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Abstract—Its un-obtrusiveness and its inherent safety make
breath analysis a very promising technique in healthcare diag-
nostics. On one hand, it enables the monitoring of biochemical
processes: the volatile organic compounds (VOCs) from the
metabolic processes are generated within the body, travel via the
blood, participate to the alveolar exchanges and appear in exhaled
breath; on the other hand, breath is easily and non-invasively
accessible. Nevertheless, despite its great potential, breath analysis
is not widely used in clinical practice: the high costs for standard
analytical instrumentation (i.e., gas chromatograph-mass spec-
trometer), the need for specialized personnel able to read the
results and the lack of standardized protocols to collect breath
samples, set limits to its exploitation. Here, we describe the Wize
Sniffer (WS), a portable device based on low cost technology,
able to collect and analyze in real time the composition of the
breath. In particular, by means of the WS, the user can evaluate
his/her own cardio-metabolic risk score by self-monitoring the
composition of the breath. Indeed, the presented device is able to
detect, in real time, all those VOCs related to the noxious habits
for cardio-metabolic risk. Nonetheless, the modular configuration
of the WS, makes it usable also for other applications by changing
the type of the gas sensors according to the molecules to be
detected.

Keywords–Breath analysis; E-noses; Gas sensors; Self-
monitoring; Signal processing; Bio-signals; Medical device; Cardio-
metabolic risk prevention.

I. INTRODUCTION

Since the time of Hippocrates, classical medicine has
used the sense of smell as an indicator of human diseases
[1], [2]: the fruity-smelling breath underlined the presence
of diabetes; the stale beer-like odor of the skin was typical
of the persons with tuberculosis; the butcher’s-like smell of
the skin suggested yellow fever, etc. Therefore, early medical
practitioners recognized that the presence of human diseases
changed the odors released from the body and breath.

It was in 1784 when, for the first time, Lavoisier and
Laplace identified the presence of carbon dioxide in human
exhaled breath. However, it is commonly recognized that the
modern breath analysis started in 1971, when Linus Pauling
demonstrated that breath is a mixture of more than 200 volatile

molecules at the levels of part per million (ppm), part per
billion (ppb), or lower [3].

Breath is the product of the composition of inspiratory air,
molecules deriving from ingested food and beverages or from
dermal adsorption (exogenous molecules), and all the volatile
substances in the blood, which are produced endogenously
as part of our normal (or disease-related) metabolism and
participate to alveolar exchanges according to their types,
concentrations, volatilities and rates of diffusion. In addition,
also cells in the mouth, upper airways, and gastro-intestinal
tract contribute volatile molecules to the breath. Human ex-
haled breath is composed of nitrogen (75%), oxygen (13%),
water vapor (6%), carbon dioxide (5%). The remaining 1% is
composed of a series of volatile organic compounds (VOCs)
that are peculiar for each individual. As a consequence, it is
correct to think that every one of us has his/her own breath-
print, which can tell a lot about the state of health.

Breath analysis, for its un-obtrusiveness and its inherent
safety, may play a very important role in health care diag-
nostics. It may be used to detect disease, monitor disease
progression, or monitor a therapy. Indeed, many studies aimed
to correlate breath VOCs to various diseases such as diabetes,
lung cancer, gastrointestinal diseases, etc. [4], [5], [6]. Exhaled
pentane and ethane were investigated as lipid peroxygenation
product in case of oxidative stress [7]; isoprene (the major
hydrocarbon present in human breath) was suggested to be
linked with cholesterol synthesis [8] and cardiac output [9];
breath ammonia may be a useful biomarkers both for the
evaluation of clinical treatments in case of renal diseases [10],
[11] and for monitoring the level of severity in case of liver
diseases [12]; increased levels of breath carbon monoxide
may be due to airway inflammation in asthma and in chronic
obstructive pulmonary disease (COPD)[13].

Comparing with other traditional methods such as blood
test, breath analysis is non-invasive, real-time, and harmless
to not only the subjects but also the personnel who collects
the samples. Nonetheless, despite its great potential, only few
breath tests (among which: carbon monoxide test for neonatal
jaundice, ethanol test for drunk drivers, hydrogen test for the



199

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evaluation of gastrointestinal transit time, for the monitoring of
intestinal bacterial overgrowth and for the assessing of h.pylori
infection, nitric oxide test for the evaluation of asthmatic
disease) are commonly used in clinical practice nowadays. In
[14] T.H. Risby and S.F. Solga give a fair view of current
status of breath analysis and try to explain the reasons why it
has not gained a wider use yet. One of such reasons is related
to the high costs of the specific, standard instrumentation for
gas analysis (i.e., gas chromatograph, mass spectrometer) and
the need of expert personnel to perform the analysis, which
also are very time consuming [10].

In recent years, the idea of exploiting e-noses also for
clinical applications has gained the attention of the scientific
community [15]. Being quicker than a gas chromatograph, as
they are able to follow the trend in time of breath molecules,
in many studies they have been employed in different fields of
medicine: in oncology, for instance, to identify lung cancer-
related breathprint [16], in infectiology [17], in respiratory
medicine to evaluate asthma [13] or to discriminate between
healthy subjects and patients suffering from chronic obstructive
pulmonary disease (COPD) [18]. Nevertheless, the majority of
such e-noses exploit very expensive technology [19], [20] or
requires complex circuitry [21], [22].

By developing the Wize Sniffer (WS) [1], [23], described
in this paper, we aimed to overcome this limitations:

• the WS is a portable, real-time device, which might
be used not only in laboratory settings, but also in
doctor’s office, or in home environment;

• it is very easy to use, also for non-specialized person-
nel, thus allowing the self-monitoring of own health
state. In addition, it is programmed to send breath
analysis results also to a remote care center;

• it is entirely based on low cost technology: the em-
ployed gas sensors are commercial, semiconductor-
based and easily embeddable in the circuitry; breath
signals are analyzed by a widely employed open
source controller: Arduino Mega2560.

The WS was developed in the framework of SEMEOTICONS
European Project [24], which aimed to develop the Wize
Mirror, (WM) a multi-sensory platform having the appearance
of a mirror. The WM, by means of a series of depth sensors
and multispectral cameras, is able to assess individual’s well-
being state by detecting in his/her face all those signs related
to cardio-metabolic risk [25], [26]. The WS was designed to be
a WM’s tool, in order to detect in human breath the molecules
related to the noxious habits for cardio-metabolic risk: alcohol
intake, wrong diet, smoke. Not only: we aimed to develop a
device whith a modular core, and which could be also used
for broader applications [27], [1].

In the paper, Section II lists the molecules detected
by the WS; Section III describes the devices general
hardware/software architecture; Section IV explains the WS
functionality tests and the experimental results, later discussed
in Section V.

II. THE DETECTED VOCS

Our aim was to develop a device, which could help the
user to monitor his/her noxious habits for cardio-metabolic

risk simply by analysing the breath composition. Therefore,
within the WS, an array of semiconductor-based gas sensors
is able to detect the following molecules:

• Carbon monoxide (CO): in human body, it is naturally
produced by the action of heme oxygenase on heme
when the macrophages of the spleen remove old
and damaged erythrocytes from the circulation. Also,
it is the major compound in cigarette smoke. An
increase of CO in blood is very dangerous, as it leads
hemoglobin to carry less oxygen through the vessels,
because CO usurps the space in hemoglobin that
normally carries oxygen, forming carboxyhemoglobin
[28]. It also increases the amount of cholesterol that
is deposited into the arteries. CO normal levels in
exhaled breath are 2-3.5ppm; increasing levels can be
detected in smokers (13.8 - 29ppm);

• Ethanol (C2H6O): endogenous ethanol levels are 0-
3.9ppm (mean 0.62ppm), normally lower than the
ones found in subjects’ breath after alcoholic drinks
ingestion. However, moderate ethanol consumption, in
healthy subjects, reduces stress and increases feelings
of happiness and wellbeing, and may reduce the risk of
coronary heart disease. Heavy consumption of alcohol,
instead, causes addiction and leads to an accumulation
of free radicals into the cells, causing oxidative stress
[29].

The WS can also provide useful information about metabolism,
carbohydrates adsorption and vascular status by detecting:

• Oxygen and carbon dioxide (O2 and CO2): exhaled
air has a decreased amount of oxygen and an increased
amount of carbon dioxide. These amounts show how
much O2 is retained within the body for use by the
cells and how much CO2 is produced as a by-product
of cellular metabolism. Exhaled O2 amount is about
13.6%-16%. Mean CO2 concentration in exhaled
breath is about 4% (= 40000ppm) [30]. Individual’s
breathing rate influences the level of CO2 in blood
and, as a consequence, in exhaled gas. Breathing that
is too slow causes respiratory acidosis (that results in
an increase of CO2 partial pressure in blood, which
may cause hypertension), while breathing that is too
rapid causes a decrease in CO2 in blood that leads to
hyperventilation and respiratory alkalosis;

• Hydrogen (H2): it is related to the carbohydrates
breakdown in the intestine and in the oral cavity by
anaerobic bacteria [31]. Breath hydrogen levels vary
within a day and from day to day; fasting levels range
between 0.3 and 34.1ppm (mean 9.1ppm). However,
it may vary also among individuals, especially in case
of lactose intolerance and celiac diseases;

• Hydrogen sulfide (H2S): in healthy subjects, con-
centrations of volatile sulfur-containing compounds in
blood are very low. The body uses sulfur compounds
in order to neutralize the action of free radicals
[32]. Among the sulfur-containing volatile molecules,
hydrogen sulfide is considered as a vascular relaxant
agent, as it has a therapeutic effect in various cardio-
vascular diseases.
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III. WHITHIN THE WS: HARDWARE AND SOFTWARE

Here, we describe the hardware and software platforms of
the WS.

A. Hardware
In designing our device, we took into account an important

issue: the greater demands on improvements in effectiveness,
smartness and lower costs of biomedical instruments used in
daily healthcare applications [33], resulted from increasing
limitations of healthcare financial resources as a consequence
of budgetary cuts or constraints.

For this reason, we aimed to design a device entirely based
on low-cost technology. In Figures 1, 2 and 3, WS’ hardware
is shown.

Figure 1. Wize Sniffer’s hardware, internal configuration

Figure 2. Wize Sniffer’s gas sampling chamber detail

The exhaled gases flow into a corrugated tube, made of
polyvinyl chloride (PVC), and reach the gas sampling chamber.
A heat and moisture (HME) filter, made of hygroscopic mate-
rial, absorbs the water vapor present in the exhaled breath: as it

Figure 3. Wize Sniffer’s hardware, external configuration. Its dimensions are:
30x30x14cm

will be described later, the employed gas sensors’conductivity
response is strongly affected by humidity. Integrating such
a filter allows for reducing the humidity of -30% and also
for holding users’ oral bacteria. A PNT Flow-Ree flowmeter
allows for monitoring the user’s flow rate and for calculating
the exhaled gas volume. The core of the WS is the signal
measurement module, that is the sensor array, composed of six
semiconductor-based gas sensors, placed within the gas sam-
pling box. The latter was made up of acrylonitrile-butadiene-
styrene (ABS) and Delrin, which are two materials that do not
interfere with sensors’s sensitivity, and its capacity is 600ml
according to the tidal volume [30]. Within the gas sampling
box, also a sensor for temperature and humidity (Sensirion
SHT11) is placed. In addition, a sampling pump injects, at
a fixed rate (120ml/sec), the sampled exhaled gas to other
two sensors, which have faster response time and work in
flowing-regime. They detect oxygen and carbon dioxide and are
respectively based on an electrochemical cell and an infrared
source. Sensors’ raw output are pre-processed and stabilised
by a signal conditioning module: a series of voltage buffer
amplifiers (LM124-N, Texas Instrument) transfers sensors’
signals from the measurement module to a widely employed
open source controller: an Arduino Mega2560 with Ethernet
module. Finally, in order to facilitate sensors’ recovery time, a
flushing pump was integrated on one side of sampling chamber.
After each breath test, it can be switched on in order to ”purge”
the chamber with ambient air and recovery sensors’ baseline.

In Table I, the employed gas sensors are listed. Our aim
was to find a trade-off between good sensitivity, low cost and
small dimension. As we mentioned in the previous Section, the
WS was developed to detect a set of molecules related to those
noxious habits for cardio-metabolic risk; nevertheless, our aim
was to design a modular sensor platform in order to detect
a broader set of molecules, simply by changing the sensors
according to the VOCs to be identified. As a consequence,
the sensors’ ease of integration in the circuitry was another
requirement we needed.

Optical, carbon nano-fiber (CNF), quartz crystal microbal-
ance (QCM), metal oxide semiconductors (MOS), conducting
polymers (CP), and surface acoustic wave (SAW), are the most
common gas sensor types employed in e-noses [15], [34].
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On one hand, optical gas sensors, as well as quartz crystal
microbalance (QCM)-based gas sensors and surface acoustic
wave (SAW)-based gas sensors are very sensitive; on the other
hand, they are expensive (especially in the case of optical gas
sensors) and need complex circuitry (in the case of QCM and
SAW gas sensors). Also carbon nano-ber (CNF) based gas
sensors are very expensive, especially for their manufacturing.
We chose metal oxide semiconductor (MOS)- based gas sen-
sors: they show long term stability and reproducibility of
gas response [35], great metallurgical and chemical stability
of the sensing material [35], high sensitivity towards target
gases, short reaction and recovery time, easy calibration. In
comparison to other types of gas sensors, MOS-based gas
sensors’ availability, small dimensions, compactness and low
cost make them the most widely used gas sensors [36].

Whithin the gas sampling chamber, six Taguchi
semiconductor-based gas sensors, manufactured by Figaro
Engineering [37] (costs: 25-40 Euro), were integrated.

TABLE I. SENSORS INTEGRATED IN THE WS SENSOR PLATFORM

Detected molecule Sensor Best detection range
Carbon monoxide TGS2442 50-1000ppm

MQ7 20-200ppm
TGS2620 50-5000ppm

Ethanol TGS2602 1-10ppm
TGS2620 50-5000ppm

Carbon dioxide TGS4161 0-40000ppm
Oxygen MOX20 0-16%
Hydrogen sulfide TGS2602 1-10ppm
Hydrogen TGS821 10-5000ppm

TGS2602 1-10ppm
TGS2620 50-5000ppm
MQ7 20-200ppm

Unfortunately, humidity and cross-sensitivity strongly af-
fect the behavior of MOS-based gas sensors [35], as shown in
Figure 4. The water vapour undergoes dissociative adsorption
on metal oxide surfaces and the resultant ions are adsorbed on
the metal oxide surface, impeding, in many cases, the response
of sensor by lowering the sensitivity of the sensing element
[38], [39]. However, a distinction should be done between n-
type and p-type-based sensing materials [40]. As shown in
Figure 4, when humidity icreases, resistance of the n-type-
based film decreases, resulting in a rise in voltage output.

Figure 4. MQ7 output when a rise in humidity occurs.

In our case, humidity plays a very crucial role, as we
deal with human breath. Therefore, we deemed it necessary
to take steps to manage this factor and optimize its effects.
First, as previously described, we put a humidity filter, made

of hygroscopic material, in order to absorb the majority of the
water vapor present in exhaled breath and reduce the humidity
in the gas sampling chamber from a 90% to a 70-60%.
In addition, we integrated, into the gas sampling chamber,
also a temperature and humidity sensor (Sensirion SHT11) in
order to monitor these two parameters. Indeed, we noted that
the temperature inside the chamber remains almost constant
before, during and after each breath test. On the contrary,
relative humidity shows a variation of about 35% while the
subject is performing a breath test (Figure 5). For this purpose,
we i) calculated sensors’ drift due to variations in humidity;
ii) investigated sensors’ sensitivity in precise measurement
conditions [1] (30 ◦C±7%, 70%RH±5%, that are the ones that
occur in the sampling box during a breath test, as shown in
Figure 5.

Figure 5. Temperature and relative humidity in the gas sampling box when a
breath analysis is performed

The relationship between humidity and sensors’ output
Vout (as can be observed in Figure 4) generally can be modeled
by means of a power law (eq. (1)), as reported also by Ho Sohn
and coworkers [41]:

Vout = f(hum) = a ∗ (humb) + c (1)

where a, b and c are constant and specific for each TGS sensor.
Calculating sensors’ humidity drift is useful to potentially
compensate it during the data processing. We considered the
entire range of humidity variation (for instance, 50%-55%RH
in the case of MQ7) and then we calculated the slope of the
curves. Based on the slope, drift coefficient Sd was assessed
for each sensor (see Table II) as the decrease in sensors output
∆V (Volt) per unit decrease in humidity, ∆hum as given in
eq. 2:

Sd =
∆V

∆hum
(2)

By keeping the humidity constant, sensors’ output depends
on the gas concentration only. For this purpose, we investigated
sensors’ behavior in response to a well-known gas concentra-
tions at a fixed humidity and temperature conditions. The used
experimental set-up was the one reported in Figure 6.
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TABLE II. SENSORS DRIFT DUE TO HUMIDITY

Sensor ∆V / ∆hum (mV)
MQ7 296
TGS2620 60
TGS2602 82
TGS821 120
TGS2444 84

Figure 6. Experimental set-up. a) The gas sensors’ raw output are read by an
Arduino Mega2560 connected via USB to a personal computer; b) the

signals are displayed in real time on the computer screen; c) the gas sensors
into the vial, where is placed a saturated solution of NaCl on the bottom.

The gas sensors were put into a vial, where the humidity
was kept at 70%RH±5% by means of a saturated solution of
NaCl placed on the bottom. Measurements were performed
only after the sensors were operated at a fixed temperature for
several hours (at least 2 hours for warm-up).

Then, we injected well-known gases concentration and
registered sensors’ output. The raw sensors output were read by
an Arduino Mega2560 connected via serial port to a personal
computer. The experimental data were displayed in real time on
the computer screen and stored as text files for later processing.
For example, in Figure 7, we can see TGS2620 output when
well-known concentrations of carbon monoxide, ethanol and
hydrogen were separately injected into the vial.

In general, the relationship between sensors’ output Vout
and each gas contribution can be modeled by means of eq. (3).

Vout = f([gas]) = a ∗ ([gas]b) + c (3)

Where c is a constant, b is the constant power-law exponent
and a can be considered as the sensor’s sensitivity coefficient.
These parameters are specific for each TGS sensor. We also
found that the used gas sensors were sensitive to concentration
lower than their best detection range (reported in Table I).

Nevertheless, when a breath analysis is performed, a mix-
ture of gases spreads into the gas sampling box and chemically
interacts with the sensors. In this case, the phenomenon known
as cross sensitivity makes the semiconductor sensors non-
selective. In addition, the detection threshold (that is, the
minimum concentration of gas necessary to a meaningful
change in sensors’ conductivity) depends not only on absolute

Figure 7. TGS2620 output when well-known concentrations of CO, H2 and
C2H6O were separately injected into the vial.

sensitivity to that particular gas but also on concentrations of
the other gases, which partially mask the response to the gas
of interest, as shown in eq. (4) reported by P. Clifford and
coworkers [35] (the equation refers to the case of only two
mixed gases, as an example).

(
Rj

R0j
)
− 1
βj =

(1 +
∑
Kj ∗ [G1j ]

n1j ∗Kj ∗ [G2j ]
n2j )

[O2]
(4)

Where R
R0

is the j-th sensor’s variation in resistance, β is
the power law exponent, specific for each j-th sensor, [G1] and
[G2] represent the concentrations of the two mixed gases, n
is an integer or fractional integer power, specific for each j-
th sensor, K can be considered as the j-th sensor’s sensitivity
coefficient and [O2] is the oxygen partial pressure. In some
cases, for some terms of the summation, there is only one
term per gas, for oters there is a product of several.

We also tried to investigate the cross sensitivity of our
sensors. In Figure 8, we can see TGS2620 response when
well-known mixed concentrations of the three gases (carbon
monoxide, ethanol and hydrogen) were injected into the vial
at the same time.

In this way, how the different VOCs add together and
influence gas sensors output can be understood. The single
gas contribution can be modeled by a power law similar to eq.
(3), but each of them has its ”weight” on the overall output, as
shown in eq. (4). However, because of the multitude of factors
involved, understanding the interaction mechanism behind the
MOS-based gas sensors’ sensing property in general remains
an open issue [40].

Finally, in Figure 9, the WS performing a breath test is
shown.

B. The Software
Given its un-obtrusiveness and its safety, breath analysis

may be used as a daily monitoring analysis tool. To fully
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Figure 8. TGS2620 output when well-known mixed concentrations of CO,
H2 and C2H6O were contemporarly injected into the vial.

Figure 9. The WS while performing a breath test.

exploited its potential, its application must take place not only
in laboratory settings, but also in the clinics, in doctors’ offices,
and at home. Our aim was to develop a device, which could
be used in home environment and which could be able to send
breath analysis results also to a remote personal computer (for
instance, to the one of the own family doctor).

Arduino Mega2560 with Ethernet board samples sensors
signals every 250msec, saves raw vector data and extracts
the maximum value of raw breath curve. Several parameter
and features can be derived from breath curves [42] to fully
characterized them. We chose to calculate the value at curve
plateau as it better describes the chemical balance between
sensorssensing element and target gases. Such data are then
processed and analyzed, as described in Section IV. In order to
send breath analysis results also to a remote personal computer,
we implemented a client-server architecture. It means that,
after performing a test and processing the results, the device,
by means of an internet connection and a communication
protocol, can send the results to the physician, for instance.
Arduino is programmed to execute a daemon on port 23. By
implementing a Telnet server, it waits for a command line from
the remote personal computer and then can provide the data.
A measure is valid if the users exhaled volume equals at least
the one of gas sampling box (600ml).

IV. WS VALIDATION

The aim of the validation was to assess if the WS was
able to monitor and evaluate the individuals noxious habits for
cardio-metabolic risk (smoke and alcohol intake in particular).
For this purpose, as described in [1], the WS underwent a
clinical validation in three research centers: CNR in Pisa and
Milan, CRNH (Centre de Recherche en Nutrition Humaine)
in Lyon. The campaign involved 77 volunteers, male and
female, between 30-65 years of age, with different habits and
lifestyles. People answered Audit and Fagerstrom tests, which
respectively assessed their alcohol and smoke dependence, and
other questionnaires about lifestyle in general.

Exhaled breath composition is strongly inuenced by breath
sampling method [43], as well as by breath flow rate [44],
posture [45], ambient air [46], lung volume [47]. In our case,
also factors such as BMI, sex, age, subjects lifestyle may
inuence the breath composition: for example, alcohol disposal
in men is different than the one in women, and, in addition, it
may depend on body mass index (BMI)[48], as well. There-
fore, breath composition may exhibit not only a strong inter-
variability (among different subjects), but also a marked intra-
variability (relative to the same subject). Moreover, standard
protocols for breath sampling do not exist. The definition of
precise guidelines to collect breath sample would be useful also
to avoid such factors that influence the breath composition.

As a consequence, we considered, on one hand, all these
issues about human breath variability and influencing factors,
and, on the other hand, the methodological issues about
breath sampling [43]. Since our interest was focused on both
endogenous and exogenous biomarkers, we drafted a protocol
which exploited the mixed expiratory air sampling. Such
method of sampling entails collecting total breath, including
the air contained in the upper airways, which involves volatile
compounds that do not participate to alveolar exchanges (dead
space air) [46]. The subjects took a deep breath in, held the
breath for 10s, and then exhaled once into the corrugated tube
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trying to keep the expiratory flow constant and to completely
empty their lungs. However, mixed expired air consists of dead
space, transition phase and alveolar phase. The dead space
and the transition phase contain breath compounds from the
upper airways, whereas the alveolar phase contains the VOCs
resulting from alveolar exchanges, which better represent the
individuals metabolic conditions. As a consequence, a con-
trolled identification of the respiratory phases was performed,
by monitoring the curve of exhaled carbon dioxide (i.e., capno-
gram) and discriminating between dead space air fraction and
end-tidal exhaled air. In addition, the applied manoeuvres such
as breath holding [49], high exhaled volume, lower exhalation
flow rate [50], [51], [52] and single exhalation [53] lead to
an incrase in alveolar VOCs concentrations in breath samples,
thus reducing the impact of the previously listed influencing
factors (especially ambient air).

The study was approved by the Ethical Committee of the
Azienda Ospedaliera Universitaria Pisana, protocol n.213/2014
approved on September 25th, 2014; all patients provided a
signed informed consent before enrollment.

As mentioned before, MOS-based gas sensors are not
selective, thus impeding to calculate the exact molecules’
concentrations. Multivariate methods of pattern recognition
techniques usually allow for overcoming this problem. Pat-
tern recognition exploits sensors’ cross-correlation and helps
to extract qualitative information contained in sensors’ out-
puts ensemble. Therefore, first Principal Component Analysis
(PCA) was performed, in order to provide a representation
of the data in a space of dimensions lower than the original
sensors’ multidimensional space. From a visual, exploratory
analysis of the data, the presence of clusters (see Figure
10) was observed. Then, a Knearest neighbor (KNN) classi-
fication algorithm, previously trained with the data collected
during another acquisition campaign, was adopted to classify
the subjects according to their habits: Healthy (that means,
not in danger of cardio-metabolic diseases), Light Smoker,
Heavy Smoker, Social Drinker, Heavy Drinker, LsSd (Light
smoker and Social drinker), LsHd (Light smoker and Heavy
drinker), HsSd (Heavy smoker and Social drinker), HsHd
(Heavy smoker and Heavy drinker).

The outcomes of the Audit and Fagerstrom questionnaires
were our ground truth. The KNN classifier was able to cor-
rectly classify in 89,61% of cases. Errors were probably due to
TGS2602 and TGS2620 cross-sensitivity for hydrogen. In fact,
for instance, three no-risk subjects were classified as social
drinker probably because of the high presence of hydrogen
in their breath, which caused a rise in these sensors’ voltage
output.

Then, the number of volunteers increased up to 169
subjects. They were classified by clinicians into ”low risk
population”, ”medium risk population”, ”high risk population”
and ”very high risk population”, on the base of their Risk Score
(RS), that is, the sum of the scores relative to Audit (AS),
Fagerstrom (FS) and lifestyle questionnaires, our ground truth
also in this case. Given the significant number of subjects, we
tried to implement a simple model, which was able to predict
subjects RS on the base of breath data. First, sensors’ raw data
were zero-centered and normalized, thus putting in evidence
their qualitative aspects. Then, also in this case, the principal
components were extracted and the PC scores were plotted
against the subjects RS, as shown in Figure 11.

Figure 10. First three principal components. The presence of several clusters
can be observed.

Figure 11. PC scores against subjects risk scores arranged in ascending order.

As can be deduced from the colours (green points derive
from no-risk subjects, the blue ones from low-risk subjects,
the yellow ones from medium-risk subjects, the red ones
from high-risk subjects, the magenta ones from very high-
risk subjects), subjects’ RS were arranged in ascending order.
Except for PC3, from an exploratory analysis, we saw that the
PC scores did not have a sharp increasing or decreasing linear
trend with respect to RS, thus not having enough information
to contribute to any prediction model. Such result matched the
one reported in [54]. Being inspired by this study, we also
implemented an Independent Component Analysis (ICA) on
our data. ICA is a high-order transformation method for data
representation, which extracts independent component from



205

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the data set. If, on one hand, PCA exploits the real sensors
cross-correlation, ICA originates from the assumption that the
data has a non-Gaussian distribution, which often is a property
of the gas sensors array measurement data [55]. In our case,
breath signals and the environmental ones (noise) get mixed
with each other before the chemical interaction with the sensor
array. In addition, due to sensors’ cross-sensitivity effect, the
conductivity response depends on a linear combination of
individual gas terms, where the effects of one gas can be
masked by the combined effects of others. In addition to this
”competition” among gases, there is an associative interaction
by which the effects of one gas are enhanced by the presence of
another. As a consequence, each sensors output is the result of
a combination of different gaseous contributions. We applied
FastICA algorithm to our data set, and plotted individual
independent components (IC) against subjects’ RS. As shown
in Figure 12, in this case sharper linear trends emerged.

Figure 12. IC scores against subjects risk scores arranged in ascending order.

Then, the data set was split into two data-sets (train data
set and validation data set) to build the prediction model,
which was developed by means of the Matlab LinearModel
Tool. Indeed, by using the independent components, a linear
regression model was built to establish a relationship between
the volunteers’ RS and the breath data pre-processed by ICA.
Then, such model was validated by using the validation data
set. In Figure 13 we can see that the correlation coefficient (r)
between actual and estimated risk scores was 0.8976.

V. CONCLUSION

The field of breath analysis is as old as the one of medicine.
Since the time of Hippocrates, classical medicine has exploited
the sense of smell to identify human diseases.

For its un-obtrusiveness, and its inherent safety, breath
analysis may be a very useful tool in health care diagnostics: to
detect disease, or to monitor disease progression, or to evaluate
the success of a therapy. With respect to other traditional
methods such as blood test, breath analysis is non-invasive,
real-time, and harmless to not only the subjects but also
the personnel who collect the samples. Nevertheless, to fully
exploit such potential, breath analysis should be performed

Figure 13. Actual risk scores versus predicted ones

by using a simple, portable, easy to use instrumentation. In
addition, an important issue should be considered, that is the
greater demands on improvements in lower costs of biomedical
instruments used in daily healthcare applications, resulted from
increasing limitations of healthcare financial resources as a
consequence of budgetary cuts or constraints.

In this paper, we presented the Wize Sniffer, a portable
device, able to analyze in real time the composition of human
breath, and entirely based on low-cost technology: an Arduino
Mega 2560 (a widely employed open source controller) and a
semiconductor-based Taguchi gas sensor array.

Although such type of sensors are strongly affected by
humidity (which in our case plays a crucial role) with a few,
inexpensive arrangements we faced this issue, by integrating
a hygroscopic filter behind the mouthpiece, a temperature
and humidity sensor within the gas sampling box and by
calculating sensors’drift due to humidity. In addition, a robust
data processing helped us to face with sensors’ cross-sensitivity
and human breath inter-variability and intra-variability. When
performing a breath analysis by means of non-selective gas
sensors, one has to face, on one hand, with an uncertainty
of measure which derives from all those factors that affect
the gas sensors’ behavior; on the other hand, one deals with
un uncertainty due to all the physiological conditions that may
inuence the breath composition. Pattern recognition algorithms
turn out the best way to overcome such problem.

The Wize Sniffer is very simple to use, also by non-
specialized personnel: in the presented use case, it provides
the user with a very easily interpretable outcome. The WS
is able to calculate, by means of a simple regression model,
the user’s Risk Rcore (with respect to his/her noxious habits)
and potentially help him/her to prevent his/her cardiometabolic
risk.

However, the user can also send his/her breath analysis
results and Risk Score to a remote healthcare center by means
of an internet connection: indeeed, Arduino is programmed to
implement a simple Telnet Server.
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Finally, a strong point of the Wize Sniffer is also its
adjustability: thanks to its modular design, the gas sensors can
be changed according to the molecules (and then, to the related
diseases) to be monitored. Such characteristic allows for using
such device in broader applications. Indeed, recently the WS
has been used to discriminate and monitor patients with acute
liver diseases by evaluating ammonia levels in their breath. The
evaluation of WS performances also in the case of cirrhotic
patients will be discussed in a future work.

In general, the safety and the un-obtrusiveness of a device
for breath analysis, like the presented one, allow for a daily
monitoring which, even if without a real diagnostic meaning
yet, could represent a pre-screening, useful for an optimal
selection of more standard medical analysis. Undoubtedly,
further big efforts will be done in order to introduce breath
analysis in clinical practice. Scientists and manufacturers
should collaborate in order to standardize, on one hand, the
architectural principles which e-noses have to be based on,
and on the other hand, the procedures for breath sampling, in
order to obtain compatible signals and outcomes that may be
used and processed by different e-nose systems and shared
among physicians all over the world.

ACKNOWLEDGMENT

This work was funded in the framework of the
Collaborative European Project SEMEOTICONS (SEMEiotic
Oriented Technology for Individuals CardiOmetabolic risk
selfassessmeNt and Self- monitoring), grant N. 611516.
Paolo Paradisi, Massimo Martinelli, Massimo Guidi and
COSMED s.r.l. are warmly acknowledged for useful support.

REFERENCES
[1] D. Germanese, M. D’Acunto, M. Magrini, M. Righi, and O. Salvetti,

“A Low Cost Technology-based Device for Breath Analysis and Self-
monitoring,” in Proceedings of the Second International Conference
on Advances in Signal Image and Video Processing, SIGNAL2017.
IARIA, May 2017, pp. 8–13.

[2] J. Pereira et al., “Breath analysis as a potential and non-invasive frontier
in disease diagnosis: an overview,” Metabolites, vol. 5, 2015, pp. 3–55.

[3] R. Dweik and A. Amann, “Exhaled breath analysis: the new frontier in
medical testing,” Journal of Breath Research, vol. 2, 2008, p. 030301.

[4] F. DiFrancesco, R. Fuoco, M. Trivella, and A. Ceccarini, “Breath
analysis: trends in techniques and clinical applications,” Microchemical
Journal, vol. 79, 2005, pp. 405–10.

[5] D. Hill and R. Binions, “Breath analysis for medical diagnosis,”
International Journal on Smart Sensing and Intelligent Systems, vol. 5,
2012, pp. 465–498.

[6] J. Fenske and S. Paulson, “Human breath emission of VOCs,” Journal
of the Air and Waste Management Association, vol. 49, 1999, pp. 594–
598.

[7] M. Phillips, R. Cataneo, J. Greenberg, R. Grodman, and M. Salasar,
“Breath markers in oxidative stress in patients with unstable angina,”
Heart Disease, vol. 5, 2003, pp. 95–99.

[8] R. Salerno-Kennedy and D. Cashmark, “Potential applications of breath
isoprene as a biomarker in modern medicine: a concise overview,”
Wienklin Wochenschr, vol. 17, 2005, pp. 180–186.

[9] F. Pabst, W. Miekisch, P. Fuchs, S. Kischkel, and J. Schubert, “Monitor-
ing of oxidative and metabolic stress during cardiac surgery by means
of breath biomarkers: an observational study,” Journal of Cardiothoracic
Surgery, vol. 2, 2007, p. 9pp.

[10] D. Guo, D. Zhang, N. Li, L. Zhang, and J. Yang, “A novel breath
analysis system based on electronic olfaction,” IEEE Transaction on
Biomedical Engineering, vol. 57, 2010, pp. 2753–2763.

[11] I. Essiet, “Diagnosis of kidney failure by analysis of the concentration of
ammonia in exhaled breath,” Journal of Emerging Trends in Engineering
and Applied Sciences, vol. 6, 2013, pp. 859–862.

[12] R. Adrover et al., “Breath-Ammonia Testing of Healthy Subjects and
Patients with Cirrhosis,” Digestive Diseases and Sciences, vol. 57, 2012,
pp. 189–195.

[13] P. Montuschi, N. Mores, A. Trov, C. Mondino, and P. Barnes, “The
electronic nose in respiratory medicine,” Respiration, vol. 85, 2013, pp.
72–84.

[14] T. Risby and S. Solga, “Current status of clinical breath analysis,”
Applied Physics B, vol. 85, 2006, pp. 421–426.

[15] A. Wilson, “Recent progress in the design and clinical development
of electronic-nose technologies,” Nanobiosensors in Disease Diagnosis,
vol. 5, 2016, pp. 15–27.

[16] R. Machado et al., “Detection of lung cancer by sensor array analysis of
exhaled breath,” American J. of Respiratory and Critical Care Medicine,
vol. 171, 2005, pp. 1286–1291.

[17] N. Yusuf et al., “In-vitro diagnosis of single and poly microbial species
targeted for diabetic foot infection using e-nose technology,” BMC
Bionformatics, vol. 16, 2015, pp. 158–169.

[18] O. Sibila et al., “Identification of airway bacterial colonization by an
electronic nose in chronic obstructive pulmonary disease,” Respiratory
Medicine, vol. 108, 2014, pp. 1608–1614.

[19] URL: http://www.bedfont.com/ [accessed: 2017-08-30].
[20] D. Walt et al., “Optical sensor array for odor recognition,” Biosensors

and Bioelectronics, vol. 13, 1998, pp. 697–699.
[21] F. Lai and H. Huang, “Fabrication of high frequency and low-cost

surface-acustic wave lters using near eld phase shift photolitography,”
Microelectronic Engineering, vol. 83, 2006, pp. 1407–1409.

[22] L. Fan, H. Ge, S. Zhang, H. Zhang, and J. Zhu, “Optimization of
sensitivity induced by surface conductivity and adsorbed mass in surface
acoustic wave gas sensors,” Sensor Act. B-Chem, vol. 161, 2012, pp.
114–123.

[23] M. D’Acunto et al., “Wize sniffer - a new portable device designed
for selective olfaction,” in Proceedings of the Seventh International
Conference on Health Informatics, HEALTHINF2014. SCITEPRESS
Digital Library, Mar. 2014, pp. 9–14.

[24] URL: http://www.semeoticons.eu/ [accessed: 2017-08-30].
[25] S. Colantonio et al., “A smart mirror to promote a healthy lifestyle,”

Biosystems Engineering,Special Issue: Innovations in Medicine and
Healthcare, vol. 138, 2015, pp. 33–43.

[26] P. Henriquez et al., “Mirror mirror on the wall... an unobtrusive
intelligent multisensory mirror for well-being status self-assessment
and visualization,” IEEE Transaction on Multimedia, vol. 19, 2017, pp.
1467–1481.

[27] D. Germanese et al., “A low cost, portable device for breath analysis
and self-monitoring, the Wize Sniffer,” De Gloria A. (eds) Applications
in Electronics Pervading Industry, Environment and Society. ApplePies
2016. Lecture Notes in Electrical Engineering, 2017, pp. 51–57.

[28] S. Zevin, S. G. Saunders, S. G. Gourlay, P. Jacob, and N. Benowitz,
“Cardiovascular effects of carbon monoxide and cigarette smoking,”
Journal of the American College of Cardiology, vol. 38, 2001, pp. 1633–
1638.

[29] T. Risby, Volatile organic compounds as markers in normal and diseased
states. ed. N. Marczin and M. Yacoub, IOS Press, 2002, pp. 113–122.

[30] D. Shier, J. Butler, and R. Lewis, Eds., Holes Human Anatomy and
Physiology. McGraw-Hill, 11th Ed, 2007.

[31] D. Thompson et al., “Extra intestinal influences on exhaled breath
hydrogen measurements during the investigation of gastrointestinal
disease,” Gut, vol. 26, 1985, pp. 1349–1352.

[32] W. Miekisch, J. Schubert, and G. Noeldge-Schomburg, “Diagnostic
potential of breath analysis- focus on volatile organic compounds,”
Clinica Chimica Acta, vol. 2004, 347, pp. 25–39.

[33] A. Wilson and M. Baietto, “Applications and advances in electronic-
nose technologies,” Sensors, vol. 9, 2009, pp. 5099–5148.

[34] K. Arshak, E. Moore, G. Lyons, F. Harris, and S. Clifford, “A review of
gas sensors employed in electronic nose applications,” Sensor Review,
vol. 24, 2004, pp. 181–198.



207

International Journal on Advances in Life Sciences, vol 9 no 3 & 4, year 2017, http://www.iariajournals.org/life_sciences/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[35] P. Clifford and D. Tuma, “Characteristics of semiconductor gas sensors
I. Steady state gas response,” Sens Actuators, vol. 3, 1982, pp. 233–254.

[36] H. Nagle, R. Gutierrez-Osuna, and S. Schiffman, “The How and Why
of Electronic Noses,” IEEE Spectrum, vol. 1998, 35, pp. 22–31.

[37] URL: http://www.figarosensor.com/ [accessed: 2017-08-30].
[38] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, “Metal Oxide Gas

Sensors: Sensitivity and Influencing Factors,” Sensors, vol. 10, 2010,
pp. 2088–2106.

[39] Q. Qi et al., “Electrical Response of Sm2O3- Doped SnO2 to C2H2

and Effect of Humidity Interference,” Sens. and Actuat. B, vol. 134,
2008, pp. 36–42.

[40] P. Shankar, J. Bosco, and B. Rayappan, “Gas sensing mechanism of
metal oxides: The role of ambient atmosphere, type of semiconductor
and gases - A review,” ScienceJet, vol. 4, 2015, pp. 1–18.

[41] J. Ho Sohn, M. Atzeni, L. Zeller, and G. Pioggia, “Characterisation
of humidity dependence of a metal oxide semiconductor sensor array
using partial least squares,” Sens. and Actuat. B, vol. 131, 2008, pp.
230–235.

[42] J. Yan et al., “Electronic nose feature extraction methods: A review,”
Sensors, vol. 15, 2015, pp. 27 804–27 831.

[43] W. Miekisch, S. Kischkel, A. Sawacki, T. Lieban, M. Mieth, and
J. Schubert, “Impact of sampling procedures on the result of breath
analysis,” Journal of Breath Research, vol. 2, 2008, p. 026007 (7pp).

[44] J. Jones and S. Clarke, “Effect of expiratory flow rate on regional lung
emptying,” Clin. Sci., vol. 37, 1969, pp. 343–356.

[45] N. Anthonisen, P. Robertson, and W. Ross, “Gravity-dependent sequen-
tial emptying of lung regions,” Journal of Appl. Physiol., vol. 28, 1970,
pp. 589–595.

[46] F. Di Francesco et al., “Implementation of fowlers method for end-
tidal air sampling,” Journal of Breath Research, vol. 2, 2008, p. 037009
(10pp).

[47] J. Jones, “The effect of pre-inspiratory lung volumes on the result of
the single breath O2 test,” Respiratory Physiology, vol. 2, 1967, pp.
375–85.

[48] K. Maudens, L. Patteet, A. van Nuijs, C. Van Broekhoven, A. Covaci,
and H. Neels, “The influence of the body mass index (BMI) on the
volume of distribution of ethanol,” Forensic Sci Int., vol. 243, 2014,
pp. 74–78.

[49] M. Larstad, K. Toren, B. Bake, and A. Olin, “Determination of ethane,
pentane and isoprene in exhaled air effects of breath-holding, flow rate
and purified air,” Acta Physiol., vol. 189, 2007, p. 8798.

[50] J. Anderson, W. Lamm, and M. Hlastala, “Measuring airway exchange
of endogenous acetone using a single-exhalation breathing maneuver,”
J. of Applied Physiology, vol. 100, 2006, pp. 880–889.

[51] M. Hlastala and J. Anderson, “The impact of breathing pattern and lung
size on the alcohol breath test,” Ann. Biomed. Eng., vol. 35, 2007, p.
264272.

[52] A. Jones, “Quantitative measurement of the alcohol concentration and
the temperature of breath during a prolonged exhalation,” Acta Physiol.
Scand., vol. 114, 1982, p. 407412.

[53] S. George, A. Babb, and M. Hlastala, “Dynamics of soluble gas
exchange in the airways: III. Single exhalation breathing maneuver,”
J. of Applied Physiology, vol. 75, 1993, p. 243949.

[54] S. Balasubramanian, S. Paniraghi, C. Logue, C. Doetkott, M. Marchello,
and J. Sherwood, “Independent component analysis- processed elec-
tronic nose data for predicting salmonella typhimurium populations in
contaminated beef,” Food Control, vol. 19, 2008, pp. 236–246.

[55] M. Kermit and O. Tomic, “Independent component analysis applied
on gas sensor array measurement data,” IEEE Sensors Journal, vol. 3,
2003, pp. 500–511.


