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Abstract—Modern multitasking multimedia streaming appli-
cations impose tight timing requirements that demand specific
scheduling policies. General purpose operating systems such
as Linux (widely diffused even in embedded systems) are not
specifically designed for such applications as they must ensure
an overall performance level for a wide range of user processes.
Realtime versions of general purpose kernels can be used, how-
ever since they are designed for hard real-time applications, they
impose explicit knowledge of deadlines for all tasks composing
the application to set their priorities.

In this work a novel streaming-oriented scheduling algorithm
is proposed, that relies on a standard interprocess communication
support for applications composed by multiple pipelined stages
communicating by means of message queues. It determines the
scheduling order depending on the queue occupancy, for this
reason does not require explicit deadline information. It has been
developed in Linux OS as a new real time policy, showing that
it is relatively easy to integrate in it and, worthily, it does not
require modifications of existing applications.

Keywords-scheduling; Linux; soft realtime; multimedia stream-
ing.

I. INTRODUCTION

Multimedia applications are increasingly complex and de-

manding in terms of both computational power and time

constraints. A significative example is given by the increasing

resolution and frame rate requirements of video streaming

applications. When these applications run on top of a general

purpose operating system their requirements become very

challenging. Indeed, these OSes are currently used in sys-

tem with demanding networking capabilities, where multiple

network flows must be managed. This is true not only for

desktop PCs, but also in embedded networking systems such

as media gateways, where general purpose OSes are widely

used for cost and flexibility reasons. Besides typical network

processing, these systems must perform various general pur-

pose processing at line rate such as video decoding, video

transcoding, image processing and encryption. In general

purpose OSes, the scheduler is not specifically designed for

handling real-time requirements even if a standard real-time

support does exist in well known general purpose OSes such

as Linux or Windows. However, this support is not enough

to fulfill the application requirements, basically consisting on

giving, to a process defined as “real-time”, a static priority

higher than any other “conventional process”.

Current multimedia applications are composed by a cascade

of multiple dependent tasks communicating by means of

message queues. For instance, a H.264 decoder is composed by

several steps including motion compensation, entropy decod-

ing, dequantization, inverse Discrete Cosine Transform (DCT).

Furthermore, multimedia frameworks such as GStreamer cre-

ate complex multimedia applications by chaining several

stages [1]. In both cases, the frame rate (i.e., QoS) require-

ments are backward propagated from the last stage to the

previous ones. A general purpose scheduler, such as the Linux

one, is not aware of task dependencies and timing constraints,

but only looks at how much a task is demanding in terms of

CPU utilization.

The “conventional process” scheduler is designed to pro-

mote the so called I/O bounded applications, by giving them

a high dynamic priority. These are characterized by small

(compared to the timeslice) CPU bursts interleaved to large I/O

access periods. CPU bounded ones, instead, are characterized

by much larger CPU bursts, and thus are given a smaller

dynamic priority. This is because I/O applications are supposed

to interact with the user and hence the OS attempts to reduce

their latency. On the other side, the real-time process scheduler

in Linux implements either a FIFO or a Round-Robin policy.

Both of them, as it is going to be shown in this paper, do not

take into account actual requirements of tasks, leading to QoS

degradation especially in high CPU utilization conditions.

An additional limitation of general purpose OSes arises

in presence of multiple real-time applications running si-

multaneously, as in the context of media gateways, where

several streams need to be decoded at the same time to feed

multiple network connections. Here the computational power

must be allocated to multiple decoding applications having

heterogeneous QoS requirements, such that all they perceive a

degradation proportional to their QoS requirements. This can

be hardly achieved using general purpose OSes that lack the

concept of fairness related to the QoS.

Putting it all together, general purpose schedulers are not

longer suitable to modern multimedia applications ([2], [3]).

Nevertheless, they are still common in Windows family, Linux,

and all other variants of Unix such as Solaris, AIX and BSD

(see [4] for further details).

An alternative solution would be to adopt hard real-time

schedulers, that are specifically developed for scenarios where
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deadlines must be strictly respected (e.g., life-safety critical

applications). The counterpart is that they are hard to manage

and require to explicitly provide the scheduler with timing

constraints of applications (i.e., deadlines) that must be hence

modified accordingly. There are situations where the require-

ments about the deadlines are not strict, that is, a certain

amount of them can be tolerated (for example, in multimedia

streaming): it is the case of soft-realtime applications.

In this paper a variant of the Linux scheduler is proposed,

called queue-based scheduler (QBS) that deals with soft real-

time streaming applications composed by multiple pipelined

stages. QBS is inherently aware of QoS requirements of

multitask applications similarly to real-time schedulers, but

does not require application modifications, as general purpose

ones. In order to achieve this goal, it monitors the intertask

communication, thus requiring the instrumentation of the

communication and synchronization library.

QBS implicitly assumes that applications are composed

by multiple pipelined stages that communicate by means of

queues of messages. Such applications follow a data-flow

paradigm, where tasks continuously process frames arriving

in their input queue and produce frames on their output queue

for the next processing stage. Figure 1 shows an example

of such paradigm (H.263 decoder). Most modern multimedia

applications are realized in such a manner (e.g., audio/video

decoders). The application output queue is read at fixed time

intervals (by a consumer) and if it is found empty a deadline

miss occurs.

Input Task
Output
Task

H.263
Video

Streaming

Task 1

Task 2

Task n

... Application

output queue

Task

output queues

Consumer
read

Task

input queues

Fig. 1. Pipelined multi-stage application scheme (H.263 Decoder)

The main idea behind QBS is to monitor the queue occu-

pancy level of all queues in the system and to take scheduling

decisions based on this information. Basically, QBS seeks the

emptiest queue in the system and schedules the process or task

writing into it (given that it is in running state). Thus QBS can

quickly react to situations that may lead to deadline misses,

exploiting the feedback from the queues.

In the considered application model, QoS is preserved as

long as there are data items available in the application output

queue (that is, the last queue of the application) when they

are needed by the final consumer stage. This leads to two

very important considerations. First, the application output

queue can be even empty in some periods of time without

necessarily having misses (that is, there is not a miss if the

output queue is empty when the consumer does not read data

from it). Second, in general intermediate stages have less

stringent timing requirements (because they do not generate

misses directly) .

The queue feedback approach ensures a more effective

CPU time allocation to each task, based on its real and

actual QoS requirements. From a practical point of view, the

occupancy level of the output queue of a task is used as

a measure of its CPU utilization needs. A deep explanation

of that, together with a detailed description of the proposed

algorithm, is provided in Section III. To test its effectiveness,

the scheduler has been implemented inside the Linux OS

and the standard System V message queue library has been

instrumented to support monitoring features. Thanks to this

implementation, various sets of experiments have been carried

out, using multiple video decoding applications. Experiments

compare the deadline miss rate of QBS w.r.t. both default

real-time and conventional process scheduler in case of single

and multiple decoding applications having heterogeneous QoS

requirements. Results demonstrate that QBS improves the

deadline miss rate in high CPU utilization conditions and

provides better CPU resource allocation, that is, proportional

to frame rate requirements.

The rest of the paper is organized as follows: Section II

describes related work in the area of scheduling for real-time

and multimedia applications. Section III full details the QBS

algorithm, Section IV explains why Linux has been chosen

as testbed platform, Section V describes the implementation

while Section VI shows the experimental results. Section VII

concludes the paper.

II. RELATED WORK

In literature many approaches have been proposed to man-

age soft real-time applications in commodity OSes. [5]

performs a deep evaluation of how clock interrupt frequency

influences the response time of multimedia applications. Their

study aims at helping tuning existing schedulers. Similarly,

other techniques as soft timers [6], firm timers [7] and one-shot

timers have been proposed to significantly enhance response

time. However, none of them proposes a new scheduler

algorithm but rather latency reduction techniques.

On the other side, many real time schedulers have been

proposed. SMART [8] is a scheduler for multimedia and

real time applications implemented in UNIX-like OSes. It

schedules real time tasks even trying to avoid the starvation

of conventional processes, but it requires deep modifications

of existing applications. In fact, applications have to commu-

nicate their deadlines to the scheduler, which can also return

feedbacks to enable some proactive countermeasure (e.g., re-

modulate their workload in order to meet the deadline). On

Linux, some examples are Linux/RK [9], RTE-Linux [10],

Linux-SRT [11] and RTLinux [12]. These all have the same

general drawbacks of real-time schedulers (i.e., programmers

must use a dedicated interface to exploit these services). Other

approaches explicitly require user intervention to specify the

needs (in terms of priority) of the processes or of a class of

processes (e.g., multimedia applications) [11] [13].

The algorithm proposed in this paper (QBS) provides QoS

sensitive scheduling without requiring explicit user awareness

and modification of existing applications, given that they
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follow the message queue paradigm. As mentioned in the

introduction, this model adheres with the one of modern

multimedia applications and frameworks.

III. QUEUE-BASED SCHEDULING ALGORITHM

The idea behind the proposed algorithm is to exploit the

level of the interprocess communication queues as indication

of task requirements and consequently to grant CPU time

proportionally to that. To better explain that, let us consider a

simple example of two applications, A and B, with a CPU

need of 65% and 55% respectively (that is, the system is

overloaded). Running them in a standard operating system,

without any knowledge of application requirements, A and

B will receive more or less the same treatment (i.e., about

50% of CPU each), thus A will experience a worse QoS with

respect to B. From the point of view of the queues, those of A

will be more empty, in average, than those of B. Instead QBS

monitors all queues in the system and tries to level them. As

a consequence, comparing to the previous case, A will receive

more CPU time than B, thus reducing the QoS gap between

the two applications (i.e., A will have less deadline misses

than before and B a little more than before) and assuring

a CPU time sharing proportional to their needs (i.e., both

applications will be penalized in a proportional manner rather

than in the same way). Furthermore, it is worth noting that

QBS, exploiting the feedback from the queues, is able to quick

react to situations that potentially lead to deadline misses. For

example, if a queue suddenly becomes empty, QBS notices

that and properly reacts to fill it.

Algorithm 1 describes how QBS functions. Let Qn be the

nth queue, QLn be its level (by definition, QL is an integer

non-negative number) and let N be the total number of queues

in the system, at any moment. Let Tn be the last scheduled

time of Qn’s producer. QBS basically finds the most empty

queue in the system and schedules the task that writes in it

(the producer). Note that in the paradigm used each queue

has only one producer and one consumer. If as a result of the

search two or more queues are found at the same minimum

level, QBS chooses the oldest scheduled producer, that means

the process that less recently has been executed in CPU. The

scheduleProducerOf() function schedules the producer of

the queue passed to it as argument.

Algorithm 1 Queue-based scheduler algorithm

Every decision instant do:

1: Qmin = Q1

2: Tmin = T1

3: for n = 1 to N do
4: if (QLn < QLmin) OR (QLn = QLmin AND Tn < Tmin)

then
5: Qmin = Qn

6: Tmin = Tn

7: end if
8: end for
9: scheduleProducerOf(Qmin)

The last point to analyse is how frequently QBS should be

executed. There is clearly a trade-off here, indeed: choosing a

high frequency achieves a better leveling of the queues, but,

on the other hand, it increases the number of context switches,

thus causing a higher overhead. Thus, it has been chosen to

maintain the concept of Linux timeslice: every process can

consecutively use the CPU till a maximum amount of time

(i.e., the timeslice), at the end of which the scheduler is called

and the current process (most of the times) is preempted and

another one is scheduled.

A. QBS Complexity

The algorithm’s complexity is related to the need of scan-

ning all queues in the system to find the most empty one. Thus

QBS would have a linear complexity, that is O(n) (where n is

the total number of active queues in the system). Given that the

scheduler is called very frequently, it is mandatory to reduce

its complexity as much as possible. Then it has been reduced

to O(1), that means it no longer depends on the number of the

queues. This result has been achieved adopting a special data

structure to keep trace of all queues and considering that, at

any moment in time, the only ones that could change are those

read and written by the task currently in execution. So, when

the scheduler is invoked, it quickly updates in the structure

the information about the only queues that could have been

changed. Hence, the time taken for this operation is constant

(O(1)). The details of how it is implemented are described in

Section V

IV. TESTBED SYSTEM DESCRIPTION

QBS has been implemented in Linux 2.6, thanks to its

open source nature and widespread diffusion. Indeed it is used

in desktop PCs, many server systems (e.g., web, mail, dns,

routers, etc.) and, recently, in mobile platforms too. One of

the most notable examples of that is probably Android [14],

the Google OS for smartphones, based on Linux and widely

thought to reach a leading position in the market very soon.

QBS aims at be adopted in above systems and even in

small/medium multimedia servers (e.g., audio/video on de-

mand, voip, etc.), where expensive high specific solutions (e.g.,

real time OSes) are not affordable and commodity operating

systems are the usual choice. Thus, in all these systems the

standard Linux scheduler is adopted. For all these reasons

it has been decided to compare QBS versus Linux standard

policies. The following section (IV) details these policies.

Linux standard distributions come with three policies

(some slight variations are possible depending on kernel

versions, but they are basically the same): SCHED NORMAL,

SCHED RR and SCHED FIFO. The first one is the default

policy for all tasks. It is a relatively complex algorithm

that deals with conventional processes (i.e., not real time

processes). It continuously attempts to identify interactive

applications from CPU intensive ones, using the common

mechanism (common to many OSes) described early (in the

Introduction): processes that spend most of their time waiting

for I/O operations are supposed to be interactive, while those

that heavily exploit the CPU fall in the second category.
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Then the scheduler grants more priority to the interactive

ones, in order to reduce their latency. Unfortunately nowadays

interactive multimedia applications are CPU greedy too, thus

they are penalized by this mechanism ([2], [3]). For this

reason this policy is not adequate for managing modern CPU-

demanding interactive applications (this is demonstrated in

Section VI-C).

SCHED RR and SCHED FIFO are both real time algo-

rithms: basically the former (round robin policy) equally

shares the CPU time among tasks, while the latter (fifo policy)

grants all CPU time to the first arrived process as far as

it uses it, after that it schedules the next task in the FIFO

queue. Thus the last one, given its fifo behaviour, is not

adequate for multimedia applications (it does not treat all

processes fairly). Instead round robin (RR) performs quite

well and consequently has been chosen as the main algorithm

to confront against (Section VI-C). It must be noted that

Linux real time policies are intended to manage soft real

time processes. To specify a task as a real time one, the

programmer needs only to state that using a system call. No

any other modification is needed. Alternatively, the user can

set it using the chrt linux command, without any modification

to the application code.

V. QBS IMPLEMENTATION DETAILS

This section describes how QBS has been implemented in

a standard Linux kernel. In particular, all details are referred

to kernel 2.6.20.16.

The Linux scheduler picks up the next task to be executed

from the top of a specialized task queue. Thus, the main

routine of QBS (i.e., the code that implements the algorithm

and chooses the next task to be scheduled) is called just right

before this choice, in such a manner to put the process selected

by QBS on top of that queue. In this way, the standard Linux

scheduler will find in it the task chosen by QBS.

In Section III the core algorithm has been described and in

Section III-A it has been stated that its complexity is O(1).
All above has been accomplished using the structure showed

in Figure 2. It is an array of simply linked lists, where MAX

represents the maximum possible number of items in a queue

(i.e., a System V message queue). Each element of the lists is

a queue identifier, a special structure that points to an allocated

queue. The key point here is that, at any moment in time, each

element in the nth list (i.e., that at position n in the array)

points to a queue that has n items in it (a that time). Thus

the algorithm described in Section III is implemented in this

way: it scans the array starting from 0 and selects the first

element found. Hence, it points to the most empty queue in

the system, as requested by the algorithm. Using this structure,

the algorithm needs to scan at maximum MAX array items,

resulting in a constant seek time (i.e., O(1) complexity).

The queue identifier is composed by three fields: (i) lid

is a pointer to a queue; (ii) timestamp represents the last

scheduled time of the producer of that queue; (iii) next is

a pointer to the next element in the linked list. It must be

noted that in each list, all elements are ordered in a temporal

way using the timestamp, from left to right, where on the

left there is the oldest one. Hence this assures that the first

element found during the scan of the array represents both the

producer of the most empty queue in the system and, among

all queues at the same level, the oldest scheduled one. This

structure assures that the time spent for selecting a task is

constant (O(1)), because it depends on neither the number of

the tasks, nor the number of the queues.

This structure is updated every time the scheduler is called:

as a further optimization, it checks only the queues modified

by the last executed task and, if needed, moves the correspond-

ing identifiers in the correct array position.

0

1

MAX

NULL

NULL

NULL

LID TIMESTAMP NEXT

QUEUE IDENTIFIER

Fig. 2. Array of simply linked lists of queue identifiers

VI. EXPERIMENTS

This section describes the experimental setup (Sec-

tion VI-A), the objectives of experiments (Section VI-B) and

finally the tests that have been performed (Section VI-C).

A. Experimental Setup

A dedicated machine has been set up for all experiments,

equipped with a CPU Athlon XP 1100 GHz and with 512 MB

of RAM. For the reasons explained in Section IV, the Linux

standard round robin policy (SCHED RR) is the primary algo-

rithm QBS is compared against. Nevertheless, some compar-

isons versus the SCHED NORMAL (conventional) algorithm

have been performed too. Several experiments have been set

up using many instances of two different applications, both

following the message queue paradigm described early in

Section I.

The first one, depicted in Figure 3, is composed by synthetic

tasks (i.e., they perform some useless work). Each of the first

three tasks puts data in its output queue, while Task 4 reads

data from all its input queues, performs some elaboration, and

puts the result in its output queue.

Instead the second application is a real H.263 decoder,

already showed in Figure 1. The movie to be decoded is fully

loaded in RAM before the start of experiments, in order to

avoid possible bottlenecks reading it from the hard disk. Then

the memory is locked to prevent swapping (that could alter the

results). All these operations are done by the Input Task (see

Figure 1), that then decomposes each frame of the video in n

parts and puts them in the next proper queue. Each following

task (Task 1 to n) elaborates the nth part of the frame. In the

end, the Output Task reassembles the decoded frame, performs

some elaboration and puts it in the application output queue.

It must be noted that both applications use the System V

message queue library. All operations on queues (read and
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write) are blocking, that means if a process attempts to read

in a empty queue or to write in a full one, it is suspended and

automatically woken up as soon as this situation changes.

Task 1

Task 2

Task 3

Task 4

final queue

Fig. 3. Synthetic task application

B. Objectives

In the kind of applications that are being considered, an

important metric to be taken into account is the quality of

service (QoS). Indeed the output queue of each application

instance is read at a fixed frequency, depending on the wanted

frame rate, and if it is found empty a deadline miss occurs.

The fewer the deadline misses, the greater the QoS, thus they

should be as few as possible.

As above noted, the total QoS is a significant metric,

nevertheless is not the most important one. Indeed, a more

valued characteristic is its uniformity, both per and among

applications. In order to explain that, consider the case where

all instances are perfectly identical: it is not desirable to have

a decoder that performs very well while another is working

very bad, but rather to have all them with the same QoS

level (uniformity among applications), at any time (uniformity

per application, i.e., the performance of each application is

constant in time). Generally speaking, considering application

instances with different requirements, ideally each one should

get a QoS proportional to its needs.

The experiments aim at demonstrating that QBS, with

respect to standard Linux policies, is able to achieve a better

total QoS, a better QoS performance uniformity (both per

and among applications) and to provide a QoS proportional

to application requirements.

C. Tests and Results

In order to compare the algorithms in real-world situations,

a media server has been set up using many instances of the

two decoders described before. Thus, many experiments with

several instances of such applications running in parallel have

been carried out, varying their parameters, as task workload,

frame rate, and so on.

1) Synthetic Decoder: Some experiments with the syn-

thetic application have been executed, comparing against

both SCHED RR and SCHED NORMAL. Figure 4 shows

the deadline misses (in percentage with respect to the total

number of reads at the application output queue) versus the

frame rate, running two application instances in parallel. The

miss rate plotted is the average between the two values

(note that each application has its own number of deadline

misses). In these experiments QBS performs better than the

others, having always less misses. Furthermore it sustains a

higher frame rate without having QoS worsening (namely,

26.4 fps versus 25.8 fps for SCHED RR and 22.9 fps for

SCHED NORMAL).

This experiments revealed that SCHED NORMAL is not

adequate for comparing versus QBS: indeed numerical results

(not reported in the paper) show that there is a great gap

of performance between the two application instances. For

example, it can happen that one application has zero misses for

a very long time while the other has 15% of it. This is because

SCHED NORMAL is not thought to deal with soft real time

processes and furthermore it continuously tries to prioritize

interactive tasks (this mechanism is described in Section IV).

This is the reason (for fairness) why it has been chosen to not

compare against it anymore .

Synthetic Tasks: 2 application instances
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Fig. 4. Synthetic tasks: deadline misses versus frame rate

Using a debug monitoring infrastructure, the behaviour over

the time of all queues have been carefully analyzed, observing

that QBS is able to level them (in average) while RR shows

great differences. It is possible to observe this behaviour in

Figure 5. For example (RR case), some queues are totally full

while others are completely empty. This suggests the idea that

if a queue is always almost empty (in average) and another

is in the opposite condition, probably the CPU time could

be more fairly distributed (i.e., more CPU time than strictly

needed is granted to the task which output queue is fuller).

Instead QBS shows the capacity to better level all queues in

the system, in average, suggesting a smarter CPU repartition

among tasks.
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Fig. 5. Queue levels over time

2) H.263 Decoder: In the following examples both algo-

rithms have been much more put under stress, using many

instances of the H.263 decoder. Experiments have been carried
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out ranging from six parallel instances up to eighteen (note: in

this set of experiments all instances are perfectly identical and

the input file is the same). Figure 6 shows the deadline misses

(in percentage) versus the frame rate for six applications (note:

the value is the average among all applications). It is possible

to see that QBS performs slightly better (similar results apply

for the other above mentioned cases, that is with more than

six decoders).

H.263 decoder: 6 application instances
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Fig. 6. H.263 decoder: deadline misses versus frame rate

However, the differences are really tiny. But, as it has been

explained in Section VI-B, it is more important to assess

the QoS uniformity. The two plots in Figure 7 show the

miss percentage over the time for each application (eighteen

decoders at the same fixed frame rate). Even if it is not

possible to distinguish every single application, its aim is to

display how QBS is able to much better level the QoS among

decoders. Indeed the lines in the QBS plot appear closer each

others. To numerically quantify this behaviour, the standard

deviation of deadline misses among decoder instances has

been calculated, at fixed interval times. The results reveal that

standard deviation values in the RR case are roughly three

times higher (the average values are 2.0 and 6.1 for QBS and

RR, respectively). Thus, RR at any moment in time causes

quite big differences among decoders, meaning that some

applications are performing much better that others. Another

important aspect, not clearly distinguishable from the plots, is

that this not uniformity changes also in the time (for RR). That

is, given a certain decoder, its QoS oscillates a lot over the

time (this is not a desirable behaviour). This happens much

less in QBS. Table I numerically points out that, showing

the standard deviation of deadline misses (in percentage) of

each decoder instance. It is worth noting that has been plotted

the case with eighteen decoders, the most stressing one for

the algorithm: with less instances QBS performs even better.

Carefully observing the Figure 7 in the QBS case, it is

possible to see a sort of periodic trend. This is due to three

main reasons: (i) the workload varies from frame to frame,

depending on their complexity; (ii) all decoders read from the

same source file and their application output queue is read

at the same instant, hence all tasks have a similar workload

at any moment in time (with a certain flexibility due to the

queues that intrinsically function as a buffer); (iii) it has been

previously stated that for avoiding bottlenecks the video is full

loaded in RAM before the starting of experiments, but due to

memory space restrictions, a longer duration is simulated re-

reading the same movie several times. The first two points

explain why all decoders have always similar workloads and

their variations over the time, while the last one justifies the

periodic trend. To prove that an experiment similar to the

above one has been executed, loading only one frame in RAM:

RR continues to behave as before (as in Figure 7) while QBS,

plotted in Figure 8, now shows a flat trend, without peeks and

periodic shapes.
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Fig. 7. Eighteen H.263 decoders: deadline misses over time

TABLE I
STANDARD DEVIATION OF EACH H.263 DECODER INSTANCE

# Decoder Instance
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Average

QBS 3.7 4.0 4.0 3.5 4.1 4.0 3.4 3.2 4.3 3.4 3.7 3.5 4.1 3.7 3.6 3.2 3.4 4.4 3.7

RR 7.1 7.7 6.3 6.2 5.8 6.0 6.5 7.0 6.9 6.0 6.9 6.0 6.9 6.5 6.2 5.9 6.2 7.4 6.5
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Fig. 8. Eight H.263 decoders: deadline misses over time

Previous experiments have been performed using several

instances of the same decoder (either synthetic or real), with

the same workload of internal tasks and the same frame rate.

They aimed at more easily pointing out some characteristics

of both algorithms. In order to assess their behaviour in real

scenarios, where applications can have any possible combina-

tion of workload and frame rate, other experiments have been

carried out, varying these parameters too. Plots in Figure 9

sketch the deadline misses over the time for a case in which

there are twelve H.263 decoders at 10 fps and one at 20 fps,

for each algorithm. RR causes a higher number of deadline

misses in the faster instance (32.8% in total) while none of

them in the slower ones (0.0% in total). This is because RR

equally shares the CPU time among tasks, without knowledge

of their requirements. That means that each decoder, being

composed by the same number of tasks, receives the same

slice of CPU time. Instead QBS is fairer, indeed observing

the queues it recognizes that the faster decoder has a higher

CPU need and grants it more CPU time. Hence QBS reduces

the gap in QoS between the two application categories (with

respect to the previous case), causing less QoS worsening in
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one case (10.9% in total) and more in the other one (2.95%

in average among decoders).

In order to confirm this positive behaviour of QBS, other ex-

periments have been realized, using eleven identical decoders

all at the same frame rate, but with one of them with a much

higher workload of its internal tasks (i.e., its tasks perform

heavier elaboration). The results (not reported here) are very

similar to the previous case, confirming such behavior.
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Fig. 9. Thirteen H.263 decoders with different frame rate: deadline misses
over time

Finally, one last experiment has been set up, using twelve

decoders with incremental workload: the second decoder has

a higher workload than the first one, the third one a higher

workload than the second one, and so on. Both algorithms

show a step results among QoS of applications, as expected,

but QBS distributes the performances in a more uniform

manner (with respect to RR). Figure 10 plots the results whilst

the numerical values are in Table II.
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Fig. 10. Twelve H.263 decoders with incremental workload: deadline misses
over time

TABLE II
TOTAL DEADLINE MISSES (%) OF EACH H.263 DECODER INSTANCE

# Decoder Instance
1 2 3 4 5 6 7 8 9 10 11 12

QBS 2.1 2.0 3.5 4.9 7.8 10.7 12.8 15.3 17.7 20.5 22.6 24.0

RR 0.0 0.0 0.0 0.0 0.0 0.0 1.4 11.4 19.3 26.3 31.6 36.4

VII. CONCLUSIONS AND FUTURE WORK

Nowadays multimedia applications are widespread in sev-

eral fields and there are many situations where they are

executed in commodity operating systems, such as devices for

playing audio/video or small/medium voip servers. General

purpose OSes do not provide adequate support to them. The

proposed scheduling algorithm (QBS) outperformed standard

Linux policies, both in QoS and uniformity performance

among application instances. QBS has been validated against

various utilization scenarios, using both real and synthetic mul-

timedia applications. Finally, it is relatively easy to integrate in

a standard distribution and does not require any modification

of existing applications.

We are working to further improve it in several ways, for

instance experimenting priorities among queues. We also plan

to extend it for multiprocessor systems.
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