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Abstract—The main task in the drug design process is the pre-
diction of the peptide structure and the bioactivity with the focus
on simultaneously optimization of molecular peptide features.
The synthesis and laboratory screening are the conventional
but cost-intensive steps for optimization. Multi-objective genetic
algorithms provide a range of methods for an efficient design
of drug peptides. A customized NSGA-II has been especially
evolved for biochemical optimization with the focus on producing
a great number of very different high quality peptides within a
very low number of generations e.g., under 20, termed early
convergence. The focus of this work are an insight into the
impact of the interdependence between the selection procedure
and the population size, the empirical verification of the early
convergence behavior within a limited range of population size
and the influence of multi-parent recombination on the algorithm
performance. These purposes are exemplary investigated on two
different dimensional biochemical optimization problems, which
are concrete, but as generic as possible. A landscape analysis
is performed to gain an insight into the characteristic features
and difficulties of the multi-objective optimization problems.
The performance is assessed on the basis of a convergence
indicator especially evolved for our preference of comparing the
convergence behavior of populations with different sizes.

Index Terms—multi-objective biochemical optimization, popu-
lation size, landscape analysis, multi-parent recombination.

I. INTRODUCTION

A customized Non-dominated Sorting Genetic Algorithm
(NSGA-II) has been evolved with a considerable low number
of generations and population size, termed early convergence
for the molecular optimization of peptide sequences [1]
[2]. Small peptides are of special interest in the area of
drug design as they have some favorable features like
conformational restriction, membrane permeability, metabolic
stability and oral bioavailability [3]. Nevertheless, for this
purpose these peptides have to optimize several molecular
features at the same time. As both the synthesis and the
laboratory characterization of peptides is very cost-intensive
[4], moGAs provide an economical and robust method for
peptide identification.

The NSGA-II is customized with regard to the encoding
and the components mutation, recombination and selection.
Different mutation and recombination methods have been
evolved for this purpose and are introduced in [5][6]. These
components and their parameter are not only inter related,
but are also responsible for the performance of a GA. So
far, less work has been done to gain an insight in the

influence of the population size on the performance and
in the interdependence with the selection operator and its
parameters in the case of moGAs. The population size
is an important value in influencing the performance of
evolutionary algorithms [7]. Small population sizes tend to
result in poor convergence and large populations extend the
computational complexity of a GA in finding high quality
solutions [8]. Therefore, an adequate population size that
results in good performance is challenging. Diverse results
have been presented regarding the choice and the handling
of the populations size for single-objective GA: Yu et. al
[9] study the connection between selection pressure and
population size and ratify the concept of interdependence of
parameters and operators in GA. The concept of self-adaption
is used to overcome the problem of determining the optimal
population size. Two forms of self-adaption are used: First,
Bäck et al. [10] uses self-adaption as a previous setup and
configuration step for evolutionary strategies. The population
size then remains the same over all iterations. Second, Arabas
et al. [11] introduces a GA with varying population size.
The self-adaption of the population size is used throughout
the whole GA run and depends among others on different
parameters like the reproduction ratio. Eiben et al. [12]
provide empirical studies that self-adaption of selection
pressure and population size is possible and further rewarding
regarding algorithm performance. In this case study, the
global parameters tournament size and population size are
regulated.

Several works have been proposed studying the effect of
different numbers of parents for recombination in a range
of 2 up to 10 parents in Evolutionary Algorithms (EA) e.g.,
[13][14][15], among others. These studies show that the
optimal number of parents for recombination depends on
the optimization problem as well as on the recombination
method. Eiben represents in [13] a very extensive series of
tests - in total 23000 test runs. In most of these cases the
largest algorithm performance improvement can be obtained
when the number of parents is increased from 2 to 3 parents.
The experiments support two kinds of conclusions: Firstly,
increasing the number of parents improves the performance
continuously, but the degree of improvement is decreasing.
Secondly, the performance improves by increasing the parent
number until a certain parent number and decreases or
oscillates afterwards. Another effect of a larger parent number
is that less information are inheritance of the same solution
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and the generated offspring is more different from its parents.
The questions that we consider in this paper are:

1) Do large populations speed up the convergence behav-
ior of the customized NSGA-II for a three-dimensional
biochemical minimization problem?

2) Is there a predictable impact between population size and
selection?

3) Is there a range of population size, which is able to
perform well?

4) Do a variation of the parent number within the recombi-
nation procedure influence the algorithm performance?

The questions 1.-3. have been investigated and answered in [1]
on a three-dimensional biochemical minimization problem and
is further part of this work for comparison and completeness.
The following question 5 is logical consequence and in the
focus of this work:

5) Are the results of question 2.-4. transferable from the
three-dimensional to the four- dimensional biochemical
minimization problem?

These questions are answered in an empirical way: The
performance of the customized NSGA-II is assessed regarding
its early convergence and a high diversity within the solutions.
Some metrics have been proposed to evaluate the convergence
behavior of a moGA [16]. These metrics, generally, measure
the distance of non-dominated solution sets to the true Pareto
front [16]. This makes a comparison of generations with
different sizes impossible. Therefore, a convergence indicator
is introduced especially for the comparison of the generations
with different sizes based on the hypervolume. The favorable
features of this indicator are also discussed. A landscape
analysis is performed to determine the characteristic properties
of the biochemical landscape and to gain an insight into the
difficulties of the optimization problems. Furthermore, we will
discuss available open source Java tools that allow an easy
implementation of the customized NSGA-II to solve multi-
objective biochemical optimization problems.

The remainder of this paper is organized as follows: Section
II describes the components of the customized NSGA-II. Sec-
tion III provides a comparison of open source Java frameworks
focused on a most simple implementation of the customized
NSGA-II. Section IV presents a review on landscape analysis
methods and the results of the landscape analysis performed
on the biochemical objective functions. Section V introduces
the new convergence metric and discusses the motivation for
its evolution and the indicator features. Section VI provides
the performance results of the configurations with different
population sizes and multi-parent recombination assessed on
the three- and four-dimensional optimization problem. Fur-
thermore, this section responses the questions raised in this
section. Section VII provides the conclusion of this work and
gives an outlook on the future work.

II. THE CUSTOMIZED NSGA-II FOR PEPTIDE
OPTIMIZATION

In this section, the customized NSGA-II is described as
used in the presented experiments. In the previous work [2][5],
we have assessed the performance and interaction of different
recombination and mutation operators. In these experiments,
we have determined the optimal onset of recombination and
mutation method that is used within the following experiments.
Additionally, we have customized the encoding and selection
for the purpose of peptide optimization. The procedure of
the customized NSGA-II corresponds to the procedure of the
traditional NSGA-II [5] and is depicted in Fig. 1:
At first, the procedure initializes the start population with

Figure 1. The procedure of the customized NSGA-II

a size of N . The main loop of the customized NSGA-II
starts with the loop comprising the selection of the parent
individuals for recombination and mutation via Stochastic
Universal Sampling (SUS) based on roulette wheel selection:
In each selection step, k individuals are selected via SUS to
create k offsprings by recombination and mutation. This loop
is repeated until the offspring population consists of N indi-
viduals. Then, the start and offspring population are shuffled
together and the next population is created via a selection
strategy. In the case, that the total number of generations is
achieved, the main loop stops, otherwise it is repeated. The
components of this procedure are motivated and described in
detail below.
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A. The encoding

The individuals are encoded as 20-character strings sym-
bolizing the 20 canonical amino acids. The 20 characters
are adopted of the single-letter code for amino acids. This
encoding is firstly motivated by the idea of a most intuitive
way of peptide encoding. Secondly, several tools predicting
physiochemical or structural peptide properties make use of
this encoding regarding the input data (e.g., see [17][18]). This
avoids the data transformation before every fitness function
evaluation.

B. The molecular fitness functions

Four molecular fitness functions are proposed to constitute
the benchmark problems. These functions are selected under
the aspect of predicting physiochemical properties, which are
of importance for drug design [19]. Therefore, this combi-
nation of fitness functions allows conclusions on a range
of important peptide properties [20]. These functions are
associated to the three structural levels of peptides: The first
two physiochemical functions refer to the primary structure.
The third provides information about the secondary structure
and the last one makes use of the primary structure of a peptide
to provide information about a possible early tertiary structure
disruption or an inadequate folding.

1) Molecular Weight (MW): The first fitness function is
the calculation of the MW that is an important peptide feature
for the purpose of drug design [3] and refers to the primary
structure of a peptide. This fitness function is selected from
the open source library BioJava, this library and a detailed
description of this function are provided on the homepage [17].

2) Hydrophilcity (hydro): The second fitness function is
the determination of the hydrophilicity (hydro) of a peptide.
A hydrophilicity value is assigned to each peptide via the
hydrophilicity scale of Hopp and Woods with a window size
of the peptide length [21]. This fitness function refers also to
the primary structure.

3) Needleman-Wunsch Algorithm (NMW): The third fitness
function determines the optimal global similarity score pro-
vided by NMW [22] that is also part of the BioJava library
[17]. The motivation for NMW is the identification of simi-
larities between peptides regarding biochemical functionality
and structure via a global sequence alignment to a pre-defined
reference peptide. NMW makes use of a scoring model and in
this case the BLOcks SUbstitution Matrix (BLOSUM) [18] in
form of the percentage identity 100 (BLOSUM100) is used.

4) Instability Index (InstInd): The last fitness function is
the InstInd and is used to analyze the primary structure of
peptide sequences to predict a potential intracellular instability
of peptides. This function is also provided by the BioJava
library and a description is also given on the homepage [17].
These four fitness functions act comparatively: The fitness
values of an individual are determined by the difference
between the fitness function values of this peptide to the fitness
function values of a predefined reference-peptide. Therefore,
these four objective functions have to be minimized.

C. The recombination operator

In the previous work [5], different recombination operators
are benchmarked on a three-dimensional molecular minimiza-
tion problem. The linear n−point recombination operator
achieved the best performance, where the number of recom-
bination points n are determined by a linearly decreasing
function:

xR(t) =
l

2
− l/2

T
· t, (1)

which depends on the peptide length l, the total number of
the GA generations T and the index of the actual generation
t. The motivation of this recombination operator is a preferred
high explorative search behavior in the early generations and a
high motifs-maintaining encouraging the local search in later
generations. For this purpose, the number of recombination
points in the first generation is l/2 and decreases linearly
until one recombination point in the last generation. The
recombination points themselves are determined randomly.
One recombination point in the last generation guarantees a
motif preservation of at least 50% of the peptide sequences.
The recombination operator is usable as multi-parent recombi-
nation, where the default number of parent is three according
to the results of Eiben [13]. The impact of the number of
parents on the multi-dimensional biochemical minimization
problem is challenging and in the focus of the following
experiments.

D. The mutation operator

In combination with LiDeRP, an adaption of the deter-
ministic dynamic operator of Bäck and Schütz revealed the
best performance as reported in [5]. This mutation operator
is motivated by the idea that a high number of mutations in
the early generations provides a good exploration, whereas
a low number of mutations in later generations leads to
good exploitation. The mutation rates are determined via the
decreasing function

pa,BS = (a+
l − 2

T − 1
t)−1, (2)

with a = 2, l describes the peptide length, T the total
generation number of the GA and t the index of the actual
generation number. This decreasing function has been adapted
to a lower start mutation rate as a high start mutation rate as
well as a high start recombination rate results in a too high
exploration in the early generations.

E. The Aggregate Selection

The flow diagram in Fig. 2 depicts the selection methods.
The Aggregate Selection is tournament-based. From the tour-
nament set individuals are chosen from the first front with a
probability p0 and with a probability 1−p0 the individuals are
chosen via Stochastic Universal Sampling (SUS). The number
N of pointers is the number of fronts and the segments are
equal in size to the number of individuals in each front.

Therefore, the selection method has two parameters, the
tournament size and the probability of choosing individuals
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Figure 2. Aggregate selection strategy

from the first front. The tournaments size of 10 has proven
to be an optimal choice. The parameter p0 is challenging
regarding the population size.

III. OPEN SOURCE JAVA FRAMEWORKS

In this section, we summarize and describe different open
source Java tools that provide Genetic Algorithm implemen-
tations. The summarization is focused on Java frameworks
for a most simple implementation of BioJava, which provides
several physiochemical properties via APIs. The main goal of
this framework analysis is the selection of a tool that allows an
easy implementation of the proposed customized NSGA-II.

The framework Java API for Genetic Algorithm (JAGA)
in its current version 1.0 beta is a research tool developed
and supported by the Computer Science Department of the
University College London [23]. This tool does not include
any moGAs, but it provides a protein string sequence encoding
using 20 different characters symbolizing the 20 canonical
amino acids. Among others, eight different physiochemical
properties like hydrophobic, aliphatic, aromatic and polar are
pre-defined for each canonical amino acid. In addition, it con-
tains for each genotype a parameter-depending crossover and

mutation method and allows a peptide or protein representation
by the pre-defined amino acid patterns. The user interested in a
moGA application has to extend this tool for this purpose, but
the amino acid character encoding is a clear benefit. Other
useful functions are the opportunity of creating a random
initial population of protein sequences and the implementation
of the Needleman-Wunsch or Smith-Waterman Algorithm.

The framework Metaheuristic Algorithms in Java (jMetal) in
its current version 4.3 is an extensive and complex tool espe-
cially for moGA applications [24]. It contains beneath NSGA-
II the moGA variants: Pareto Envelope-based Selection Algo-
rithm (PESA), improved Strength Pareto Evolutionary Algo-
rithm (SPEA2), improved PESA (PESA2), S-Metric Selection
Evolutionary Multiobjective Evolutionary Algorithm (SMS-
EMOA), Indicator-Based Evolutionary Algorithm (IBEA) and
Multiobjective Evolutionary Algorithm based on Decomposi-
tion (MOEA/D). Further, different variation operators are im-
plemented like single-, two- point, Simulated Binary Crossover
(SBX) and polynomial, uniform and swap mutation. ’Rank-
ing&crowding selection’ is included as the traditional NSGA-
II selection method as well as tournament and PESA2 selec-
tion. Additionally, jMetal provides several established metrics
to evaluate the performance like the hypervolume, Inverse
General Distance (IGD), General Distance (GD) and a measure
for diversity. A definite advantage of jMetal is the intuitive and
clear program construction, which allows an easy algorithmi-
cally extension. The disadvantage is a missing character or
string encoding.

The framework Java-based Evolutionary Computation Re-
search System (ECJ) in its current version 21 is comparable
with jMetal in the issues functional complexity and potential
extension. ECJ is developed at George Mason University’s
Evolutionary Computation Laboratory [25]. It includes the
moGAs NSGA-II and SPEA2. Furthermore, different vector
representations with corresponding variation operators are
included as well as SUS and tournament selection, among
others. Moreover, it proposes the potential to read populations
from files. It does not provide an intuitive and clear program
structure like jMetal.

The Multi-Objective Evolutionary Algorithm framework
(MOEA framework) in the current version 2.1 is a Java
framework for multi-objective optimization [26]. It provides
a very wide range of MOEA variants as it includes the jMetal
library in the version 4.3. Therefore, MOEA framework has
the same features like jMetal regarding the benchmark prob-
lems, performance metrics and available variation operators.
The MOEA provided by jMetal also only support binary,
real-values and permutation encoding. On the other hand, the
MOEA framework allows a new genotype implementation.

Evolutionary Algorithms workbench (EvA2) is a Java
framework developed by the department of computer science
at the Eberhard Karls University in Tübingen [27]. It is not
only intended for research, but is also deployed for industrial
applications and is available under LGPL license. Its speci-
ficity is its easy-to-use graphical user interface and provides
a MATLAB interface to optimize functions in MATLAB
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with standard algorithm implementations in EvA2. It also
has a client-server structure and provides NSGA-II, PESA
and SPEA2 as moGA implementations. A string or character
encoding is not implemented and an implementation after-
wards is challenging, because encoding affects all parts of the
toolbox.

The framework Java Class library for Evolutionary Com-
putation (JCLEC) in the current version 4 includes the evo-
lutionary features NSGA-II and SPEA2. It proposes different
encodings with various variation operators except string or
character encoding, but provides an expendable program struc-
ture. Further, JCLEC includes fitness proportionate selection
strategies like tournament and SUS.

The modular framework for metaheuristic optimization
(OPT4J) contains a set of multi-objective optimization al-
gorithms including SPEA2 and NSGA-II [28]. OPT4J has
been evolved under two aspects: A simple evolutionary op-
timization of user-defined problems and the potential of an
arbitrary optimization algorithm implementation. Further, the
common benchmark problems ZDT, DTLZ, WFG and Knap-
sack problem are available as well as the genotype encoding
binary, integer, real-values and permutation. Unfortunately, the
module-based structure and the use of the GUI makes an
extension for the purpose of implementation of the proposed
customized NSGA-II more complicated. A special feature
is the graphical visualization of the optimization process
regarding the convergence and potential of a Pareto plot.

Fig. 2 gives an overview of the reviewed Java frameworks.
These frameworks are compared under the aspects of: (i)
configuration of a character or string encoding as an option,
(ii) an implementation of NSGA-II, (iii) potential of a simple
extension, and (iv) an intuitive program structure according to
the moGA components.

TABLE I
OVERVIEW OF THE SPECIAL FRAMEWORK ASPECTS

JAGA jMetal MOEA ECJ EvA2 JCLEC OPT4J
(i) x
(ii) x x x x x x
(iii) x x x x
(iv) x x

Table I reveals that none of the open source Java frame-
works attains all required aspects in an adequate level. As
a consequence, the proposed customized NSGA-II is im-
plemented within jMetal. MOEA framework is a possible
alternative as it provides the jMetal library. Nevertheless, some
programming effort is necessary regarding this implementa-
tion. Furthermore, the protein string sequence encoding of
JAGA serves as a model to the targeted peptide encoding. The
experiments of the four-dimensional optimization problem are
performed with an implementation of the proposed customized
NSGA-II in jMetal, the experiments on the three-dimensional
optimization problem have been performed with an own
implementation as presented in [1].

IV. MOLECULAR LANDSCAPE ANALYSIS

Fitness landscape analysis is a common and important
methodology to gain an insight in the complexity and difficulty
of an optimization problem with the aim of designing a search
algorithm with optimized performance [29]. The components
of a landscape are the configuration set X of all feasible
solutions of the optimization problem. According to the orga-
nization of X , a notation on neighborhood, nearness distance
or accessibility on X is required. The third and essential
component are the fitness functions f : X → R, [30].

The aim of the landscape analysis is the investigation of
the landscape structure and the determination of the landscape
characteristics that have a strong influence on the search
algorithm e.g., see [31]:
• Modality: The modality provides the tendency of the

fitness landscape to produce local optima. Therefore, the
number and distribution of local optima are indicators for
the modality.

• Correlation: This is an indicator for the dependence
between two solutions of X . In the area of multi-objective
landscapes, the correlation is of particular interest as
it provides information about the actually optimization
problem dimension and therefore about the problem dif-
ficulty. In the single-objective case, the autocorrelation is
commonly used as an indicator for fitness diversity.

• Ruggedness: This is a feature describing the fitness
variation between the fitness values of a solution and its
neighbors. The modality and the correlation provide hints
for the level of ruggedness.

• Plateaus: These are areas referring to neutrality, consti-
tuted by a set of solutions with equal fitness values. The
size of these areas and the probability of existence are
used for description.

Different techniques have been proposed to analyze the
characteristic features of a fitness landscape. These techniques
are classified into two categories both based on solution
sequences obtained by random walks: The statistical analysis
and the information analysis. [31]

Statistic analysis techniques investigate the fitness land-
scapes in a qualitative manner. Therefore, several correlation
metrics have been proposed to measure the ruggedness of a
landscape. Weinberg proposed the random walk correlation
function r(s) that measures the autocorrelation between two
sets of fitness points separated by s solutions [32]:

r(s) =

∑n−s
i=1 (fi − f̄)(fi+s − f̄)∑n

i=1(fi − f̄)2
, (3)

where fi is the fitness function value of the random walk
solutions {fi}i=1...n and f̄ is the average fitness value of
all solutions. High autocorrelation values indicate that the
fitness values are similar and the landscape is less rugged.
Otherwise, a small autocorrelation value indicates that the
fitness values are uncorrelated and the landscape is rugged.
Another correlation metric based on the autocorrelation is the
correlation length that measures the distance beyond which
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two sets of fitness points becomes uncorrelated [31]:

l = − 1

ln|r(1)|
, (4)

with r(1) 6= 0. The higher the correlation length the smoother
is the landscape.

Jones proposed the Fitness Distance Correlation (FDC) [33].
This coefficient measures the relation of the fitness values and
the distance of the solutions si to the nearest optimum x∗ in
the search space:

FDC =
cov(f(si), d(si))√

var(f(si)) · var(d(si))
, (5)

where d is the distance function to x∗ and cov(x, y) as well
as var(x) are the common statistical measures covariance and
variance. The coefficient values are in the interval [−1; 1].
Jones further introduced a prediction of these values regarding
the GA effectiveness in solving the optimization problem:
• FDC ≥ 0.15: The fitness increases with the distance.

The GA is potentially not effective or the problem is
misleading.

• −0.15 < FDC < 0.15: There is virtually no correlation
between fitness and distance. The problem is categorized
as difficult.

• FDC ≤ −0.15: The fitness increases as the optimum ap-
proaches. The GA is potentially effective or the problem
is straightforward.

A great disadvantage of FDC is that the nearest optimum or
at least the best-known solution has to be known in advance.
Compared to the statistical analysis, the information analysis
is a quantitative investigation and provides more detailed
information about the landscape structure like a measurement
of the optima density and plateaus as well as the degree of
the random walk regularity [34]. Vassilev et al. [34] provides
three information measures to determine the modality and
the level of ruggedness. For each of these three measures,
the random walk path {ft}t=0...n is transformed into a string
S(ε) = s1s2...sn with si ∈ {−1, 1, 0}, where

si =


−1 if fi − fi−1 < −ε
1 if fi − fi−1 > ε

0 if |fi − fi−1| ≤ ε
(6)

and ε ∈ [0; l], where l is the maximal difference between
two fitness values. The indicator is more sensitive to the steps
of the random walk the smaller the value for ε. Then, the
Information Content is defined via:

H(ε) = −
∑
p 6=p

P[pq]log6(P[pq]), (7)

where p, q ∈ {−1, 1, 0}, P[pq] =
n[pq]

n are the probabilities
presenting frequencies of possible blocks pq and n[pq] is the
number of occurrences of the blocks pq in S(ε). The base
of the logarithm is chosen as 6. This is the number of all
possible blocks pq. The information content depends on the
parameter ε that is responsible for a more global or local view

on the random walk according to the magnitude of ε. The
Partial Information Content is a measure for the degree of
ruggedness. The string S(ε) is transformed into a string S(ε′)
by deleting the elements 0 and blocks of equal elements are
reduced to only one of these elements. The partial information
content is defined by:

M(ε) =
v(ε)

n
, (8)

where v(ε) is the length of S′(ε) and n the length of S(ε).
Furthermore, v(ε) indicates the number of extrema along
the landscape path. In the case M(ε) = 0, the landscape
path is nearly flat or monotonously increasing or decreasing.
Otherwise, M(ε) = 1 indicates that the landscape path is
maximal rugged.

The Information Stability as the third indicator for infor-
mation analysis proposed by Vassilev is an indicator for the
highest difference between neighboring points in the landscape
path. The information stability is defined as the smallest value
of ε for which the landscape path becomes flat. In this case,
the string S(ε) comprises only zeros.

Another information indicator was proposed by Leier et al.
[35]. This indicator gives information about the density as
well as length of flat areas. Therefore, it is an indicator for
the ratio between flat and smooth parts of a landscape path
and therefore an optimal measure for neutrality. It is defined
as:

h(ε) = −
∑

p∈{−1,1,0}

P[pp]log3(P[pp]), (9)

where P[pp] is the frequency of blocks pp in S(ε).

A. Landscape analysis of the molecular fitness functions

The configuration set X of the molecular fitness landscapes
are all feasible peptides of the length 20 consisting of the 20
canonical amino acids. Therefore, the landscape is of a high
complexity 2020. Furthermore, the search space is discrete
as there are real-valued solutions that have no corresponding
feasible peptides in the search space. The neighborhood of a
solution is defined by all peptides differing to this solution in
one amino acid in exactly one position [36]. Therefore, the
move operator of the random walk is the mutation operator
that changes one amino acid in a position in the solution.
The mutation of an amino acid in the way that the same
solution is achieved is excluded to prevent the random walk
from stagnation.

The four fitness landscapes NWM, MW, hydro and InstInd
are analyzed according to the important landscape properties:
Modality, correlation and ruggedness. The basis of the land-
scape analysis is random walks of 100 steps that are repeated
30 times for statistical reasons. The starting solution of the
random walk is initialized randomly.

In Fig. 3-6, six random walks are exemplarily depicted
of the molecular fitness functions for a first global view on
the landscapes. All four molecular fitness functions provide
large variations of the fitness values over the 100 random
walk steps and therefore indicate rugged landscapes. From
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Figure 3. Exemplary presentation of six time series of the molecular fitness
function NMW.

Figure 4. Exemplary presentation of six time series of the molecular fitness
function MW.

Figure 5. Exemplary presentation of six time series of the molecular fitness
function hydro.

this global point of view, NMW is the only function revealing
some plateaus or flat areas over two to five random walk steps
(Fig. 3). The InstInd function also reveals some flat areas and
plateaus, but in a lesser extent and averaging over a lower
number of random walk steps (Fig. 6). The fitness values of the
MW function are scaled by a factor of 10 and achieved some
large jumps of the fitness values as well as some areas with

Figure 6. Exemplary presentation of six time series of the molecular fitness
function InstInd.

oscillating parts (Fig. 4). The hydro fitness function appears
similar to MW regarding the jumps and the oscillating parts
(Fig. 5). Otherwise, it also reveals some isolated flat areas
or plateaus. To quantify the rugged landscape properties of
these four fitness functions, the autocorrelation of all solution
(100 random walks repeated 30 times) is calculated after the
model of Lee [36], which is an adaption of the autocorrelation
function of Weinberg (eq. 3) by determining the average value
and the standard deviation of all solutions and applying the
average value on the starting point of the random walks:

ps =
1

n+1

∑n
i=0(xi0 − µ)(xis − µ)

σ2
, (10)

where µ is the average value calculated by

µ =
1

n

n∑
i=1

f(xi), (11)

σ is the standard deviation determined by

σ =

√√√√ 1

n

n∑
i=1

(f(xi)− µ)2 (12)

and xi0 is the starting point and xis is the s−step of the i-th
random walk. The self-correlation value of the starting point
p0 has to be 1 or at least approximately 1. This adaption is
motivated by the fact that the random walk length of 100
is relatively small compared to the search space complexity,
which empirically leads to a time-varying volatility - meaning,
the average value and the standard deviation are very different
between the random walks [36]. The autocorrelation of the
time series of the four molecular fitness functions depicted
in Fig. 7 confirm the time-varying volatility as the values for
p0 are differing from the value 1. The high ruggedness of
the four molecular landscapes is visible by the fast decrease
of the autocorrelation values to 0 within the first 20 random
walk steps. Furthermore, most of the autocorrelation values of
all four molecular functions are in the range of −0.3 to +0.3,
which indicate a weak correlation. The autocorrelation values
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Figure 7. Autocorrelation functions of the random walks on the four
molecular landscapes: NMW, MW, hydro, InstInd

of MW indicate a moderate autocorrelation between the ran-
dom walk steps 40 to 57. Similarly, the autocorrelation values
of NMW reveal some very moderate correlations between the
random walk steps 45 to 88. Some outlier of very moderate
correlations exists also for hydro and InstInd.

In addition to the autocorrelation, the correlation between
the molecular fitness functions is also of great interest re-
garding the combination of these four molecular functions
to a Multi-Objective Problem (MOP) as the high correlation
between two time series of different fitness functions theoret-
ically reduce the optimization problem dimension and makes
the MOP less challenging. The correlation matrix indicates s
potential linear relationship between different functions:

Mcorr =


1 corr(f1, f2) ... corr(f1, fk)

corr(f2, f1) 1 ... corr(f2, fk)
...

...
. . .

...
corr(fk, f1) corr(fk, f2) ... 1

, (13)

where Mcorr is symmetrical and consists of the Pearson
correlation coefficients of the fitness function fi and fj :

corr(fi, fj) =

∑n
i=0(fi − f̄) · (fj − f̄)

σfi · σfj
(14)

Correlation values of |corr(x, y)| < 0.3 indicate a weak cor-
relation between x and y, 0.3 ≤ |corr(x, y)| ≤ 0.8 indicates
a moderate correlation and |corr(x, y)| > 0.8 indicates a
high linear correlation. The correlation matrix for the four
molecular functions NMW (f1), MW (f2), hydro (f3) and
InstInd (f4) according to eq. (13) is given by:

Mcorr =


1 0.047 0.252 0.09
· · · 1 −0.014 −0.032
· · · · · · 1 −0.266
· · · · · · · · · 1

 . (15)

This matrix is calculated of the 30 random walks consisting
of 100 steps for each molecular function. The matrix entries
reveal that there is no linear relationship between the time se-
ries of each two fitness functions: There is a weak relationship
between NMW and MW (eq. (15): corr(f1, f3) = 0.252) as

well as InstInd and hydro (eq. (15): corr(f3, f4) = −0.266)
and no correlation between the other combinations.

Another important landscape property investigated in the
following is the modality. The examination of the single
molecular fitness functions according to the local optima is
not advisable for the purpose of a MOP as the most of the
local optima of the single functions are no optima in the sense
of the MOP [13]. The optima in the multi-objective sense are
the non-dominated solutions.

Figure 8. Number of the non-dominated solutions achieved by the random
walks on the 3D and 4D molecular landscapes

Fig. (8) depicts the optima or non-dominated solution den-
sity of the 3D-MOP composed of NMW, MW and hydro as
well as the 4D-MOP composed of NMW, MW, hydro and
InstInd. In general, the 4D-MOP reveals nearly 50% more non-
dominated solutions than the 3D-MOP within the 30 random
walks of 100 steps. Further, the range of the non-dominated
solutions achieved within the random walks is higher in the
case of the 4D-MOP. As a consequence, the non-dominated
solution density is higher in the case of the 4D-MOP and the
corresponding landscape more rugged. Further, the 4D-MOP is
more difficult for the customized NSGA-II then the 3D-MOP
because of the MOML structures: The 3D-MOP has a higher
front diversity and provides less solutions in the optimal front
than the 4D-MOP.

Plateaus in this area of multi-objective real-valued land-
scapes are identified by consecutive equal fitness values for
each molecular function. In the 30 random walks of the 3D-
MOP, 20 plateaus have been identified: Two plateaus of each
two consecutive equal fitness values have been identified in
five random walks, a plateau of three consecutive equal fitness
values have been found in one random walk and the remaining
9 plateaus have been identified in different random walks
each consisting of two consecutive equal fitness values. In
the case of the 4D-MOP, 8 plateaus have been identified:
These plateaus consist only of two consecutive fitness values
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and only one random walk achieved two of these plateaus.
Consequently, the 3D-MOP reveals statistically more plateaus
than the 4D-MOP and a local search is of a greater interest in
this case.

Transferring these results of the molecular landscape anal-
ysis on design considerations of a metaheuristic allows the
conclusion that the search process has to be guided in direction
of at most optimal solutions, which are spread over the
landscape. Then, the neighborhood has to be searched for
further high quality solutions. Transferring these results on the
explorative- exploitive balance of the metaheuristic associates
that a high exploration of the search process in the early
generations and a more exploitive search behavior in the
later generations is beneficial for such rugged landscapes with
statistically only a low number of flat regions.

V. EVALUATION MEASURES FOR CONVERGENCE AND
DIVERSITY

Firstly, the convergence measure is introduced, which has
been especially evolved to evaluate generations with different
sizes. Subsequently, the features of this indicator are discussed
followed by the presentation of measurement for diversity.

A. Introduction of the average cuboid volume

In the past, several metrics have been proposed to evaluate
the convergence behavior of populations produced by a moGA.
Usually, they act on the distance of the non-dominated solution
set of a generation to the true Pareto front. The hypervolume
or the S-metric measures the overlapped space of the non-
dominated solution set to a predefined anti-optimal reference
point [37]. The hypervolume is a very established convergence
metric with its favorable mathematical properties as one rea-
son. Another convergence metric is the D-metric [16]. The
D-metric makes use of the hypervolume and calculates the
coverage difference of two solution sets. A reference set is
needed to assess the convergence to the true Pareto front. The
C-metric is an appropriate measure to compare the dominance
of two Pareto optimal sets [37]. The Error Ratio (ER) is a
percentage measure for the number of solutions in a set that
are to be found on the true Pareto front [16]. GD is a measure
of the average distance between a Pareto optimal solution set to
the true Pareto front [38]. It includes the minimal component-
wise distance of a solution set to the nearest one on the true
Pareto front. The convergence metric of Deb also measures
the distance between a solution set and a reference set of the
Pareto front [39]. It calculates the average normalized distance
for all solutions in the solution set. A recently published
convergence metric is the Averaged Hausdorff Distance ∆p

[40]. It is based on GD and the IGD [41].
The reasons for the evolution of a new convergence metric

in this paper and in the scientific community in general are
multiple: The disadvantage of the metrics D-metric, ER, GD,
∆p and the convergence metric of Deb is their dependency on
the true Pareto front or at least a reference set of Pareto optimal
solutions that are usually unknown in the case of real-world
MOPs. Furthermore, these metrics are not useful indicators

for an entire ranking between generations of different sizes.
However, the populations in moGAs are generally limited
in size. From a more global point of view, the evaluation
and comparison of the global convergence behavior of whole
populations - not only the non-dominated solution set of a
generation - is required with respect to the influence of the
population size or the selection pressure.

For this purpose, a new metric is presented that reflects the
convergence behavior of a whole population and is a ’fair’
indicator for comparison of generations of different sizes.
This Average Cuboid Volume (ACV) is evolved according
to the model of the hypervolume. The motivation for the
exploitation of the hypervolume model is to profit from its
preferable properties as mentioned above. The benefit of
this new metric compared to the hypervolume is the low
computational complexity as no point ordering is required.

In the following, we assume that the underlying optimiza-
tion problem is to minimize. The metric calculates the average
cuboid volume of the cuboids spanned by the solution points
to a pre-defined reference point r:

ACV (X) =
1

n

n∑
i=1

 k∏
j=1

(xij − rj)

 , (16)

where n is the population size, k is the number of objectives,
xi are the solutions on the population X and xij is the j− th
component of a solution xi. It holds (xij−rj) > 0 as the pre-
defined reference point is chosen as the theoretical minimal
limit of the true Pareto front. The lower the indicator values
the more positive is the global convergence behavior as the
reference point is chosen as a theoretical optimal point.

Obviously, ACV is not a suitable indicator to compare
the experimental results of different dimensional optimization
problems.

B. Discussion of the average cuboid volume

The question regarding the suitability of a metric for eval-
uation depends on the intention of the investigation object
and the preferences. ACV is intended to evaluate the global
convergence behavior of a whole population with the ultimate
aim of comparing solution sets of different sizes according to
the proximity to the true Pareto front.

The first expectation that is important for the use of ACV
is that the convergence quality shall not change if the number
of equally solutions increases. ACV does not fulfill this aver-
aging strategy: Let x ∈ Rk be a solution of the optimization
problem and X = {x}. Further, Y = {x, ...x} is a set of n
equally copies of the solution x, then

ACV (Y ) =
1

n

n∑
i=0

 k∏
j=1

(xj − rj)

 =
1

n
· n

k∏
j=1

(xj − rj)

=

k∏
j=1

(xj − rj) = ACV (X). (17)
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The second expectation is described by the following ob-
servation: An intuitive indicator reflecting the quality of ap-
proximation sets of different Pareto front refinements requires
’better’ indicator values for the finest approximation set. This
effect is demonstrated for ACV by an example also used in
[13]:

Example 1: The Pareto front is given by the bounded con-
vex function f(x) = 1/x2 between the points y1 = (0.1, 100)
and y2 = (1.1, 0.826) meaning

PFtrue = {(x, y)|y = 1/x2 with x ∈ [0.1, 1.1]}. (18)

We consider the following three approximation sets of increas-
ing refinement of the Pareto front

Y1 = {(0.1 + 0.2 · i, 1/(0.1 + 0.2 · i)2)|i ∈ {0, 1, ..., 5}},
Y2 = {(0.1 + 0.1 · i, 1/(0.1 + 0.1 · i)2)|i ∈ {0, 1, ..., 10}},
Y3 = {(0.1 + 0.01 · i, 1/(0.1 + 0.01 · i)2)|i ∈ {0, 1, ..., 100}}.

Table I depicts the indicator values of ACV for the three
approximation sets with the reference point (0, 0).

TABLE II
ACV VALUES FOR THE APPROXIMATION SETS Y1 − Y3 WITH THE

REFERENCE POINT (0, 0).

X Y1 Y2 Y3

ACV(X) 3.13 2,75 2.43

The third preferable expectation of this indicator is the
averaging effect. It is trivial that a dominating solution x yields
better indicator values than the dominated one y, because
ACV ({x}) =

∏k
i=1(xj−rj) <

∏k
i=1(yj−rj) = ACV ({y}).

From this observation it can be interpreted that
if one dominated solution x1 in the solution set
X = {x1, x2, ..., xn} is replaced by a dominating one
x̄1, then ACV ({x1, x2, ..., xn}) > ACV ({x̄1, x2, ..., xn}).
The averaging effect of ACV is illustrated by the example,
which has also been used for ∆p [40]:

Example 2: The true discrete Pareto front is described by
P = {pi|pi = (0.1·(i−1); 1−(i−1)·0.1) with i = 1, ..., 11}.
Two solution sets are given by X1 = {x1,1, p2, ..., p11} and
X2 = {x2,1, x2,2, ..., x2,11} with the elements x1,1 = (ε, 10)
and x2,i = pi + ( ε2 , 5) with i = 1, ..., 11. For the outlier x1,1
the values ε = 0.001 is used for numerical evaluations. X1 is
a better approximation of the true Pareto front, but it contains
the outlier x1,1. On the other side, X2 is close to the true
Pareto front and the difference of each element to the Pareto
front is less than the one of the outlier. As we are interested in
an averaging effect, the indicator values of X1 has to be better
than the one of X2. This is true for ACV as ACV (X1) = 0.15
and ACV (X2) = 2.65.

The use of ACV (X) as a convergence and as a diversity
metric is not within our preferences. ACV (X) is not a
reliable indicator for diversity. A solution set with clustered
solutions does not always achieve better indicator values
demonstrated in the following example:

Example 3: Once more PFtrue is described by eq. (18) and
the solution set

Y4 = {(0.29, 11.89); (0.3, 11.11); (0.31, 10.4); (0.32, 9.77);

(0.33, 9.18), (0.34, 8.65)}

contains clustered solutions on the true Pareto front, then
ACV (Y4) = 3.18 ≈ ACV (Y1). Though the solutions of Y4
are much more clustered than those of Y1, Y4 receive nearly
the same indicator values than Y1.

C. The diversity measure

The measure for diversity calculates the average distance of
all pairs of solutions (see [5]):

∆ =
∑

i,j=1,i<j,i 6=j

|dij − d̄|
N

with N =

(
n

2

)
, (19)

where di,j symbolizes the Euclidean distance of two solutions
xi and xj , d̄ is the mean of all measured distances and n is
the population size.

VI. RESULTS AND DISCUSSION

In this section the simulation onset for the test runs are
described. The results are further depicted and discussed.

A. Simulation onsets

The test runs are performed for different configurations.
The configurations are composed of a different population
size (30, 50, 70, 100, 130, 150) and the selection parameters
p0 = 0%, 30%, 50%. These parameters have been emphasized
by previous experiments. The selection parameter p0 = 0%
stands for SUS exclusively. Each multi-objective configuration
is repeated 20 times until the 18th generation - for statistical
reasons. The test runs are evaluated via the convergence
indicator ACV and the diversity measure as introduced in the
last section. ACV uses the theoretical minimal limit (0/0/0)
of the Pareto front as an optimal reference point. Therefore, a
good performance is achieved if the ACV value is as low as
possible and the diversity value is as high as possible. Boxplots
are created for each configuration and for each objective of
evaluation as boxplots provide a good overview of the location
parameter as well as the spread. The values of ACV and
diversity are scaled under the same criterion for a better
graphical presentation. The figures are ordered according to
the population size. The standard population size within the
customized NSGA-II is 100 [2][5] (Fig. 12, Fig. 23, Fig. 24).
Therefore, the results are discussed regarding an increase and
a decrease of this size.

B. Experiments on the 3D-MOP

The 3D-MOP comprises the molecular objective functions
NMW, MW and hydro. In general, a decrease of the population
size down to 70 and 50 results in an increase of the ACV
values and a decrease of the diversity values (Fig. 10, Fig.
11). This means that the convergence and the spread within
the solutions is reduced caused by decreasing the population
size. The ACV values decrease for a population size of 30
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Figure 9. Population size 30

Figure 10. Population size 50

Figure 11. Population size 70

Figure 12. Population size 100

Figure 13. Population size 130

Figure 14. Population size 150

Figure 15. Population size 200

Figure 16. Multi-parent recombinations, population size 100, p0 = 30%
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(Fig. 9) independent of the choice of the selection parameter.
Moreover, the diversity also decreases and results in the
lowest diversity among all configurations. An increase of the
population size to 130 results in a decrease of ACV and
in an increase of the diversity, once more independent of
the selection parameter (Fig. 13). A further increase of the
population size up to 150 and 200 results in a stagnation of
the ACV and diversity values (Fig. 14, Fig. 15).

Further, the effect of the selection parameter is evaluated:
Varying the population size from 50 to 100 (Fig. 10- Fig. 12),
the ACV values are comparable for p0 = 0% (denoted as
’SUS’ in the figures) and p0 = 30% (denoted as ’30% front
1’ in the figures), though the diversity improves evidently for
p0 = 30% compared to SUS. Independent of the population
size, p0 = 50% (denoted as ’50% front 1’ in the figures) results
in a remarkable increase of the ACV values and only a slight
improvement of diversity compared to SUS and p0 = 30%.
For the population sizes from 130 to 200, the influence of
the selection parameter is reduced (Fig. 13- Fig. 15): There is
only a slight improvement to report in diversity for p0 = 30%
compared to SUS. The convergence is remarkable reduced for
p0 = 50%, though the diversity is improved.

The best performance of the configurations is received with
a population size from 70 to 100 and a selection parameter
of 30% as the values for ACV are at most low, whereas the
diversity values are at most high. At least, the performance of
the configurations with a population size from 50 to 100 with
p0 = 30% are comparable in convergence and diversity with
the performance of the configuration population size of 130
and SUS. Concluding, the best configuration is expectable with
a population size in the range from 70 to 100 and a selection
parameter of p0 = 30%.

The variation of the parent number within the recombination
procedure reveals no effect on the ACV-values and therefore
on the convergence (Fig. 16). A very slight increase of the
diversity values is achieved by an increase of two parents to
three parents. A further increase of the parent number results
in a slight decrease of the diversity values. The variation effect
is tested for the previously detected optimal algorithm settings
of population size and selection parameters.

Regarding the questions presented in the introduction we
conclude that an increase of the population size does not result
in better performance. The customized NSGA-II provides
good performance regarding convergence and diversity within
a limited range of population size for the presented three-
dimensional minimization problem. Empirically, there is no
interdependence between population size and selection: The
choice of p0 = 30% usually results in the best performance
independent of the population size. Therefore, it is not possible
to speed up the convergence by increasing or decreasing of
the population size and a suitable adaption of the selection
parameter.

C. Experiments on the 4D-MOP

The 4D-MOP comprises the molecular objective functions
NMW, MW, hydro and InstInd. The results are once more

Population size 30

Figure 17. ACV Figure 18. Diversity

Population size 50

Figure 19. ACV Figure 20. Diversity

Population size 70

Figure 21. ACV Figure 22. Diversity
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Population size 100

Figure 23. ACV Figure 24. Diversity

Population size 130

Figure 25. ACV Figure 26. Diversity

Population size 150 and 200

Figure 27. ACV Figure 28. Diversity

Multi-parent recombination

Figure 29. ACV Figure 30. Diversity

discussed regarding an increase or decrease of the standard
population size of 100 (Fig. 23, Fig. 24)). In general, a
decrease of the population size from 100 to 70 (Fig. 21, Fig.
22), 50 (Fig. 19, Fig. 20) and 30 (Fig. 17, Fig. 18) results in
an increase of the range for the ACV as well as the diversity
values, which indicates an increasing spread of the indicator
values. The tendency of the indicator spread lies in direction
of higher values in the case of the convergence (Fig. 17, Fig.
19, Fig. 21). Otherwise, the tendency of the indicator spread
for the diversity is more in direction of lower values (Fig. 18,
Fig. 20, Fig. 22). This indicates a global convergence reduction
with a decrease of the diversity at the same time. This effect is
stronger for the selection parameter p0 = 0% and is reduced
with the increase of this parameter to 30% and 50%.

The increase of the selection parameter results clear de-
crease of the indicator values in general for all population
sizes. This observation is quite different to the results of the
3D-MOP experiments. This is explained by the previously
performed landscape analysis: The landscape of the 4D-MOP
provides about 50% more optimal solutions and is therefore of
a higher optima density than the 3D-MOP. Consequently, the
distance between the optimal solutions is reduced. Hence, the
higher the selection probability for selecting solutions from
the first front the lower are the ACV values and the lower are
the diversity values.

An increase of the population size from 100 up to 200 (Fig.
25, 26, 27, 28) results in a stagnation of the ACV values
independent of the selection parameter. The same holds for
the diversity values and the selection parameter p0 = 0%. An
increase of the selection parameter results in a slight increase
of the means as well as an increase of the indicator spread
for a population size of 150 and 200 (Fig. 28). The results of
population 150 and 200 are depicted in one figure, as there is
no visible difference within the indicator values.

The optimal configuration regarding the convergence or
ACV values is achieved with a population size of 100. The
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optimal configuration for the diversity of the solutions is
achieved with a population size of 70 followed directly by the
configuration with a population size of 100. Concluding, the
best configurations in general are expectable with a population
size in range of 70 to 100 and a selection parameter of
p0 = 30%.

The results of the multi-parent recombination is quite dif-
ferent in the case of the 4D-MOP: An increase of the parent
number results in a continuous decrease of the ACV values
and therefore in better performance regarding the convergence.
In the case of the diversity values, the increase of the parent
number from 2 to 3 reveals a clear decrease of the diversity
values. A further increase of the parent number to 4 achieves
slight better diversity values as the configuration with 2-parent
recombination. Therefore, the best NSGA-II performance is
expected with 4-parent recombination. This confirms the ob-
servations of Eiben as presented in the introduction that the
optimal number of parents is problem depending.

Compared to the results of the 3D-MOP and the questions
raised in the introduction, an increase of the population size
does not results in an increase of the performance like in the
case of 3D-MOP. The customized NSGA-II provides a good
performance with regard to convergence and diversity within
a limited range of population size for 3D-MOP as well as 4D-
MOP. The selection parameter p0 = 30% is a suitable choice
for a good balance between at most low ACV values and at
most high diversity values. Therefore, the optimal algorithm
settings are equal for 3D-MOP as well as 4D-MOP.

D. Discussion of the results

The interdependence of the population size and the selection
parameter in this customized NSGA-II as well as the influence
of multi-parent recombination is exemplary examined on a
generic three- and four-dimensional biochemical minimization
problem and the results presented above are discussed
according to the five questions raised in the introduction:

The first question is aimed at the influence of large
populations on the convergence speed. Early convergence as
a main goal of our moGA is defeated since an increase of the
population size results in higher speed of convergence. The
experiments show that the optimal population size regarding
convergence and diversity is in a limited range from 70 to 100
for the three- as well as the four-dimensional optimization
problem. An increase of the population size above 100
results in a stagnation of the convergence behavior and the
diversity for the three-dimensional optimization problem.
Furthermore, a population size lower than 50 does not provide
a convincing diversity within the solutions. In the case of the
four-dimensional optimization problem, an increase of the
population size above 100 also results in a stagnation of the
convergence behavior and no significant improvement of the
diversity. A decrease of the population size below 70 results
in worse convergence and diversity performance.

Our second question is focused on the impact of the
population size and the selection parameter. A configuration
rule for the selection parameter depending on the population

size is necessary in the case of a large interdependence of
both. However, the experiments of the three- dimensional
optimization problem do not reveal an interdependence of
the population size and the selection parameter. Though, the
diversity of the configurations with a population size from
50 to 100 is remarkably improved with a selection parameter
of 30% compared to p0 = 0% (SUS). Further, higher values
for p0 are not advisable as the speed of convergence is
reduced. In the case of the four-dimensional optimization
problem, in increase of the selection probability above 30%
is not advisable as this results in a significant decrease of the
diversity independent of the population size.

The third question asks for a range of the population size
providing the best performance: This range is fixed to a
population size from 70 to 100 based on the evaluation of
the experiments. More precisely, the optimal performance
for the three- and the four-dimensional optimization problem
is achieved within the same range of population size and
the same parameter settings. This allows the hypothesis that
the optimal algorithm settings are independent of at least
three and four dimensions and the customized NSGA-II is an
effective and robust tool for biochemical optimization.

The fourth question refers to the influence of the variation
of the number of parents within the recombination on the
algorithm performance. Three different numbers of parents
for recombination are tested. The experiments on the three-
dimensional optimization problem reveal no effect on the
convergence behavior and the diversity for 2-, 3- and 4- parent
recombination, whereas an increase of the parent number
results in an improvement of the convergence behavior for the
four-dimensional optimization problem. The highest diversity
tendency is achieved for four parents. Therefore, an increase
of the standard setting of 3 parents to 4 is advisable. A reason
for these observations is challenging and the optimal number
has to be empirically verified for each optimization problem.

The fifth question refers to the generalization of the results
and algorithm settings on higher dimensional optimization
problems. As mentioned above, the best performance is
achieved for the same algorithm settings in the case of the
three-dimensional and four-dimensional optimization problem.
This confirms the hypothesis that the performance results are
transferable on high-dimensional optimization problems. Only
the number of parents within the recombination procedure is
challenging for each optimization problem.

VII. CONCLUSION AND FUTURE WORK

The presented customized NSGA-II provides a reliable
good performance according to the convergence and diversity
for a three- and four-dimensional biochemical minimization
problem. This good performance is achieved with the same
optimal settings, though the three-dimensional problem inves-
tigated here is more challenging than the investigated four-
dimensional one due to the higher front diversity. This allows
the hypothesis that this customized NSGA-II is an efficient
and robust genetic algorithm, which potentially provides a high
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performance for a wider range of similar molecular problem
classes with the property of early convergence.

For future work, we currently work on a selection strategy
based on ACV indicator for ongoing improvements. Further-
more, an analysis concept is challenging to gain a deeper
insight into molecular MOP or more general real-valued MOP
and is in the focus of our research.
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