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Abstract—In this paper, we propose an extended successive 
elimination algorithm (SEA) for fast optimal block matching 
motion estimation (ME). By reinterpreting the typical sum of 
absolute differences measure, we can obtain additional decision 
criteria whether to discard the impossible candidate motion 
vectors. Experimental results show that the proposed 
algorithm reduces the computational complexity up to 19.85% 
on average comparing with the multilevel successive 
elimination algorithm. The proposed algorithm can be used 
with other SEA to improve the ME performance. 
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I.  INTRODUCTION  

Motion estimation (ME) has been widely used in many 
video applications ranging from video compression to video 
segmentation, video tracking, etc [1]. The block matching 
algorithm (BMA) for ME is the most popular and is 
deployed in many video compression standards [2-3] 
because of its simplicity and effectiveness. In BMA, a frame 
is partitioned into a number of rectangular blocks and a 
motion vector for that block is estimated within its search 
range in the reference frame by finding the closest block of 
pixels according to a certain matching criterion, e.g. the sum 
of absolute differences (SAD), the sum of squared 
differences (SSD), etc. The full search algorithm (FSA) can 
give the optimal estimation of the motion in terms of 
minimal matching error by checking all the candidates 
within the search range, but the huge computational 
complexity of the FSA makes it inadequate for the real-time 
applications. Thus, many fast but optimal algorithms which 
provide the same accuracy as the FSA are proposed 
including the fast searching and the fast matching 
algorithms in the literature [4-9].  

The fast matching technique aims at reducing the whole 
calculations of the matching criterion for each candidate 
block by comparing only a subset of the pixels in the block. 
In lossy fast matching, it predicts the total matching criterion 
based on the statistical property of it or calculates the 
matching criterion of the sub-sampled patterns only [4-5]. In 
lossless fast matching, it is based on the simple idea that 
since the total distortion is monotonically increasing by 
progressively adding the partial distortion of the pixel-by-

pixel differences, a block comparison can be safely 
terminated if the accumulated sum of partial distortions 
becomes greater than the up-to-date minimum distortion [6].  

The fast searching is the technique to reduce the number 
of searching points. In lossy fast searching, it exploits some 
general properties of the typical images. One of these 
properties is that since the real world video sequences 
usually vary slowly, their distribution of motion vector is 
center-biased. Also, many lossy fast searching algorithms 
assume that the matching error planes are convex to reduce 
the searching points [7]. In lossless fast searching, based on 
some mathematical inequalities, it calculates the lower 
bound of the matching criterion (typically the SAD) and 
safely skips the impossible candidate motion vectors [8-9]. 
In [8], the successive elimination algorithm (SEA) was 
proposed. The SEA estimates the SAD by calculating a 
block sum difference which is the lower bound of the true 
SAD. The estimated SAD is used as a decision criterion 
whether to eliminate the impossible candidate. Gao et al. 
extended the idea of SEA to multilevel successive 
elimination algorithm (MSEA) [9]. By splitting the block 
into small sub-blocks, closer estimations to the true SAD are 
given and the estimated SAD is used as decision criteria 
whether to discard the impossible candidate.  

And there are some techniques that exploit different 
matching criteria instead of the classical SAD or SSD were 
also proposed to make the faster computation of the 
matching criteria using bit-wise operations [10].  

In this paper, we propose an optimal fast searching 
algorithm which is an extension of the typical SEA. By 
reinterpreting the typical SAD measure, we can obtain 
additional decision criteria for pruning out bad motion 
vectors. The rest of this paper is organized as follows. 
Section II gives a review of the fast searching ME 
algorithms. Section III presents our proposed algorithm. 
Experimental results and analyses are provided in Section 
IV. Finally, Section V provides conclusions. 

II. PREVIOUS ALGORITHMS 

The SAD between the current block (CB) and the 
reference block (RB) is usually used as a matching criterion 
for ME and is defined as follows: 
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where N×N is the motion block size and (x,y) is the 
candidate motion vector within the search range.  

A. Successive Elimination Algorithm 

Let 0CB  and 0RB  be the sum norms of the CB and the 

RB which are defined as follows: 
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where (x,y) is the candidate motion vector within the search 
range. Note that the sum norms of the RB can be calculated 
efficiently over the whole image [8]. From the triangle 
inequality, we can easily derive the following inequality: 
 

0 0CB RB SAD   (3) 

 
This inequality (3) shows the key idea of the SEA. If the 
calculated sum norm of the RB of position ( , )x y  and the 

CB does not satisfy the inequality (3) (in this case, the SAD 
is replaced by the up-to-date minimum SAD in the 
searching process), this means that the candidate motion 
vector of position (x,y) is not the optimal motion vector and 
the calculation of SAD is unnecessary and skipped [8]. 

B. Multilevel Successive Elimination Algorithm 

The MSEA extended the idea of SEA to a multilevel 
case [9]. By splitting the block into small sub-blocks, closer 
estimations to the true SAD are given and the estimated 
SAD is used as decision criteria whether to discard the 
impossible candidate. First, the block is partitioned into four 
sub-blocks of size N/2×N/2. Then each sub-block is 
partitioned into four sub-blocks of size N/4×N/4. This 
process can be repeated until the size of the sub-blocks 
becomes 2×2. The maximum level of such partition is Lmax = 
log2 N-1 when the motion block size is N×N. Let ( )k

lCB  and 
( )k
lRB  be the sum norms of the kth sub-blocks at the lth 

level in the CB and the RB, respectively. Based on (3), we 
can obtain 

 
11 1

( ) ( ) ( ) ( )
1 1

0 0

l lN N
k k k k

l l l l
k k

CB RB CB RB SAD
 

 
 

      (4) 

 
where Nl is the number of sub-blocks at the lth level. From 
(4), we can attain monotonically increasing SAD estimation 

values as the level increases. Therefore, more and more 
impossible candidates can be eliminated earlier as the level 
increases [9]. 

III. PROPOSED ALGORITHM 

Let ai and bi be the sequences of length N×N. As in (3), 
we can summarize the SEA as follows: 
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And we can think of the absolute operation as follows: 
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In case of SEA, the equality holds only when either of the 
following is satisfied: 
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which is rare the case. Using (5) and (6), we can think of the 
following inequality: 
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where αi takes on either 1 or -1. Therefore, to estimate the 
SAD values more precisely, the sequence αi must be almost 
the same as the signs of (ai-bi)s or totally inverted signs of 
them. Due to summations of the smaller sub-blocks and 
absolute operations in (4), the MSEA can be considered as 
the process of estimating the true SAD by forcing the signs 
of difference sequence into the true signs of it more and 
more as the level increases. In this case, the difference of the 
sum norms in each level plays as a one and only candidate 
for estimating signs of the sequences.  

The basic idea of the proposed algorithm is that we can 
enhance the estimation of the true SAD by allowing more 
candidates (whose signs of the difference sequence are 
different) in each level. To this end, we generate more 
candidates which are generalized sum norms to enhance the 
estimation accuracy. We mean a generalized sum norm as 
the summation of the pixels according to the predefined 
basic (addition or subtraction) arithmetic. 

Since the systematic and efficient calculation of the sum 
norms is one of the main reasons for computational 
complexity reduction in the SEA, the number of possible 
candidates for the generalized sum norms which can be 
calculated efficiently is limited. Fig. 1 shows the structured 
image arithmetic templates taking into consideration the 
computational complexity. We call the generalized sum 
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norms of Fig. 1 (a) as original sum norms, Fig. 1 (b) as 
horizontal sum norms, Fig. 1 (c) as vertical sum norms, and 
Fig. 1 (d) as diagonal sum norms.  

 

 
       (a)                           (b)                         (c)                          (d)    

Figure 1.  Structured image arithmetic templates (a) template used in SEA 
and MSEA (b), (c), and (d) structured image arithmetic templates 
horizontal, vertical and diagonal, respectively. 

Due to the increased candidates (horizontal, vertical, and 
diagonal), the inequality in (4) is changed as:  

 

11 1
( ) ( ) ( ) ( )
, , 1, 1,

{ , , , } { , , , }
0 0

max max
l lN N

k k k k
l z l z l z l z

z o h v d z o h v d
k k

CB RB CB RB
 

  
 

     (9) 

 
where ( )

,
k

l zCB  and ( )
,
k

l zRB  are the generalized sum norms (o 

represents original sum norms, h represents horizontal sum 
norms, v represents vertical sum norms, and d represents 
diagonal sum norms) of the kth sub-blocks at the lth level in 
the CB and the RB, respectively. The proposed algorithm is 
almost the same as the MSEA except the following two 
differences. The first one is that the proposed algorithm 
gives more stop conditions than the typical MSEA (in the 
first level, there are 3 more stop conditions than the typical 
MSEA. And since these stop conditions are of the first level, 
if one of these stop conditions is satisfied, it reduces the 
total computational complexity more). The second one is 
that due to (9), we can attain closer SAD bound than the 
typical MSEA at the same level reducing the computational 
complexity.  

Note that there is a trade-off between the increased 
computational complexity of calculating the increased 
generalized sum norms and the reduced computational 
complexity by pruning out the bad motion vectors in an 
early stage. And the increased stop conditions can be pros or 
cons. To estimate the actual effects of the generalized sum 
norms in computational complexity, we calculated the 
computational complexity of the proposed algorithm in 
terms of the searched points.  

TABLE I.  COMPUTATIONAL COMPLEXITY OF THE GENERALIZED 
SUM NORMS CALCULATIONS WHEN THE MOTION BLOCK SIZE IS 1616 
AND THE SEARCH RANGE IS ±16 

 MSEA 
Proposed 

- All 
Proposed 
- H only 

Proposed 
- V only 

Overhead 
(points) 

3.74 11.21 5.60 5.60 

 
Table I shows the computational complexity of the 

generalized sum norms in terms of the SAD calculations 
when the motion block size is 1616 and the search range is 
set to ±16. To be specific, the table shows the number of 

total operations divided by one SAD calculation operations, 
in this case we assume that the computational complexity of 
addition and subtraction operations and that of the absolute 
operations are the same. 

Table II shows the average search points of the proposed 
algorithms when all the generalized sum norms are used (3rd 
column), only the horizontal sum norms are used (4th 
column), and only the vertical sum norms are used, 
respectively. Note that the original sum norms were also 
used in all of the proposed algorithms. The test sequences are 
of CIF-size and 100-frame long. The motion block size is 
1616 and the search range is set to ±16. The computational 
complexity of the table I is also considered.  

TABLE II.  AVERAGE SEARCH POINTS OF ALGORITHMS FOR CIF 
SEQUENCES WHEN THE MOTION BLOCK SIZE IS 1616 (100-FRAME, 
SEARCH RANGE IS ±16) 

 MSEA 
Proposed 

- All 
Proposed 
- H only 

Proposed 
- V only 

stefan 63.65 82.62 58.81 75.91 

football 62.36 81.54 60.53 72.17 

foreman 51.87 65.92 48.92 53.58 

mobile 40.62 49.62 40.46 40.52 

coastguard 63.25 76.65 46.83 92.75 

container 42.00 53.15 37.00 47.66 

flower 109.42 128.72 89.35 112.45 

Avg. 61.88 76.89 54.56 70.72 

 
From the table, we can see that using all the generalized 

sum norms and using only the vertical sum norms does not 
provide any computational reduction. Therefore, the final 
proposed algorithm uses the following inequality for 
additional stop conditions for the typical MSEA. 
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IV. EXPERIMENTAL RESULTS  

The performance of the proposed algorithm was 
compared with the MSEA in terms of the SAD calculation 
points. The full frames of the 7 CIF (352  288) sequences, 
4 SD sequences (704  576), and 4 HD sequences (1280  
720) were used as test sequences. Motion block sizes were 
all 1616 and the searching processes were in spiral order.  

Tables III and IV show the average searched points of 
CIF and SD sequences when the search range is ±16 and 
±32, respectively. The proposed algorithm outperforms the 
MSEA. To be specific, the performance of the proposed 
algorithm is better than that of the MSEA by 20.0% on 
average when the search range is ±32 for SD sequences. 
Table V shows the average searched points of HD 
sequences when the search range is ±16, ±32 and ±64, 
respectively. Note that since the ME accuracy of the 
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proposed algorithm is the same as that of the MSEA, we 
omit the ME accuracy in terms of the peak signal to noise 
ratio (PSNR) here.  

TABLE III.  AVERAGE SEARCH POINTS OF ALGORITHMS FOR CIF 
SEQUENCES WHEN THE MOTION BLOCK SIZE IS 1616 (FULL-FRAME, S.R. 
= SEARCH RANGE) 

 MSEA Proposed – H only 

 S.R. = ±16 S.R. = ±32 S.R. = ±16 S.R. = ±32 

Stefan 100.33 170.26 90.20 148.87 

football 57.10 126.27 56.28 118.21 

Foreman 57.75 97.84 57.9 93.77 

Mobile 35.06 78.55 34.52 72.73 

Coastguard 54.61 128.21 41.21 89.51 

Container 43.25 84.04 37.94 73.68 

Flower 91.46 162.33 77.57 138.36 

Avg. 62.79 121.07 56.52 105.02 

 

TABLE IV.  AVERAGE SEARCH POINTS OF ALGORITHMS FOR SD 
SEQUENCES WHEN THE MOTION BLOCK SIZE IS 1616 (FULL-FRAME, S.R. 
= SEARCH RANGE) 

 MSEA Proposed - H only 

 S.R. = ±16 S.R. = ±32 S.R. = ±16 S.R. = ±32 

ICE 157.23 378.44 119.9 279.72 

CITY 48.25 94.85 48.00 91.16 

CREW 115.55 223.4 107.25 207.32 

SOCCER 93.08 176.96 81.9 150.71 

Avg. 103.53 218.41 89.26 182.23 

 

TABLE V.  AVERAGE SEARCH POINTS OF ALGORITHMS FOR HD 
SEQUENCES WHEN THE MOTION BLOCK SIZE IS 1616 (FULL-FRAME, S.R. 
= SEARCH RANGE)  

 MSEA Proposed - H only 

 S.R. 
= ±16 

S.R. 
= ±32 

S.R. 
= ±64 

S.R. 
= ±16 

S.R. 
= ±32 

S.R. 
= ±64 

Big 
-Ships 

53.57 100.53 174.95 45.26 78.89 158.67 

Crew 178.57 365.27 718.07 156.08 321.34 648.33 

Preak 
-ness 

25.00 49.69 91.71 24.55 43.97 108.6 

Sheriff 39.30 77.06 173.64 35.45 64.23 134.22 

Avg. 74.11 148.14 289.59 65.34 127.11 262.46 

 
As can be seen from the tables, the proposed algorithm 

outperforms the MSEA in terms of the computational 
complexity.  To be specific, the proposed algorithm reduces 
the computation complexity by 19.85% when the search 
range is ±32 for SD sequences. Since the proposed algorithm 
can be easily plugged in other SEA based ME algorithms, 
additional computational reduction for this seemingly 
marginal gain can be expected. 

V. CONCLUSIONS  

By reinterpreting the typical SAD measure, we proposed 
an extended SEA for fast optimal block matching ME in this 
paper. By allowing more candidates in estimating the true 
SAD, we can obtain additional decision criteria whether to 
discard the impossible candidate motion vectors. 
Experimental results show that the proposed algorithm 
reduces the computational complexity up to 19.85% on 
average comparing with the typical MSEA. Since the 
proposed algorithm can be easily adopted in other SEA 
based ME algorithms, additional computational reduction 
can be expected. Therefore, our future research will be 
focused on merging the proposed algorithm with the 
previous SEA based ME algorithms to reduce the 
computational complexity a lot without degrading the ME 
accuracy. 
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