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Abstract—Knowing where a mobile user will be next can
deliver a tremendous increase in network performance under
high load, as this knowledge enables pro-active load balancing.
To derive this information, sequences of traversed cells are fed
into pattern detection algorithms. After the training phase the
learned model predicts each user’s next cell. Even for complex
scenarios, the prediction accuracy can exceed 90%. Predictions
are used to rearrange mobile connections in a simulated high-
load scenario centered around an event at a soccer stadium.
To prevent call drops for mobile users targeting the stadium,
apropriate resources in the predicted next cell are reserved. The
results exceed 20% in improvements for throughput and call
drop rates, enabling the network to bear a much higher load
before stalling.

Keywords-Handoff Optimization; Mobility Prediction; Load
Balancing

I. THE PROBLEM OF USERS CHANGING CELLS

Seamless handoff from basestation to basestation is essential
for preserving mobility in cellular networks. Here we pro-
vide an additional indicator for handoff, which complements
existing decision algorithms and can be used to manage
overall mobile network load. The major advantage of this
approach is the early availability of the handoff indicator,
being in the range of several seconds compared to short-term
measurements of signal strength and quality.

The idea is, that moving users are bound to the geographical
topology, i.e., street and rail networks, and therefore are forced
to partial deterministic behavior. Each movement provides a
trail of traversed cells, which deliver a coverage fingerprint
for the mobile network. Using knowledge discovery or data
mining algorithms to learn the historical sequences of cells
lead to a prediction of the most likely next cell each time a
user enters a new cell.

This document consists of two main parts: In Section II, the
overall achievable next-cell prediction accuracy is calculated
for a sample geographical topology. The scenario demon-
strates, how the artificial intelligence algorithm performs for
varying road and railway networks, depending on the available
input data for training the algorithm. The way the mobile data
is handled, the privacy of the user’s is respected and it is
unnecessary to trace complete profiles on a per-user basis.

In Section III, the same methods are applied to a high load
scenario: Mobile users moving to and from a soccer stadium.

Fig. 1. Available features during user movements

The knowledge of the predicted next cell users are moving
into is used to balance the load in the mobile network and
enhance the user’s quality of experience. The scenario is built
using network coverage measurements, the underlying road
and railway network, typical network traffic, and finally, the
numbers of visitors for each means of transport. The results
show the potential for gaining benefits by actively rearranging
connections with knowledge about expected handoffs.

II. SPACE-DOMAIN PREDICTION OF NEXT CELLS

Space-domain prediction of cells estimates where a mobile
user will move next and identify the basestation candidate for
the new association. In this section, the complete process from
building mobility traces up to prediction of expected next cells
with pattern detection algorithms is examined.

A. Mobility trace generation for pattern recognition

Every mobile cellular network needs a component, which is
informed about the current location of the user based on the
associated cell. Where this information is available depends
on the type of network, e.g., mobile switching centers and
location registers for mobile networks or remote authentica-
tion servers for wireless local area networks (WLAN). The
known location is typically rather coarse and one reason why
smartphones deploy GPS receivers for location based services.
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Here we rely on the most common denominator indepen-
dent of the specific network type, the basestation identifier.
In addition, the duration t each user is connected to each
basestation can be easily derived from the sequence of asso-
ciation/deassociation events. Further parameters may include
position or distance to the basestation (see Figure 1), but are
proved not to be mandatory for a good next cell prediction
accuracy. An example sequence generated by a mobile user
consisting of information tuples BS-ID, Residence Time may
look like BS1, 20s, BS2, 35s, BS4, 32s, . . . The length of these
sequences is limited by the overall call duration, as mobile
nodes in many networks can only be tracked during active
connections or otherwise in large location areas bundling
several cells. Very long sequences of traversed cells may occur
for example when driving on vacation and the kids playing
mobile online games during the trip on the backseat of the
car. As very long sequences in most cases do not provide
more information, all generated sequences are limited in length
and split into shorter sequences. The optimal upper bound of
length is also part of the analysis and results for sequence
lengths between 3 and 6 cells are compared.

The set of all generated traces are used as training data for
the pattern detection algorithm. The goal is to correctly predict
the last basestation in each sequence.

B. Related research in cellular predictions

Predicting the next cell for moving mobile users has been
in focus of mobile positioning research for several years.
Macroscopic mobility prediction as discussed here sets the
focus on the cellular level, which is useful in network load
balancing.

In [3], a fundamental approach has been described for
macromobility predictions: A variant of the ZIP-compression
algorithm called LeZi is used to build a tree per user from
the cell sequences. This algorithm delivers a good prediction
accuracy for complete sequences, i.e., without missing values
or changes in the cell sizes due to radio effects, and different
variants are still popular today (see [7]) due to its simplicity
and low consumption of computing resources.

The work on algorithms for mobility prediction can be
classified into several categories as defined in [4]: Domain-
specific, user dependent and usage of time.

In our previous work in [1], we demonstrated that the
selection of the specific algorithm used for predicting the
position is of secondary importance. While of course some
algorithms may deliver higher accuracy compared to others,
in most cases the question whether the mobility sequences
contain learnable patterns of movements at all is more critical.
Typically, general purpose data mining algorithms as the
Support Vector Machine used in this publication are able to
extract a minimum of patterns in the data if existent. Therefore
we only investigate domain-independent algorithms without
the need for mobile network specific parameters and keep the
pattern detection algorithm replaceable

The feasibility of predictions per user profile has been
demonstrated in several recent publications as [11], [12], in

[6] for WLAN or in [8] with a prediction accuracy up to 93%.
Nevertheless, learning individual movement patterns comes
at the price of impacting privacy. The training data used for
the predictions in these scenarios has every user identification
removed, resulting in pattern detection independent of specific
user behavior. Of course, approaches like this can only work
in case the geographical topology restricts the users in their
movement (e.g., on highways or in trains), so that meaningful
patterns are generated.

Beside the spatial prediction, predicting the time of the
handoff to the next cell is also necessary to reserve resources
promptly. This timing can be integrated into the prediction
model itself as demonstrated in [5]. This approach is reason-
able if different points of time lead to different user behavior
(e.g., weekend/weekdays, morning/evening). For short term
changes, e.g., during traffic jam, incorporating time into the
model increases the complexity of the training process. Our
previous work in [2] presented an approach to deal with short
term behavioral changes. For the work presented here we are
independent of absolute timing and simply use cell residence
time as a learning attribute.

C. Dynamic user-agent based mobility models

The feasibility of next-cell predictions strongly correlates
with constraints moving users have to face due to the geo-
graphical topology, network coverage and most important the
degree of determinism in the movements itself.

For this work several mobility models are combined to
include different behavior. Essentially, these models are Path
Follower, Gravity and Random Walk models. The path fol-
lower model can closely resemble commuting behavior: Fol-
lowing a preset path, staying at the target area for a certain
amount of time and following a similar path back to the origin.
This mobility model presents the highest level of determinism
in the traces, introducing uncertainty only in variance of speed
or residence times at target areas.

The gravity model assigns for different areas a so-called
gravity value. This parameter sets a level of attractiveness to
the areas, defining the probability for selecting this area as the
target for movements.

Finally, the random walk model provides no determinism,
but is still useful to generate a certain amount of background
noise for the pattern recognition algorithm. Nevertheless, the
random movement of course is still constrained by the road
network, leading partly to the same traces as the other mobility
model, e.g., on highways without a chance to leave at will.
Random mobility is valuable to generate traces for areas,
where the road density is high compared to the diameter of
network cells, for example for GSM cells covering dense urban
areas.

All mobile users are modelled as Agents without a fixed mo-
bility model. This enables user traveling by car and switching
to walking at the destination.

Figure 2 presents an exemplary scenario combining the
road network, mobile network coverage and mobile user
agents for simulation. The focus is put on situations where

165

MOBILITY 2011 : The First International Conference on Mobile Services, Resources, and Users

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-164-9



Bahnlinie

zentrale Fläche, Freiraum

Mobilfunknutzer, Beispiele

Haltestelle
S
tr
a
ß
e

Basisstationen, 

Ausschnitt
Simulationsabschnitt OstBS_NW

BS_W1

A: 25%

A: 25% A: 25%

A: 25%
B: 9%

B: 9% B: 9%B: 9%

B: 19%/C: 16%

B: 9%

B: 18% B: 18%

C: 20%

C: 16%

C: 16%

C
: 
1
6
%

C: 16%

Attraktivität des Bereichs,

Nutzergruppe B

Haltestelle

Abschnitt OstSection EastBasestation (Example)

Central Area

Rail Station

Railway

Mobile UserAttractiveness for user type B

Fig. 2. Simulation scenario with different mobility models

mobile networks may easily receive high load: Highways and
especially railways. Here a large amount of potential mobile
application users switch cells nearly simultaneously and stay
in a cell only for a short amount of time. In contrast, the rail
network disables freedom of movement, forcing the users to
certain sequences of cell transitions. The next section delivers
results for the predictability of these sequences.

The geographical topology consists of several different ar-
eas: In the center one large area like an urban center, enabling
random movements. This area is adjacent to the four areas to
each side, introducing noisy patterns to the more regular streets
and rails in these outer areas. Each of the four areas provides
a different combination of possible user mobility: Rails only
in the north, rails parallel to a simple street network in the
south, to an area to the east and parallel to a highway in the
west. Each line of rails also incorporates stations, where the
simulated train stops for several seconds.

All mentioned mobility models are integrated into the
scenario. For the gravity model the attractiveness distributions
of user types A − C is given. The topology is covered by
overlapping cells, most of them are not show in Figure 2 for
sake of simplicity. The western area as an exception shows
some cells, as this part of the scenario is especially difficult
for pattern recognition. Highway and railway users generate
identical sequences of traversed cells except for two tiny cells
individual to each path. A correct prediction for these cells
is only possible in case the pattern detection algorithm can
distinguish users on the parallel tracks.

D. Predicting next cells with pattern detection

The generated sequences are used to train pattern detection
algorithms and predict the next cell (the target class) for
new sequences. As classification of examples is a well-known

task for pattern detection, several algorithms are available for
this classification task. The more expressive the algorithm
is, the better it can be adapted to complex traces, but the
more difficult it is to find the optimal set of parameters for
the algorithms. In parallel, the input data has to be selected
carefully: What is the optimal maximum length for mobility
sequences? Which features beside the basestation identifier
enhance the pattern detection process?

For the results presented here the well-known Support
Vector Machine (SVM) machine learner has been used for
the prediction process, see [9]. SVMs try to separate the
data samples by optimal hyperplanes and new examples are
classified depending on which side of the hyperplane they are
positioned. The hyperplane’s location is defined by the so-
called support vectors, which consist of a selected subset of
all provided examples. The plane is considered optimal, if
it minimizes the number of samples on the wrong side and
maximizes the distance to the support vectors.

As a simple plane can not always capture the nature of
data distributions, kernel functions allow to transform the input
data into a modified space. A popular kernel is for example the
polynomial kernel with the degree as a parameter. Selection of
kernel and parameters like degree has to be done consistently
for every example set.

To extend the SVM’s ability to predict more than two possi-
ble classes (due to only comparing the side of the hyperplane
of the example in question), the problem of multiple classes,
as necessary for predicting the next cell, can be covered by
pairwise predictions between each class.
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Fig. 3. Cell prediction accuracy for different features

Figure 3 presents the prediction accuracy as relation of
correct to all predictions. Four different maximum sequence
lengths 3-6 have been evaluated as well as using only the
basestation identifier (on the left side) and identifier in com-
bination with cell residence time (right side of the figure).
The SVM can handle a combination of nominal data (BS-Id)
and continuous data (time) without changing the algorithm.
All results are generated using a ten-fold stratified cross-
validation, delivering a 90% confidence interval in the range
of ±1.65.

The reference prediction (horizontal line) is calculated using
a Markovian O(1)-predictor. This simple classifier uses only
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the currently associated basestation as input and predicts the
next which occurred most frequently in the training examples.
The O(1)-predictor therefore delivers an estimation of the
learning complexity, with more neighboring basestations and
a uniform transition probability resulting in a lower accuracy.

The results in Figure 3 show for the id-only case an accuracy
of around 65%, which is 20% higher compared to the O(1)-
predictor, but still not sufficient for reliable enhancements of
handoff and network management. For longer sequences of up
to six cells the accuracy even slightly decreases. Effects like
this appear in cases, where the added data masks the valuable
bits of information provided by the rest of the features (here
the higher information value of the latest basestation compared
to previous ones.

A great boost in prediction accuracy can be seen for the
second evaluation, BS-Id with residence times. Users traveling
by car provide different patterns compared to users traveling
by rail. Using the duration in each cell these users become
separable, increasing the prediction accuracy up to 94%. Here
the predictions even benefit from longer sequences, as the
likelihood of identifying a user’s means of travel increases
with more durations available.

Predicted cell
SW W3 W1 NW W2b W2a Real
0.81 0.00 0.00 0.00 0.00 0.00 SW
0.02 0.79 0.01 0.00 0.00 0.00 W3
0.00 0.00 0.93 0.01 0.02 0.01 W1
0.00 0.04 0.02 0.94 0.00 0.00 NW
0.01 0.00 0.00 0.01 0.56 0.56 W2b
0.01 0.00 0.00 0.01 0.42 0.43 W2a

TABLE I
CONFUSION MATRIX, WEST SIDE OF SCENARIO

Predicted cell
SW W3 W1 NW W2b W2a Real
0.99 0.01 0.00 0.00 0.00 0.00 SW
0.00 0.99 0.01 0.00 0.00 0.00 W3
0.00 0.00 0.99 0.00 0.00 0.00 W1
0.00 0.00 0.00 1.00 0.00 0.00 NW
0.00 0.00 0.00 0.00 1.00 0.00 W2b
0.00 0.00 0.00 0.00 0.00 1.00 W2a

TABLE II
CONFUSION MATRIX, WEST SIDE, INCLUDING RESIDENCE TIME

Tables I and II enable a detailed comparison of this effect
per basestation for the western part of the scenario. Cells with
Ids W2a and W2b are the small cells distinct for highway
and railway. Table I presents an overall good accuracy for
most cells with the exception of these two cells (56% and
43%). Including the duration needed to cross the cells into the
training data increases the accuracy for all cells and enables
perfect predictions of W2a and W2b. The duration enables
to distinguish users without any further information like GPS
positions, knowing in advance which of the cells will be next.

III. BALANCING HIGH-LOAD SCENARIOS

This section applies the next cell predictions of the former
section to balance network load in the mobile network itself.
The early knowledge about users entering a new cell delivers
a convenient time frame for reservation of resources.

A. Scenario description: Soccer stadium

The scenario used for evaluating the effect of predictions
is based on the same principles as the scenario presented
before and incorporates a real geographical topology, network
coverage measurements and user movement profiles.

Train stop

Car park

Subway

Highway

Traffic measurement point

Fig. 4. Topology for mobility simulation of the stadium scenario

Figure 4 illustrates the scenario: The central point of interest
is the soccer stadium in Dortmund, a German city with more
than 500,000 residents. During an event at the stadium more
than 60,000 people are arriving and leaving the stadium;
20,000 people unrelated to the event are expected to move
in the region. Data provided by the local Department for
Traffic, the regional transport and the stadium operator enables
detailed modelling of the movement behaviors. The floating
car data is measured using sensors in the streets and have
been provided for several days, with and without events at the
stadium to calculate the difference in paths and car density.
The distribution of visitors arriving by train, car and foot
determine the parameterization of the simulated agents, which
are again able to switch mobility models. Visitors arriving by
car change to a walk model after arriving at the parking sites
etc.

For later evaluation two main paths have been selected: At
the northern top the urban high way B1 crosses the scenario
from east to west. Secondly, a railway track from north-west
to south-east provides one main access route to the stadium.

Together with user movements, the traversed basestations
need to be captured. To gain a realistic view of the cover-
age, the basestations in range have been measured. Figure
5 displays results of measurements by car and foot. Each
measurement has been associated with GPS positions and
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Highway B1

Stadium
Railway

Fig. 5. Coverage measurements for stadium scenario

shows the associated primary UMTS-HSPA basestation. At
most positions an active set of 4 was available, showing a high
overlap of adjacent cells. This is a necessary precondition to
enable rearrangement of connections into neighbor cells.

Interestingly, the measurements highlight a classical handoff
parameter, the handover margin. The position of handover is
shifted due to this margin depending on the direction of travel,
as can be seen for the B1 at the north of the figure.

B. Mobile network management

This section concentrates on applying the next-cell predic-
tions for different dynamic network management techniques
like reserving radio resources for expected users or rearranging
existing connections to maximize data throughput.
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Figure 6 presents the enhancements for handoff success rate.
According to data provided by the German mobile network op-
erators, the aggregated data traffic exceeds 1,000 Erlang voice
calls equivalent during the event in and in direct neighborhood
to the stadium. In case a user with an active connection gets
into a cell without free resources, the connection has to be
dropped. When a user successfully enters a new cell, the next
cell is predicted and the resources for this user are blocked in
the expected cell.

To examine the effects for different load situations, the
simulation has been scaled for different percentages up to
the full load simulating all 80,000 mobile users. Please be
aware, that a scaling factor of 0 includes still one user for
each mobility model.

As to expect, for a small load scale, the handoff is equal
to or nearly 100%, as no cell is completely filled with
connections. The success rate starts to decline with increasing
load. Figure 6 displays the success rate for two paths, B1
and railway, and for two modes: With and without using the
predictions. The success rate declines faster for users arriving
by train, as these users travel faster and in higher numbers,
increasing the probability for arriving at resource depleted
cells.

Reserving resources can not completely avoid this effect, but
significantly improve the success rate. The decline is slowed
and the improvement of handoff success can go up by 28%
for the fully loaded scenario.
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Fig. 7. Handoff success rate based on call holding time

Whether a reservation based on the prediction can be
successfully executed, depends on the holding time of connec-
tions. Mobile operators report an ever increasing utilization,
starting with one minute mean call duration for voice calls
and two minutes for video calls in pre-iPhone times. Figure 7
presents the handoff-success rate based on mean holding times
and a pre-reserved guard channel. Most network operators
prioritize active over new connections and set a fixed amount
of cell capacity for users arriving in the cell, decreasing the
amount of capacity for new connections accordingly.

Users targeting a fully loaded cell get a reservation in case
for a prediction (Handoff QoS), when an existing connection
is closed or the guard channels are not completely used.
The success rate therefore depends on ratio of the mean cell
transient time h1 of the moving users and the mean holding
time h2 of the resident users in the target cell, h = h1

h2
.

Figure 7 presents the results for a fixed h1 and varying h2

of n = 20 users resident to the cell. For large ratios h ≥
0.2 nearly all handoffs can be handled perfectly without the
need for fixed guard channels. For increased holding times and
smaller ratios h = 0.025, the probability of ending connections
in the target cell drops and the success rate is below 40%.
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This can be compensated with the classical guard channels.
Nevertheless, using the predictions for channel reservation, a
smaller fixed guard channel is needed to achieve the same rate
of successful handoffs.
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Fig. 8. Network throughput with rearrangement of connections

Lastly, the results presented here further enhance network
management by rearranging active connections to neighboring
cells for predicted incoming connections to the cell. This
handles situations, where throughput can be maximized by
distributing the traffic more evenly. Figure 8 illustrates the
effect again for two sample users with a reference bitrate of
64 kBit/s TCP traffic. Moving into high-load cells, especially
with mixed traffic types and the need to compete with UDP,
degrades the mean throughput to 0 kBit/s for the highest load
in the scenario.

As for the handoff success rate, the throughput starts to de-
cline with increased load. The error bars for each point present
the median absolute deviation, increasing with higher variance
and bias in the data transmission. Again, a higher amount of
Quality of Service can be guaranteed by using the predictions
and moving existing connections from predicted next cells.
Nevertheless, in the end with full load in the scenario, the
TCP connection looses against other traffic source like UDP.
This leaves an area between the two extremes of underused and
exhausted network, where the rearrangement balances network
load and improves QoS for all mobile users.

IV. THE BENEFIT OF USERS CHANGING CELLS

Instead of compensating for the effects of moving users
on the network routing, we actively use knowledge about
previously visited cells to predict the next location and balance
traffic load accordingly.The results demonstrate, that even with
simple features like identifiers and cell residence times the
geographical constraints mobile users face can be detected.

Predicting user’s next cell with a high accuracy of more
than 90% provides mobile network operators with a powerful
tool to rearrange traffic. This enhances quality of service for
the users as well as saving costs for operators due to more
efficient utilization of infrastructure. The approach is non-
intrusive and intended to co-exist with mandatory network
management for handoff, call admission control and routing.

User’s privacy is preserved as no individual patterns need
to be learned. The only time where the user’s id can be
associated with the sequence of basestations is when preparing
for predicting the next cell. In the future, further methods to
make users anonymous like proposed in [10] may enable to
provide the data to external location based service providers
without breaching privacy.

The final step, before the methods proposed here are con-
sidered ready for production use, relates to the selection of
subsets of cells for model training. As an example, for the
region of Dortmund for the combined network types from
GSM to 3G, including sectorization, more than 500 cell ids
can be measured. For the whole country this will result in an
amount of cells too large for most data mining algorithms.
Future research concentrates on distributed data mining for
automatically generated clusters of cells.
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