismatches have appeared even if distances
match. From this information, an optimistic score can
be computed and the alignments are further processed
starting with the best score. When each alignment is
finalized, the actual score is known and can be compared
to the optimistic score of the next alignment candidate.
If the optimistic score is worse than the best actual score
found, the alignment is done as no better alignment can
be found anymore.

Filling the Gaps: To get a perfect alignment, all
differences between the reference genome and the read
need to be found similar to computing the edit distance,
but with probabilistic scores for each deviation. They
are traditionally computed by dynamic programming
algorithms, which scale quadratic in read length. This
problem is dramatically reduced by focusing on filling
only the gaps in between the k-mer hits, .

Extending the matching parts into the gap until a
difference compared to the reference genome is detected
makes further improvements. If the remaining part is
only a single nucleotide long both on the reference
genome and on the read, it must be a substitution. If
the gap on either the reference genome or the read is
completely closed, it must be an insertion or deletion,
respectively. Therefore, many of the differences can be
resolved without the need for more complex algorithms
due to lower error rates.

For the final step, we use a dynamic programming al-
gorithm optimized for Single Instruction, Multiple Data
(SIMD) based on the Needleman-Wunsch and Smith-
Waterman algorithms adjusted to our boundary condi-
tions [52], [53]. This allows alignments restricted on both
ends by known k-mers and half open gaps for which a

k-mer has only been found on one end.
Improvements for Mate-paired Reads: If a correla-

tion in the alignment position on the reference genome
is known beforehand (mate-pairing) the alignment final-
ization can be skipped for all positions that do not fulfill
this correlation. Also the optimistic scores can already
be computed for both reads simultaneously achieving
a better estimate of the best alignment. This strategy
excludes many possible matches at a very early stage.
Thus, it reduces the amount of expensive full alignments
and improves accuracy.

3) Variant Calling on In-Memory Computing Plat-
form: We designed a variant calling approach to identify
Single Nucleotide Polymorphisms (SNPs) that is directly
executed within our in-memory computing platform.
With respect to that, our approach has to meet the
following requirements:

‚ Use available main memory capacity to store and
process read alignments while eliminating access to
slower file systems,

‚ Direct access to specific read alignment attributes
without the need to traverse the complete data
record, and

‚ Apply compression strategies to reduce memory
footprint and to improve processing throughput.

Our SNP calling is divided in data preparation and
genotype calling. We achieve parallelization by executing
the algorithm in a MapReduce-like fashion, where the
processing steps correspond to map phases. For each of
them, data is split up into smaller subsets and processed
in parallel [55]. After that, the result sets are merged in
a reduce phase to be then again split up for the next
map phase.

Data Preparation: During data preparation data is
assembled and prepared for subsequent genotype calling.
It comprises the data extraction and grouping phase.

The goal of the data extraction phase is to reduce
the overall amount of data to process by filtering out
irrelevant and low-quality data. During data extraction,
we identify the sequences of a read alignment that are
relevant for SNP calling. For that, we first eliminate
reads that are not sufficient for processing, e.g., because
necessary information is missing or data quality does
not meet user-defined thresholds. Afterwards, we iden-
tify the relevant read alignment sequences. We receive
the information about what parts of a read alignment
are involved in single substitutions, insertions, or dele-
tions from each read alignment’s individual CIGAR
attribute [56]. As we concentrate on the identification
of SNPs in our approach, sequences of a read that are
involved in insertions will be filtered from our data. The
aim of the data-grouping phase is to rearrange the read
alignment data for efficient genotype calling afterwards.
The output received from the data extraction phase is
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used to group all bases from relevant sequences of a read
alignment according to the positions in the genome they
have been aligned to. This way, each position in the
genome has assigned four "piles" for the distinct bases
Adenine (A), Cytosine (C), Thymine (T), and Guanine
(G) that comprise information about base occurrences.
At this time, we also extract relevant information about
the data quality, e.g., base quality scores, as this informa-
tion builds the computational basis for genotype calling
in the subsequent processing step.

Genotype Calling: The goal of the genotype-calling
step is to derive a concrete genotype for each particular
position in the genome that is covered by the base
pileups. For the actual computation, we apply a statis-
tical model that is sensitive to input data quality. This
includes that we have to compute the probability for
each possible genotype, i.e., ten different genotypes for
the diploid human organism, at a particular position in
the genome. The genotype with the highest probability
will be called in the end. To calculate the probability of
a genotype, we apply a Bayesian framework as proposed
by Nielsen et al. with two components called prior
probability and genotype likelihood [57].

The prior probability of a genotype is its general
chance to occur regardless of the given data. In our
computations, we do not assign a unique prior probabil-
ity to all genotypes. Instead, we distinguish genotypes
according to their zygosity, i.e., homo- or heterozygous,
and reference equality and make use of the assumptions
stated by Li et al. [15].

The genotype likelihood of a genotype is its chance to
occur with regard of the given data. We compute this
value from all occurrences of a genotype at a particular
position and incorporate the bases’ quality scores. A base
quality score indicates how likely the sequencing ma-
chine has detected a base correctly. We incorporate this
value in our computations because the read alignments
produced by those sequencing machines are error-prone
up to one percent of the data [58], [59]. Thus, we give
stronger weights to bases with a higher probability to be
correct and downgrade low-quality bases.

After genotype calling, each derived genotype owns a
quality value, which indicates the likelihood of the called
genotype. All genotypes that differ from the reference
genome and have a quality value that matches the user-
defined threshold make up the set of emitted SNP calls.

V. Benchmarks

The aim of all conducted benchmarks was to minimize
the overall execution time for a single GDPP run, i.e.,
to use the maximum of available computing resources
and achieve highest throughput. Furthermore, we aim to
compare selected alignment algorithms regarding their
efficiency for varying file sizes. In the following, we share

TABLE I. EXPERIMENT CONFIGURATIONS.

Experiment Split Size Primary Storage
A 1 File System
B 1 In-Memory Database
C 25 File System
D 25 In-Memory Database

TABLE II. DATA SET SPECIFICATIONS.

Data Set Size [Gbp] Size [GB] Reads [Billion]
1 0.5 1.2 5.4
2 1.0 2.4 10.8
3 1.9 4.8 21.7
4 3.9 9.6 43.4
5 7.9 19.2 86.8
6 15.8 38.5 173.7
7 31.6 78.0 345.8

insights about our benchmarks conducted on our in-
memory-based processing and analysis platform.

A. Setup

All benchmarks were performed on a computer clus-
ter consisting of 25 identical computing nodes with
a total of 1,000 cores provided the Future Service-
Oriented Computing Laboratory at the Hasso Plattner
Institute [60]. We incorporated this hardware setup to
demonstrate the scalability of our in-memory computing
platform. It should not be interpreted as minimum
hardware resources required operating our contribution.
Each of the nodes was equipped with four Intel Xeon
E7-4870 CPUs running at 2.40 GHz clock speed, 30 MB
Intel Smart cache, interconnected by 6.4 GT/s Quick
Path Interconnect (QPI), and 1 TB of main memory
capacity [61]. Each CPU consisted of 10 physical cores
and 20 threads running a 64-bit instruction set. All
computing nodes were equipped with Intel 520 series
SSDs of 480 GB capacity combined using a hardware raid
for local file operations [62]. The average throughput rate
of the local SSDs was measured with 7.6 GB/s cached
reads and 1.4 GB/s buffered disk reads. All nodes were
interconnected via a Network File System (NFS) using
dedicated 10 Gb/s Ethernet links and switches to share
data between nodes.

Instead of using generated test data, we incorporated
real NGS data for individual measurements, i.e., FASTQ
files from the 1,000 genomes project [5]. We used the
FASTQ file of patient HG00251 for our benchmarks,
which consumes 160 GB of disk space, consists of approx.
63 Gbp, approx. 695 M reads with 91 bp individual read
length, forming an average 20x coverage.

We implemented two GDPPs for our benchmarks.
The first corresponds to the commonly followed ap-
proach of using a file system as primary storage. The
distinct execution steps are modeled as GDPP notation
in Figure 7. On the contrary, the second pipeline as
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shown in Figure 8 uses an IMDB as primary storage,
i.e., intermediate results are stored in our in-memory
computing platform.

Our pipelines contain distinct parts for alignment and
variant calling that are parallelized, e.g., by splitting
up the input data. The alignment step is comprised of
the alignment algorithm itself and file transformation
and processing steps due to differing output formats
per alignment algorithm. Furthermore, the GDPP using
a file system as primary storage contains additional
processing steps between alignment and variant calling,
which are necessary to split up data per chromosome.
These steps are not required for the IMDB-optimized
GDPP since alignment results are already imported into
the database and chromosome-wise splits are imple-
mented using native database operations.

1) Burrows Wheeler Aligner: We used Burrows
Wheeler Aligner (BWA) version 0.6.2 as alignment al-
gorithm reference [63]. BWA was configured to use a
maximum of 80 threads, which relates to the maximum
available hardware resources of our benchmark infras-
tructure. The algorithm’s output is a SAI file that needs
to be converted to the SAM format. Therefore, we added
format transformation directly after alignment to receive
alignments in SAM format. For the GDPP models of
Exp. A and C, we additionally have to carry out a
transformation from SAM into BAM format and to sort
the resulting BAM file as preparation for merging.

2) HANA Alignment Server: The second part of our
benchmarks was performed on a GDPP integrating our
own alignment algorithm as described in Section IV-K2.
It is implemented directly within our in-memory com-
puting platform, i.e., it can directly access native
database operations. This algorithm was configured to
use a maximum of 80 threads and emits alignments
either in SAM or BAM format. As a result, additional
format transformations, e.g., from SAM to BAM, are no
longer required for both of our pipelines.

B. Experiments

We designed our benchmarks to compare the impact
of the incorporated storage system and the level of
parallelization on the overall execution time. Each of
the experiment categories was conducted for the align-
ment algorithms BWA and HANA alignment server to
evaluate the impact of the overall execution time for a
specific GDPP. Exp. A and B were executed on a single
computing node, while Exp. C and D were executed
on 25 computing nodes to evaluate the impact of a
fully parallelized execution environment as outlined in
Table I. In addition, we derived subsets of the input data
as shown in Table II.
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Figure 11. BWA: Development of overall execution times for vary-
ing file sizes and experiment setups.

C. Results

In the following, we present our obtained benchmark
results. For each alignment algorithm, we measured
the overall pipeline execution times tx for Exp. x and
derived the relative advance of execution time for Exp. x
compared to Exp. A as Rx “

tA´tx

tA
.

Table III shows the overall pipeline execution times in-
corporating BWA as alignment algorithm. The measured
execution times indicate that the use of the IMDB as
primary storage for intermediate results is beneficial for
all selected file sizes. This pipeline optimization results in
a reduction of the overall runtime by at least 25 percent
on average.

Exp. C and D as shown in Table III document the
impact of the parameter splits, i.e., the number of
distributed computing nodes used for parallel execution
as introduced in our pipeline models. Parallel execution
of selected pipeline steps reduces the overall execu-
tion time by at least 74 percent on average for BWA.
Additional improvement can be achieved by using the
IMDB as primary storage. Figure 11 illustrates execu-
tion time behavior for GDPP with BWA as alignment
algorithm. It clearly shows the improvements originat-
ing from parallelization and main memory as primary
storage medium. For a GDPP using BWA as alignment
algorithm, execution time can be reduced by at least 87
percent on average.

Table III shows the overall pipeline execution times
for BWA and HANA alignment server. Execution times
develop similarly to the results obtained for BWA
pipelines. Table III depicts that runtime improves up
to 50 percent when using an in-memory database as
primary storage, and up to 75 percent when distributing
the pipeline across 25 computing nodes.

Comparing the overall execution times amongst the
different alignment algorithms used, we can see that
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Figure 12. HANA alignment server: Development of overall execu-
tion times for varying file sizes and experiment setups.

runtime performance drops significantly when using
HANA alignment server as alignment algorithm. From
the alignment algorithms used, the pipelines apply-
ing HANA alignment server show best runtime perfor-
mances throughout all runs, up to 85 percent faster than
with BWA.

Figure 13 shows execution times for alignment with
BWA and HANA for different file and split sizes. tAln1

and tAln25
describes average processing times consumed

by the alignment algorithm only with split sizes 1 and
25, respectively. Performing read alignment with BWA
takes absolutely longer than HANA alignment server.
We derived the speedup factor Sx:y “

tx

ty
for BWA and

HANA alignment server when applying parallelization.
Performing BWA alignment in parallel on 25 nodes
results in a speedup factor of up to 21x, which means
the process has a great parallel portion that benefits
from additional computing resources. HANA alignment
server with 25 nodes results in a speedup factor of up to
9x. This can be explained by the very short execution
time HANA alignment server consumes, i.e., there is a
significant higher sequential portion of code that reduces
the speedup.

For split size 1, HANA alignment server brings a
relative runtime improvement of 97 percent on average
as listed for t1Aln

in Table III. Relating these numbers
to our overall execution times in Table III, the portion
of alignment compared to the overall pipeline execution
time is significantly reduced, e.g., to approx. five percent
for HANA alignment server compared to approx. 20
percent for BWA alignment both processing the second-
largest file size in Exp. D. In contrast when executing
GDPPs with HANA alignment server instead of BWA
at a split size of 25, the relative improvement rates drops
below 90 percent, especially for the smallest file size with
a relative improvement of 74 percent.
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Figure 13. HANA and BWA alignment: Development of execution
times for varying file sizes and split sizes.

TABLE IV. INTERSECTION OF RESULT SET FROM HANA
ALIGNMENT SERVER AND BWA. IN TOTAL, HANA ALIGN-
MENT SERVER CREATES APPROX. 16M MORE ALIGN-
MENTS THAN BWA WHILE LEAVING ONLY HALF THE
READS UNALIGNED.

Total (#) Aligned (#) Unaligned (#)
BWAXHANA 274,785,274 254,223,773 20,561,501
BWA 329,338,990 286,491,783 42,847,207
HANA 345,805,881 324,241,424 21,564,457

Table IV shows result set intersections of read align-
ment output from BWA and HANA alignment, respec-
tively. We concentrate on a quantitative analysis of our
obtained results since the selected benchmark data was
taken from the 1,000 genome project [5]. Thus, it is no
gold standard available that could be used to validate
obtained alignment results.

The result set produced by BWA contains less read
alignments than HANA alignment server, which includes
the exact amount of read alignments from the input
file listed as data set 7 in Table II. Both alignment
algorithms share the majority of joint read alignments,
i.e., approx. 274M reads. From them, a small propor-
tion is made up from unaligned reads, i.e., reads for
which the alignment algorithm could not find a suitable
position in the genome. BWA leaves more than 42M
reads unaligned, which is about twice as much as HANA
alignment server. Thus, HANA maps a total of 324M
read alignments, i.e., about 18M more read alignments
than BWA with only 286M.

VI. Evaluation and Discussion

Our conducted benchmarks verify two hypotheses.
Firstly, the usage of the IMDB as primary storage
system is beneficial for integrating established alignment
algorithms, such as BWA, as well as optimized align-
ment algorithms for IMDB technology, such as HANA
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TABLE III. COMPARISON OF INDIVIDUAL EXECUTION TIMES FOR BWA (I) AND HANA (II) ALIGNMENT (R = RELATIVE
IMPROVEMENT, S = SPEED UP).

I II I II I II I II I II I II I II
Size [Gbp] 0.5 1.0 2.0 4.0 7.9 15.8 31.6

tArss 1,100 231 2,159 409 3,900 690 7,029 1,256 13,626 2,305 25,147 4,931 54,034 10,503
tBrss 808 153 1,622 377 2,860 421 5,259 806 10,364 1,542 18,707 2,861 41,520 5,276
tC rss 283 178 520 330 943 529 1,761 860 3,377 1,427 6,609 3,443 12,673 8,064
tDrss 130 212 245 278 470 355 893 566 1,733 1,016 3,387 1,685 6,275 2,676

RBr%s 27 34 25 8 27 39 25 36 24 33 26 42 23 50
RC r%s 74 23 76 19 76 23 75 32 75 38 74 30 77 23
RDr%s 88 8 89 32 88 49 87 55 87 56 87 66 88 75

t1Aln
rss 699 23 1,395 43 2,446 93 4,250 179 8,099 350 14,504 680 24,417 1,342

t25Aln
rss 37 6 66 6 129 10 252 20 501 43 1,001 87 2,000 176

R1:25r%s 95 74 95 86 95 89 94 89 94 88 93 87 92 87
S1:25 19x 4x 21x 7x 19x 9x 17x 9x 16x 8x 14x 8x 12x 8x

R1I:II
r%s 97 97 96 96 96 95 95

R25I:II
r%s 84 91 92 92 91 91 91

S1I:II
30x 32x 26x 24x 23x 21x 18x

S25I:II
6x 11x 13x 13x 12x 12x 11x

alignment server. Secondly, our platform supports the
parallel execution of intermediate process steps across
multiple computing nodes, which results in an additional
performance improvement compared to the execution on
a single computing node.

We observed the best relative improvement for GDPP
using the IMDB as primary data storage and BWA as
alignment algorithm with at least 74 percent on single
computing node and up to 89 percent on 25 computing
nodes. Thus, the overall pipeline execution time with
BWA as alignment algorithm correlates to the number
of base pairs contained in the FASTQ file in a linear
way. However, improvements when using 25 nodes is still
below our expectation of a factor 25 due to the use of
traditional tools, e.g., SAMtools, which partially operate
in a single threaded way.

Relative improvement observed for pipelines using
HANA alignment server remain below the numbers
achieved by pipelines using BWA. For the three largest
file sizes, we achieve relative improvements between 33
and 42 percent on a single computing node and between
55 and 66 percent on 25 computing nodes. For this
pipeline, runtime limitations from third-party tools, such
as SAMtools, apply. Using HANA alignment leads to a
significant reduction of overall execution times. Thus,
it results in a detrimental shift of the ratio between
time overhead needed for setting up parallelization, i.e.,
splitting and merging, and the time improvement due
to parallelization. For example, the time needed for
merging intermediate results in GDPPs using file storage
as primary storage medium increases up to 10x when dis-
tributing pipeline execution across 25 computing nodes.
It shows almost no impact for BWA alignment as the ma-
jority of time is spent on alignment. In contrast, HANA
alignment reduces the proportion of time needed for
alignment significantly, so that the impact of remaining
operations, e.g., merging of partial results, on the overall

runtime duration increases. In addition, HANA align-
ment reaches its minimum execution time of approx. 6
seconds when operating on the small benchmark files,
leading to worse relative improvement rates compared
to BWA.

As a result, GDPPs using HANA alignment have a
worse speedup compared to BWA alignment while the
overall execution time is significantly smaller because
of its near optimal use of parallelization. In addition,
pipeline execution times reach a lower boundary that
reduces relative performance improvements for the three
smallest files. For example, the time needed for align-
ment of the smallest benchmark data set drops below
ten seconds on a single node.

Scaling factors for the overall execution time across all
experiments and file sizes indicate a constant and pre-
dictable system behavior of our system for varying input
file size. Thus, we are able to predict execution time,
which helps to supervise the correct system functionality,
e.g., to detect broken computing resources. We do not
elaborate on costs emerging when using the cluster as
it remains available during pipeline execution to other
users that can start their own pipelines or use one of
our other applications, e.g., patient cohort analysis.

Furthermore, our results stress the benefits of using
an IMDB for operating on intermediate results of the
pipeline execution. The pipeline optimized for the IMDB
no longer uses individual tools operating on files for
specific process steps, such as sorting, merging, and
indexing. These operations are directly performed as an
integral operation of the incorporated IMDB without the
need to create intermediate files in the file system at all.

VII. Conclusion

In our contribution, we shared details about build-
ing blocks of in-memory computing and proofed the
applicability of the IMDB technology for genome data
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processing and its real-time analysis. For that, we con-
ducted expressive benchmarks, which underline that our
computing platform improves the overall runtime by
enabling a) scale-out, b) seamless integration of existing
tools, such as BWA, and c) development of specific al-
gorithms, such as HANA alignment and variant calling,
which are directly embedded as core components in the
incorporated IMDB.

We shared insights in specific system components of
our technology stack, such as task scheduling, worker
and annotation framework, which build the foundation
for consistent and scalable high-throughput data pro-
cessing. To enable reproducible genome data analysis,
we shared details about our GDPP modeling notation
for processing and analysis pipelines based on BPMN.

Ultimately, we linked our technology building blocks
to concrete requirements for specific applications in the
context of precision medicine and clinical research, e.g.,
cohort analysis and search in unstructured clinical trial
documents. These applications are the results of inter-
disciplinary cooperation with researchers, clinicians, and
medical experts. As a result, we were able to monitor im-
provements in the daily working routine of these target
audiences by providing them our cloud applications.

Our future work focuses on integration of additional
tools and services into our in-memory computing plat-
form to further support researchers and clinicians in
the course of precision medicine. In addition, our future
research will focus on patients to support them in explore
latest international medical knowledge about critical
diseases and possible treatments, such as cancer disease.

References

[1] M.-P. Schapranow, F. Häger, and H. Plattner, “High-
Performance In-Memory Genome Project: A Platform
for Integrated Real-Time Genome Data Analysis,” in
Proceedings of the 2nd Int’l Conf on Global Health
Challenges. IARIA, Nov 2013, pp. 5–10.

[2] K. Jain, Textbook of Personalized Medicine. Springer,
2009.

[3] H. Plattner and M.-P. Schapranow, Eds., High-
Performance In-Memory Genome Data Analysis: How
In-Memory Database Technology Accelerates Personal-
ized Medicine. Springer-Verlag, 2014.

[4] I. Bozic et al., “Accumulation of Driver and Passenger
Mutations during Tumor Progression,” Proceedings of
the National Academy of Sciences of the United States
of America, vol. 107, no. 43, Oct. 2010, pp. 18 545–50.

[5] The 1,000 Genomes Project Consortium, “A Map of
Human Genome Variation from Population-scale Se-
quencing,” Nature, vol. 467, no. 7319, Oct. 2010, pp.
1061—1073.

[6] Illumina, “HiSeq 2500 Sequencing System,” http://
res.illumina.com/documents/products/datasheets/
datasheet_hiseq2500.pdf [retrieved: May 30, 2014], Jan
2014.

[7] National Human Genome Research Institute,
“DNA Sequencing Costs,” http://www.genome.gov/
sequencingcosts/ [retrieved: May 30, 2014], Apr 2013.

[8] J. C. McCallum, “Memory Prices (1957-2013),” http://
www.jcmit.com/memoryprice.htm [retrieved: May 30,
2014], Feb 2013.

[9] W. J. Ansorge, “Next-Generation DNA Sequencing
Techniques,” New Biotechnology, vol. 25, no. 4, 2009,
pp. 195–203.

[10] S. Pabinger et al., “A Survey of Tools for Variant
Analysis of Next-generation Genome Sequencing Data,”
Brief Bioinform, Jan. 2013.

[11] S. Wandelt et al., “Data Management Challenges in
Next Generation Sequencing,” Datenbank-Spektrum,
vol. 12, no. 3, 2012, pp. 161–171.

[12] V. Fusaro, P. Patil, E. Gafni, D. Wall, and P. Tonel-
lato, “Biomedical cloud computing with amazon web
services,” PLoS Comput Biol, vol. 7, no. 8, Aug 2011,
p. e1002147.

[13] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L.
Salzberg, “Searching for SNPs with Cloud Computing,”
Genome Biol, vol. 10, no. 11, 2009, p. R134.

[14] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg,
“Ultrafast and Memory-efficient Alignment of Short
DNA Sequences to the Human Genome,” Genome Biol,
vol. 10, no. 3, 2009, p. R25.

[15] R. Li et al., “SNP Detection for Massively Paral-
lel Whole-Genome Resequencing,” Genome Research,
vol. 19, no. 6, 2009, pp. 1124–1132.

[16] J. Goecks, A. Nekrutenko, and J. T. The Galaxy Team,
“Galaxy: A Comprehensive Approach for Supporting
Accessible, Reproducible, and Transparent Computa-
tional Research in the Life Sciences,” Genome Biology,
vol. 11, no. 8, Aug 2010, p. R86.

[17] M. Reich et al., “Gene Pattern 2.0,” Nat Genet, vol. 38,
no. 5, May 2006, pp. 500–501.

[18] B. Néron et al., “Mobyle: A New Full Web Bioinfor-
matics Framework,” Bioinformatics, vol. 25, no. 22, Nov
2009, pp. 3005–11.

[19] H. Plattner, A Course in In-Memory Data Management:
The Inner Mechanics of In-Memory Databases, 1st ed.
Springer, 2013.

[20] M.-P. Schapranow, “Transaction Processing 2.0,” Mas-
ter’s thesis, Hasso Plattner Institute, 2008.

[21] P. Svensson, “The Evolution of Vertical Database Archi-
tectures – A Historical Review,” in Proceedings of the
20th Int’l Conf on Scientific and Statistical Database
Management. Springer-Verlag, 2008, pp. 3–5.

[22] A. Vajda, Programming Many-Core Chips. Springer,
2011.

[23] A. Clements, Computer Organization & Architecture:
Themes and Variations. Cengage Learning, 2013.

[24] A. S. Tanenbaum, Modern Operating Systems, 3rd ed.
Pearson Prentice Hall, 2009.

[25] J. M. Hellerstein and M. Stonebraker, Readings in
Database Systems, 4th ed. MIT Press, 2005.

[26] S. S. Lightstone, T. J. Teorey, and T. Nadeau, Physical
Database Design: The Database Professional’s Guide to
Exploiting Indexes, Views, Storage, and more. Morgan
Kaufmann, 2007.

[27] J. M. Hellerstein, M. Stonebraker, and J. Hamilton,
Architecture of a Database System, Foundation and
Trends in Databases. now Publishers, 2007, vol. 1.



29

International Journal on Advances in Life Sciences, vol 6 no 1 & 2, year 2014, http://www.iariajournals.org/life_sciences/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] M. Gardiner-Garden and M. Frommer, “CpG Islands in
Vertebrate Genomes,” Mol Biol, vol. 196, no. 2, July
1987, pp. 261–282.

[29] A. Knöpfel, B. Grone, and P. Tabeling, Fundamental
Modeling Concepts: Effective Communication of IT Sys-
tems. John Wiley & Sons, 2006.

[30] T. K. Das and M. R. Mishra, “A Study on Challenges
and Opportunities in Master Data Management,” Int’l
Journal of Database Mgmt Syst, vol. 3, no. 2, May 2011.

[31] The Genome Reference Consortium, “Genome Assem-
blies,” http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/data.shtml [retrieved: May 30, 2014].

[32] A. Rector, W. Nolan, and S. Kay, “Foundations for an
Electronic Medical Record,” Methods of Information in
Medicine, 1991, pp. 179–186.

[33] A. T. Holdener, AJAX: The Definitive Guide, 1st ed.
O’Reilly, 2008.

[34] D. Crockford, “RFC4627: The application/json Media
Type for JavaScript Object Notation (JSON),” http://
www.ietf.org/rfc/rfc4627.txt [retrieved: May 30, 2014],
July 2006.

[35] M.-P. Schapranow, “Apps of analyze genomes,” http://
we.analyzegenomes.com/apps/ [retrieved: May 30,
2014], March 2014.

[36] U.S. National Institutes of Health, “Clinicaltrials.gov,”
http://www.clinicaltrials.gov/ [retrieved: May 30, 2014],
2013.

[37] U.S. National Library of Medicine, “Unified Medical
Language System (UMLS),” http://www.nlm.nih.gov/
research/umls/ [retrieved: May 30, 2014], Jul 2013.

[38] S. Krawetz, Bioinformatics for Systems Biology. Hu-
mana Press, 2009.

[39] M. Weske, Business Process Management - Concepts,
Languages, Architectures. Springer, 2007.

[40] M. Owen and J. Raj, “BPMN and Business Pro-
cess Mgmt,” http://www.omg.org/bpmn/Documents/
6AD5D16960.BPMN_and_BPM.pdf [retrieved: May
30, 2014], 2003.

[41] M.-P. Schapranow, H. Plattner, and C. Meinel, “Applied
In-Memory Technology for High-Throughput Genome
Data Processing and Real-time Analysis,” in System on
Chip (SoC) Devices in Telemedicine from LABoC to
High Resolution Images, 2013, pp. 35–42.

[42] The 1000 Genomes Project Consortium, “VCF (Variant
Call Format) Version 4.1,” http://www.1000genomes.
org/wiki/Analysis/Variant+Call+Format/
vcf-variant-call-format-version-41 [retrieved: May
30, 2014], Oct. 2012.

[43] A. Bog, K. Sachs, and H. Plattner, “Interactive Per-
formance Monitoring of a Composite OLTP and OLAP
Workload,” in Proceedings of the International Confer-
ence on Management of Data. Scottsdale, AZ, USA:
ACM, 2012, pp. 645–648.

[44] F. Färber et al., “SAP HANA Database: Data Man-
agement for Modern Business Applications,” SIGMOD
Rec., vol. 40, no. 4, Jan. 2012, pp. 45–51.

[45] National Center for Biotechnology Information, “All Re-
sources,” http://www.ncbi.nlm.nih.gov/guide/all/ [re-
trieved: May 30, 2014].

[46] S. A. Forbes et al., “The Catalogue of Somatic Mu-
tations in Cancer: A Resource to Investigate Acquired
Mutations in Human Cancer,” Nucleic Acids Research,
vol. 38, 2010.

[47] L. R. Meyer et al., “The UCSC Genome Browser
Database: Extensions and Updates 2013,” Nucleic Acids
Research, 2012.

[48] M. Krallinger, A. Valencia, and L. Hirschman, “Linking
Genes to Literature: Text Mining, Information Extrac-
tion, and Retrieval Applications for Biology,” Genome
Biology, vol. 9, supplement 2, 2008, p. S8.

[49] H. Li et al., “The Sequence Alignment/Map Format and
SAMtools,” Bioinformatics, vol. 25, no. 16, 2009, pp.
2078–2079.

[50] M. Stonebraker et al., “C-store: A Column-oriented
DBMS,” in Proceedings of the 31st International Con-
ference on Very Large Data Bases. VLDB Endowment,
2005, pp. 553–564.

[51] G. P. Copeland and S. N. Khoshafian, “A Decomposition
Storage Model,” in ACM SIGMOD Record, vol. 14,
no. 4. ACM, 1985, pp. 268–279.

[52] S. B. Needleman and C. D. Wunsch, “A General Method
Applicable to the Search for Similarities in the Amino
Acid Sequence of Two Proteins,” Mol Biol, vol. 48, no. 3,
Mar. 1970, pp. 443–53.

[53] T. F. Smith and M. S. Waterman, “Identification of
Common Molecular Subsequences,” Journal of molecu-
lar biology, vol. 147, no. 1, Mar. 1981, pp. 195–7.

[54] P. Ferragina and G. Manzini, “Opportunistic Data
Structures with Applications,” in Proceedings of the
41st Annual Symposium on Foundations of Computer
Science. IEEE, 2000, pp. 390–398.

[55] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” in Proceedings of
the 6th Symposim on Operating Systems Design and
Implementation, 2004, pp. 137–150.

[56] A. Stabenau et al., “The Ensembl Core Software Li-
braries,” Genome Research, vol. 14, no. 5, 2004, pp. 929–
933.

[57] R. Nielsen et al., “Genotype and SNP Calling From
Next-generation Sequencing Data,” Nature Reviews Ge-
netics, vol. 12, no. 6, 2011, pp. 443–451.

[58] D. R. Bentley et al., “Accurate Whole Human Genome
Sequencing Using Reversible Terminator Chemistry,”
Nature, vol. 456, no. 7218, 2008, pp. 53–59.

[59] M. Margulies et al., “Genome Sequencing in Microfab-
ricated High Density Picoliter Reactors,” Nature, vol.
437, no. 7057, 2005, pp. 376–380.

[60] Hasso Plattner Institute, “Future SOC Lab,” http://
www.hpi.uni-potsdam.de/forschung/future_soc_lab.
html [retrieved: May 30, 2014], Feb 2014.

[61] Intel Corporation, “Intel Product Quick Reference
Matrix,” http://cache-www.intel.com/cd/00/00/47/
64/476434_476434.pdf [retrieved: May 30, 2014], Apr
2011.

[62] ——, “Intel Solid-State Drive 520 Series,”
http://www.intel.com/content/dam/www/
public/us/en/documents/product-specifications/
ssd-520-specification.pdf [retrieved: May 30, 2014], Feb
2012.

[63] H. Li and R. Durbin, “Fast and Accurate Short
Read Alignment with Burrows-Wheeler Transforma-
tion,” Bioinformatics, vol. 25, 2009, pp. 1754–1760.


