
Reconfiguration of Legacy Software Artifacts on
Resource Constraint Smart Cards

Daniel Baldin, Stefan Grösbrink, Simon Oberthür

Design of Distributed Embedded Systems
Heinz Nixdorf Institute, University of Paderborn
Fuerstenallee 11, D-33102 Paderborn, Germany

dbaldin@upb.de, stefan.groesbrink@hni.upb.de, oberthuer@upb.de

Abstract—Today’s adaptable architectures require the support
of configurability and adaptability at design level. However,
modern software products are often constructed out of reusable
but non-adaptable legacy software artifacts (e.g., libraries) to
meet early time-to-market requirements. Thus, modern adaptable
architectures are rarely used in commercial applications, because
the effort to add adaptability to the reused software artifacts is
just too high. In this paper, we describe a methodology to semi-
automatically use existing binaries in a reconfigurable manner. It
is based on building the annotated control flow graph to identify
and extract code on static basic block level depending on different
execution requirements given as a set of constraints. This allows
for adaptation of binaries after compile time without the use
of the corresponding source code. We propose a way of adding
additional reconfiguration support to these binary objects. With
this approach, reconfiguration can be added with a low effort to
non-adaptive software.

Keywords—Reconfiguration; Legacy Software; Smart Cards

I. INTRODUCTION

Software developers often use existing pre-compiled soft-
ware libraries for various reasons. One reason may be the
reduced development time by using third party libraries.
Sometimes the use of third party hardware components may
also require the use of so called board support packages. In
other cases the reason for using pre-compiled libraries may
even be as simple as missing source code or documentation.
While using these libraries greatly eases the development of
new software products, they may also be a source of problems
in very resource constraint embedded systems.

Runtime reconfiguration can be the enabling technology
for these kind of embedded systems such as Smart Cards
by allowing temporarily unused functionalities to be replaced
by currently needed functionalities. However the use of pre-
compiled third party libraries limits the reconfigurability of the
system. State of the art approaches try to solve this problem
by wrapping the whole legacy library into a reconfiguration
component, leading to a huge waste of memory. Thus, if we
want to efficiently use existing libraries inside a reconfigurable
system, which cannot be modified at source code level and
contain huge amounts of unused or rarely used code, a new
approach is required.

In this paper, we introduce a methodology which semi-
automatically adds reconfigurability to binary objects using

a set of constraints which specify reconfiguration points by
high level expressions. The approach is based on creating
an annotated control flow graph of the binary on static basic
block level and requires only minimal source code informa-
tion. Specifically, we analyze method signatures to identify
higher level expressions that are used for the identification of
reconfiguration entry points of the software. The availability
of method signatures is only a small restriction since even
proprietary libraries include header files containing structure
and method signatures describing the Application Program
Interface (API) of the library. If this is not be the case,
the entire library would not be usable by any higher level
programming language as the interfaces would be unknown.

The remaining paper covers the overall methodology of
our reconfiguration framework implemented for the ARMv4
Instruction Set Architecture (ISA) in detail, starting with the
basic techniques used, followed by the component model, the
identification of components, optimizations and concluding
with an explanation on the modifications of the original
system. Our case study, the evaluation section is based on,
focuses on an Internet-Protocol Stack library for an ARM
powered Smart Card containing protocol implementations for
IPv4 [1], IPv6 [2], TCP [3], UDP [4] and TLS [5]. The
scenario contains a web-server which offers communication
ports using all of these protocols of the library. However, at
runtime not all protocols are used at the same time, which
makes it interesting to use the corresponding protocols as
reconfiguration components. The paper concludes with related
work and outlook.

II. METHODOLOGY

Our approach allows the use of code from legacy libraries
as well as fine-granular reconfiguration without the drawbacks
of current state of the art approaches. Common approaches
either do not allow legacy libraries to be used or simply wrap
the complete legacy library into one huge component. This
however is not practical for very resource constraint systems.
Libraries are typically not given as high level code which
might be rewritten for reconfiguration support. Thus, a low
level method to extract components out of these libraries and
to add reconfiguration support to them is needed. Forcing the

122Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

user to do this manually is something that is highly undesirable
as well as often impractical as the expert knowledge required
to do this cannot be assumed to be available. With this in mind
the approach proposed in this paper focuses on the following
requirements:

• Usability: Converting parts of the legacy code into recon-
figurable components shall be supported by an automated
tool that supports to configure the system parameters.

• Run-Time Efficiency: Component loading and replace-
ment shall be as simple as possible without any need
of linking the components at run-time. The execution
overhead at runtime shall be kept as small as possible.

• Correctness: The semantics of the legacy code must not
be changed.

All of these requirements are covered by the approach
described in the next sections. The usability is improved by
the use of an automatic binary analysis step in combination
with the possibility of allowing the user to specify components
with high level constraints. Run-time efficiency is achieved
by minimizing the overhead of the run-time reconfiguration
approach by statically resolving dependencies and by op-
timizing the components based on parameters as memory
and binary overhead, as well as the worst case number of
reconfigurations at runtime. The correctness is ensured by the
use of instrumentation code which does not change the context
of the application. The overall approach is depicted in Figure
1. The approach uses the binary objects, a reconfiguration
manager including a replacement policy and a configuration
file as the input. The first step is the binary analysis of the
legacy objects which is covered in the next section. Some of
the steps of the approach are ISA specific. In this paper, we
will focus on the ARMv4 ISA as our evaluation platform is
an ARMv4 powered Smart Card.

A. Binary Analysis

By disassembling the binary code the static basic blocks
and the control flow between these blocks of the program are
identified. A static basic block is a sequence of instructions
that has exactly one entry point and one exit point. We use
the basic block as the smallest representation unit since it
describes a linear flow of instructions. A non-linear control
flow appears only at the end of a basic block. Each instruction
that is a target of a branch instruction defines a new basic
block. In general, every program can be uniquely partitioned
into a set of non-overlapping static basic blocks.

Figure 2 depicts the first four basic blocks of the disas-
sembled ip6_input method. Using these blocks a graph
representing the possible control flow of the processor as seen
in the Figure is derived. This graph is called the Control
Flow Graph (CFG). Each node defines a basic block and
the edges represent conditional control flow (dashed edges)
and unconditional control flow (solid egdes) between these
blocks. Each control flow edge models a dependency between
the basic blocks, as reaching one basic block means that we
may also reach the successors of it.

1. Binary
Analysis

2. Component
Identification

3. Binary
Rewriting

4. System
Linking

5. Component
Linking

6. Run-Time
Reconfiguration

Re-
configuration

Manager

Binary
ObjectBinary

Object

Runnable
Reconfigu-

rable Binary

Relocatable
ConfigrationComponent

XML Confi-
guration File

uses

Fig. 1. Steps of the Reconfiguration Approach

000034e8 <ip6_input>(pbuf *p,netif *n):

34e8: push {…}
34ec: ldr r4, [r0, #4]
34f0: ldrb r3, [r4]
34f4: and r3, r3, #240
34f8: cmp r3, #96
34fc: mov r5, r0
3500: mov r7, r1
3504: bne 3518

3508: ldr r3, [pc, #436]
350c: add r8, r4, #24
3510: ldr r6, [r3]
3514: b <ip6_input+0xec>

3518: bl <ip6_addr_cmp>

351c: cmp r0, #0
3520: ldr r0, [pc, #416]
3524: bne <ip6_input+0x100>

ip6_addr_cmp

r4=ip6_hdr
r3=ip6_hdr.v
r3=ip6_hdr.v & 0xf0

(ip6_hdr.v & 0xf0) != 0x60

Fig. 2. Parts of the annotated control flow graph of the ip6 input method.

The analysis of binary code is a non-trivial task. While
disassembling and interpreting binary files, one may encounter
several problems as, e.g., the Code Discovery Problem. Many
ISAs allow binary data to be mixed up with executable instruc-
tions and vice versa. Not being able to distinguish between
instructions and data may invalidate the extraction process
since some control flows may not be discovered or data may be
misinterpreted. However, for our evaluation platform this prob-
lem does not exist, since the ARM Embedded Applications
Binary Interface (EABI) forces all EABI conform Embedded
Linker File (ELF) object files to provide information on all
occurrences of data and instruction blocks by special mapping
symbols inside the symbol table (see Section 4.6.5 in [6] for
the symbol definition).

Another problem with control flow detection arises if in-
direct control flow instructions are used inside the binary.
Most of the indirect control flows are due to jump tables
that are generated by the compiler to speed up switch/case
statements. The targets of these jumps can be computed with
high precision as it was shown by Cifuentes et al. [7]. Other
sources of indirect control flows are method pointers, available
in most high-level languages, e.g., to implement inheritance

123Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

or to realize dynamic program behavior. The targets of these
kind of indirect control flows are very hard to compute
and to the best of our knowledge no approach exists which
can guarantee the precise detection of all targets. However,
using the approach proposed by B. Sutter et al. [8] we may
overestimate the set of jump targets by introducing a so called
hell node. The estimation uses the complete set of relocatable
symbols, which is the union of all relocatable symbols of all
object files, as the target for every indirect jump that can
not be resolved. The result may not be as tight as possible
but it ensures the correctness of the following reconfiguration
process.

In the next step, the edges of the graph are annotated using
the common approach of forward substitution. As described by
previous work of Cifuentes et al. [9] [10], we derive complex
expressions from low level expressions, which in our case are
the assembler instructions of the ARM binary. For assembly
code one can express the contents of a register r in terms of a
set ak at instruction i as r = f1 ({ak} , i). If the definition at
instruction i is the unique definition of a register r that reaches
an instruction j along all paths in the program, without any
of the registers ak being redefined, one can forward substitute
the register definition at instruction j with s = f2 ({r} , j),
resulting in:

s = f2 ({f1 ({ak} , i)} , j)

Using these expressions it is also possible to annotate the
edges of the control flow graph with constraints that need to be
fulfilled for the edge to be taken. However, these expressions
consist only of very low level type of operations and resources
as, e.g., binary operations and registers. In order to allow these
expressions to be used by some developer, it is important to
derive as many high level programming language expressions
out of the low level expressions as possible. We developed
a binary analysis framework [11] which utilizes the high
level information stored inside header files to extract type
information on the input parameters and global variables of
the binary objects. Using global data flow analysis techniques
it is possible to annotate parts of the control flow graph
with high level constraints based on the input parameters of
the binary objects. The result of this analysis has partially
been annotated next to the corresponding instruction in Figure
2. However, detecting access to high level data structures
is not trivial as an unlimited number of access possibilities
to these data structures can be generated by a compiler. In
consequence, an expression normalization step as described in
[11] is mandatory to allow a meaningful and usable annotation
of the binary code.

B. Component Model

After the binary analysis, the binary objects are represented
by its CFG G = (N,E), with N being the set of nodes (static
basic blocks), E the set of edges and S ⊆ N the set of start
nodes (entry points). The function c : E → C, with C being
the set of all constraints, matches every edge to its specific
constraint that has been calculated in the previous step. We

showspacesshowspaces
showspacesshowspaces showspaces1 [i p 4 i n p u t]
showspacesshowspaces showspaces2 (i p 4 h e a d e r . t t l p r o t o & 0 x 0 0 f f) != 0x06
showspacesshowspaces showspaces3 [i p 6 i n p u t]
showspacesshowspaces showspaces4 i p 6 h d r . n e x t h d r != 0x6
showspacesshowspaces showspaces5 [e t h e r n e t i n p u t]
showspacesshowspaces showspaces6 e t h h d r . t y p e != 0 x86dd
showspacesshowspaces showspaces7 [t l s i n p u t]
showspacesshowspaces showspaces8 @ t l s i n p u t
showspacesshowspaces
Listing 1. Constraints set masking the TCP, IPv4 and IPv6 support as
components

now need to identify sets of basic blocks inside the CFG which
we may use as components inside the reconfiguration process.
With a specific input language, the user is able to specify
constraints on variables or method parameters used inside the
binary objects. An example for such an constraint is given in
Listing 1, which has been used for our evaluation scenario.
Constraints are either specified for API functions or globally
visible symbols. The former ones can contain arbitrary binary
operations as the constraints in line two, four and six of Listing
1. The latter ones directly define reconfiguration points as
the constraint in line eight. The constraint set is part of the
configuration XML file, which is given as an input parameter
to the reconfiguration framework, as shown in Figure 1.

For every edge e ∈ E of the CFG, we then combine the edge
constraint c(e) and the corresponding constraint of the user
by a logical and operation. Our framework uses a constraint
solver, which tries to check the satisfiability of the expressions.
The set of edges, for which the expression is unsatisfiable,
defines the set R ⊆ E that we call set of reconfiguration edges.
For unsatisfiable expressions, there exists no assignment of
values that satisfy the expression. Our framework implemen-
tation currently allows different constraint solvers to be used.
For our evaluations, we utilized the STP Constraint Solver
[12].

Using the reconfiguration edges of set R, it is now possible
to define some important sets of basic blocks, which will be
used for our component model throughout the rest of the paper.

Definition II.1 (Mandatory Set):
We define the set M of nodes that can be reached from the
start nodes S without taking any reconfiguration edge as M =
{n ∈ N : ∃w = (w1, w2, ..., wn), w1 ∈ S ∧ (wi, wi+1) ∈
E \R∧wn = n}. This set defines the set of basic blocks that
we call the Mandatory Set.

Definition II.2 (Intermediate Components):
For every reconfiguration edge ri ∈ R with ri = (ni1, ni2) we
define the set Nri of nodes that can be reached over the recon-
figuration edge ri without reaching a node that is mandatory
(inside set M): Nri = {k ∈ N : ∃w = (w1, w2, ..., wn)∧w1 =
ni2 ∧ (wj , wj+1) ∈ E ∧ wj /∈ M ∧ wn = k}. We call these
sets Intermediate Components.

Both sets can easily be computed by using a depth first
search starting at the start nodes S for finding the Mandatory
Set, or at the nodes {ni2} with ri ∈ R, ri = (ni1, ni2)
for finding the Intermediate Components respectively using

124Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

n1,2n1,1

n2,2n2,1

n3,2

n3,1

r1

r2

r3

Nr1

Nr2

Nr3

Fig. 3. Example Intermediate Component sets based on definition II.2

the restrictions inside the corresponding definition. As the
name Intermediate Component suggests, these sets are used
intermediately and form the basis for the final components
used inside the reconfiguration process.

C. Component Identification

The initially computed sets Nr1 , ..., Nrn already describe
which kind of functionality can be executed when the corre-
sponding edge ri ∈ R is taken. These sets however may be am-
biguous as seen in Figure 3. Using these sets of intermediate
components without further refinement could create duplicate
code segments, which is highly undesired. In order to resolve
all ambiguities, Algorithm 1 can be used to generate distinct
components that, while depending on each other, can be used
efficiently inside the reconfiguration process. The basic idea
is to generate all possible intersections as longs as there exist
ambiguous sets of basic blocks. In each intersection iteration
(see line five of Algorithm 1), all possible intersections of the
current working set S are calculated. Redundant intersections
or empty intersections are not stored. At the end of the
intersection step all basic blocks contained inside any of the
intersection sets Ki are removed from the configurations inside
the working set S. The created sets Ki then define the working
set for the next intersection step. The iteration ends if the
working set contains only one or no set anymore as there
exists no possible new intersection that may be computed.
The iterations (given by the while loop in line five) of the
algorithm on the example graph of Figure 3 can be seen in
Figure 4 .

Using Algorithm 1, it is possible to split up the Intermediate
Components into single distinct sets of basic blocks. However,
this will introduce dependencies between each of the sets,
which are defined by the control flow edges between them.

Definition II.3 (Dependency):
Given two components Si, Sj , if there exists an edge e =
(n1, n2) with n1 ∈ Si, n2 /∈ Si and n1 /∈ Sj , n2 ∈ Sj we
say Si directly depends on Sj , denoted by Si → Sj . If there
exists a path w = (w1, ..., wn) with w1 ∈ Si, w2, ..., wn−1 ∈
M,wn ∈ Sj we say Si depends on Sj , denoted by Si ; Sj .

The corresponding direct dependencies between compo-
nents inside the example graph can be seen in Figure 4.
The ”direct” dependency graph of the initial components can
never contain loops due to the construction of it. However,
the dependency graph may contain loops as control flow
from components may happen to the mandatory set and back.
Using the dependency graph, it is possible to estimate the
runtime overhead for different paths of the application if the
reconfiguration time is known. The execution time of the code
inside the components does not change as the application code
is not changed. The only source of execution time changes
inside the components may result from different caching and
pipeline effects which we do not consider.

Algorithm 1 Component Identification
1: procedure GENERATECOMPS(Nr1 , ..., Nrn) . Input: Nri

of definition II.2
2: Set S ← {Nr1 , ..., Nrn}
3: Set K ← {}
4: Set R← {} . The set of output components
5: while |S| > 1 do
6: for all Si, Sj ∈ S, Si 6= Sj do
7: T ← Si ∩ Sj

8: if T /∈ K ∧ T 6= {} then
9: K ← K ∪ {T} . Add the set T to K

10: end if
11: end for
12: for all Si ∈ S do

13: Si ← Si \
(
⋃

Ki∈K
Ki

)
. Remove all sets in

K from Si

14: R← R ∪ {Si} . Add a new layer of
components

15: end for
16: S ← K
17: K ← {}
18: end while

return R
19: end procedure

D. Optimal Component Size

The extracted components may now be used for reconfig-
uration. However, using the components in this state may be
far from optimal if we consider factors as runtime overhead,
binary overhead or memory fragmentation. Especially in Smart
Cards, innately being very resource constraint systems, these
overheads need to be kept as small as possible. Many Smart
Cards use flash memory for the non-volatile memory space.
Most of them also execute applications directly out of flash
memory. The use of flash memory inherently raises the de-
mand of reducing the amount of flash page writes at runtime as
the lifetime of the memory page is limited by a certain number
of erase/write operations. One objective optimization function
would thus try to minimize the number of such operations.
We are currently only focusing on components which are

125Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

K1,2

K2,3

K1,3

S1 S2 S3

S2

S1

S3

S4

S5

K1,2,3

n1,1

n2,1 n2,2

n3,1

n3,2

n1,1

n2,1 n2,2

n3,1

n3,2

n1,2

n1,2

r1

r2

r3

r1

r2

r3

S1 S2 S3

K1,2 K1,3 K2,3

S1 Nr1 \ S
Ki2K

Ki

S2 Nr2 \ S
Ki2K

Ki

S3 Nr3 \ S
Ki2K

Ki

S4 S5

K1,2.3

a)

Direct Dependecy Graph:

Direct Dependecy Graph:

b)

Fig. 4. The iterations of Algorithm 1 on the example graph.

bigger than the minimal flash page size. In order to reduce
the number of write operations during reconfiguration, only
one component may be placed in one flash page. In addition,
the component size is kept as close as possible to multiples
of the page size in order to reduce the memory fragmentation
at runtime.

This problem is solved by splitting up the components
S1, .., Sn into smaller components. The components S1, .., Sn

with sizes s1, .., sn exceeding a size s may be split up into
multiple components of size s and one component of size si
modulo s. This can be done in several ways. One may simply
use the linear binary object layout and split the basic blocks
at the corresponding positions or one may use a reordering
approach which tries to place strongly connected basic blocks
close together, just like a compiler would do.

On the one hand, splitting the components will introduce
new dependencies resulting in a higher number of reconfig-
uration edges. On the other hand, this changes the memory
fragmentation introduced by each component. Depending on
the target system, these attributes will be more or less im-
portant. However, an optimal solution to this problem often
does not exist because properties as runtime overhead and
memory fragmentation are, typically, in contrast to each other
and highly dependent on the application. In the next step we
thus perform a design space exploration.

Definition II.4 (Design Points):
We define the set of design Points D(m,s) = (DB , DM , DR)
as follows: for possible component sizes s = x · Fmin (with
Fmin being the smallest page size) and total reconfiguration
memory space m = r · s, the values for the binary overhead
DB and memory fragmentation DM as well as the worst case

number of reconfigurations DR are calculated.

Our approach of solving this problem is to do a multi-
objective optimization by calculating the Pareto optimal points
using the Greaf-Younes algorithm [13] with backward iteration
over the set of all design points D(m,s) = (DB , DM , DR).
Given the total amount of reconfiguration space m it is
possible to store r components of size s before runtime
replacement (based on some function freplace) starts. Using
this definition the design space values are calculated in the
following way:
• Binary Overhead DB:

The Binary Overhead is defined as the median per-
centage based increase of the component size due to
added instrumentation code. If the number of jumps /
references between components increases, the amount of
instrumentation code may increase as well.

• Memory Fragmentation DM :
For every component size s we sum up the r highest
fragmentations of components as this yields the worst
case situation with the highest amount of wasted memory.

• Worst Case Number of Reconfigurations DR:
The worst case number of reconfigurations is the maxi-
mum number of reconfigurations needed to execute any
possible path inside the context sensitive control flow
graph. The path analysis is context-sensitive and done
using a Depth First Search approach. Iterating over all
possible context-sensitive paths is in general infeasible
for even small graphs, however, we use a branch and
bound based algorithm to avoid traversing any path which
can not increase the worst case reconfiguration number.
The value can be calculated more easily by restricting
candidate paths to start at the incoming edges of compo-
nents and to follow a path inside the dependency graph.
The function freplace is used to simulate the runtime
replacement. If a loop over more than r components is
encountered the design point is removed from the design
space as we are not able to estimate the number of
reconfigurations needed to execute the loop at runtime
without knowing loop boundaries.

The final component size s and reconfiguration space m
may then be chosen from the set of Pareto optimal points
either by the system designer or by using a user defined rating
function. The evaluation section will cover an example for
determining the optimal component size for our evaluation
scenario. It is important to note that increasing the reconfig-
uration space m will not always lead to better design space
points as discussed in the Section Evaluation (IV).

E. Binary Rewriting

As the components are given by the previous steps, we now
have to add reconfiguration support to them. The extracted
sets of basic blocks usually contain references to relocatable
symbols, which would have been resolved at link time of the
binary. Relocatable symbols may reference different kinds of
application sections as, e.g., the executable code area of other

126Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

Reconfiguration Manager

OS / Mandatory Code

1. 2.

3.

Fig. 5. The reconfiguration architecture and some possible control flows: (1.)
control flow from a component to the mandatory set, (2.) control flow from
between components, (3). control flow from the mandatory set to a component

components, read-only data or the heap of the component.
Relocatable symbols, which reference addresses inside the
mandatory set M , are resolved after link time in step compo-
nent linking (see Figure 1). References to other reconfiguration
components are replaced by instrumentation code, which adds
a call to the reconfiguration manager. Currently, unsupported
are references to the data areas of components. The current
solution places data areas of the reconfiguration component
into the mandatory set, thus allowing the reference to be solved
after the mandatory set has been linked.

The instrumentation code is added to the components and
placed as close as possible to the corresponding reference in
oder to avoid additional overhead of implementing long jumps.
The framework also uses the live register information gained
by the binary analysis step to use free registers to implement
the call to the reconfiguration handler. If all registers are used
the context is temporarily stored on the stack. The binary
overhead introduced by the instrumentation code may thus
vary between four and twenty bytes depending on the free
register set and the instruction set (ARM features a 16 bit
THUMB and a 32 bit ARM instruction mode). The overhead
introduced for a realistic example is discussed in the evaluation
section.

The components themselves also need to be rewritten.
This is required as references to other basic blocks inside
the components may be invalid due to the fact that basic
blocks may have been added, removed or changed. Thus, all
instructions containing references to other basic blocks inside
the component are updated. The same holds true for symbol
and relocation entries inside the binary which are used by the
linker. The process of modifying these offsets is described
inside [11].

III. RUN-TIME RECONFIGURATION

At runtime, transparently to the user, the components are
exchanged on demand. The architecture depicted in Figure 5
describes the possible control flows and the interfaces involved
can be seen in Figure 6. The reconfiguration manager is
the central part of the reconfiguration process. In order to
work properly, the interface reconf_os_if needs to be
implemented by the operating system. Among others, it defines

rc_os_init()
rc_os_send_packet(struct reconf_packet rc_packet)
rc_os_curthread_pause(int sp)
rc_os_thread_resume(int sp)

«interface»
reconf_os_if

rc_init()
rc_packet_input(struct reconf_packet rc_packet)
enter_config <<asm, RC_ABI>>

«interface»
reconf_if

Fig. 6. The interface required/provided by the reconfiguration manager.

a method which is used to send reconfiguration packets to the
reconfiguration server, which runs for example on a terminal
connected to the smart card. In our example scenario we use
a UDP based connection.

Basically, three types of control flows needs to be covered
by the system. Control flow going from a component to the
mandatory code / OS (see 1. in Figure 5) is already covered
by the binary rewriting process. As the mandatory code is not
moved inside the physical address space, the corresponding
branches are handled by the instrumentation code. The run-
time overhead of these control flows is static. Control flow
occurring between components (see 2. in Figure 5) involves
the reconfiguration manager. Let us consider the components
S1 and S2 inside the figure. The component S1 needs to
execute some code in component S2. As the physical memory
location of the component changes and/or the component
may not be loaded, the reconfiguration manager is called
first. The reconfiguration manager provides an assembler rou-
tine named enter_config, which is automatically called
by the instrumentation code added to the components. The
assembler routine takes the ID and the offset of the code
to be executed inside the component as parameters. If the
component is loaded the call is forwarded and the code is
executed. This takes around ten assembler instructions on
the ARMv4 THUMB ISA. If the component is currently not
loaded a reconfiguration request is issued which will use the
interface to the operating system to reload the component. The
issuing thread context is saved on the stack and stored by the
reconfiguration manager to resume the thread upon completion
of the reconfiguration. Control flow from the mandatory code
to a component (see 3. in Figure 5) involves the same steps
as the previous one. It is handled by the same assembler
routine and the call to the reconfiguration manager is also
automatically added to the mandatory code by the binary
rewriting step.

The replacement strategy freplace is implemented inside the
reconfiguration manager and used to determine which compo-
nent will be replaced at runtime. The current implementation
uses a least frequently used (LFU) replacement function. For

127Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

Design Flow Step Execution Time
Header Analysis 7929 ms
CFG Generation 4988 ms
DF Analysis 33921 ms
Constraint Checking 264 ms
Component Identification 297 ms
Binary Rewriting 963 ms
Component Optimization 6560 ms

TABLE I
EXECUTION TIME OF THE DESIGN FLOW STEPS FOR THE EXAMPLE

SCENARIO.

every reconfiguration edge taken a counter is increased for
the corresponding component. If replacement takes place the
component with the smallest counter is removed. The LFU
algorithm was chosen as the implementation overhead of this
algorithm is very small.

IV. EVALUATION

This section gives an evaluation of the binary reconfigura-
tion approach.

A. Case Study

Our case study is an Internet-Protocol Stack library for an
ARM powered SmartCard containing protocol implementa-
tions for the Internet Protocol Version 4 (IPv4), Version 6
(IPv6), the Transmission Control Protocol (TCP), User Data-
gram Protocol (UDP) and a Transport Layer Security (TLS)
implementation. The Smart Card contains a USB interface,
which we use to emulate an ethernet connection using the
Ethernet Emulation Model (EEM). With this USB connection
the Smart Card is connected to a Linux computer, which uses
the Ethernet interface to transparently communicate with the
device. The scenario contains a smart card web-server, which
offers communication ports using all of these protocols of the
library. However, at runtime not all protocols are used at the
same time which makes it interesting to use the corresponding
protocols as reconfiguration components. The complete binary
size of all binary objects inside the case study consists of
44246 Bytes.

B. Design Time Overhead

Our binary reconfiguration framework has been imple-
mented in Java and supports the ARMv4 ISA. However, the
software architecture allows for the easy addition of support
for other ISAs. The reconfiguration process was executed
on a Linux computer with a single core 2,8 Ghz Pentium
processor. The execution time of the design flow steps can
be seen in Table I. The most time consuming part is the Data-
Flow (DF) Analysis which annotates the CFG with high level
constraints and resolves indirect branches. The Component
Optimization step which includes the calculation of the worst
case reconfiguration amount for all design points only took
about seven seconds to complete. All together the complete
execution time of the framework stayed under one minute
which is a reasonable time frame.

Component Component Size Complete Size Percentage
S1 (TLS) 6948 10252 67,7 %
S2 (IPv6) 1046 2024 51,6 %
S3 (TCP) 4136 10468 39,5 %

TABLE II
EXTRACTED COMPONENT SIZES IN BYTES

C. Reconfiguration Manager Overhead

As the reconfiguration itself adds new executable code to
the original binary, it is very important to keep this additional
code as small as possible. The implementation of the re-
configuration manager including the interface implementation
and the replacement function added an additional 680 Bytes
of code to the application. Inside the example scenario the
communication stack of the operating system could be reused
resulting in a small reconfiguration manager.

D. Component Extraction

The XML configuration file contained the constraints shown
in listing 1, which were passed to the constraint solver with
the goal to extract the TCP, IPv6 and TLS components from
the application in order to reuse these components inside
the reconfiguration process. Line two and four describe a
constraint to identify the control flow to the TCP component,
line six specifies the control flow to the IPv6 component and
the symbol constraint in line eight describes an entry point to
the TLS component. Table II shows the size of the extracted
components Si after using Algorithm 1.

Using this simple constraint set, it was possible to extract
68% of the TLS implementation code to be used inside
a reconfiguration component. The remaining bytes of the
implementation may be extracted with a more sophisticated
constraint set as not all control flows are covered by the set of
Listing 1. A similar statement holds true for the TCP and IPv6
components in Table II for which the percentage is lower. This
is due to the fact that the constraints only restricts control flow
from the lower Ethernet packet layer. Control flow from higher
layers, as, e.g., the application layer, was not considered by the
constraint set. This is, however, possible without restriction.

E. Component Optimization

In the next step, the design points D(m,s) = (DB , DM , DR)
have been calculated. The basic blocks have not been reordered
and were placed inside a component based on their linear
order inside the object files they were taken from. For every
combination of component size and reconfiguration space
(m, s) the resulting worst case number of reconfigurations,
binary overhead and memory fragmentation has been calcu-
lated. Table III gives an overview of some of the calculated
points sorted by number of reconfigurations as this has been
most interesting for our scenario. The Pareto optimal points
have been highlighted. All of the highlighted design points
are equally good with respect to the pareto optimality. How-
ever, depending on the target architecture and the execution
scenario one may favor design points with a small numbers
of reconfigurations or low fragmentation.

128Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

m s DR DB DM

4096 256 17 28,06252967 530
...

4096 1024 15 19,07260033 1654
3072 512 12 21,420201 954

...
4096 512 10 21,420201 954
8192 1024 8 19,07260033 1654
4096 2048 7 14,56403317 2134

...
2048 2048 7 14,56403317 1372
5120 1280 7 16,03623833 2166
5120 5120 7 12,3342234 3834
6144 1536 6 16,813032 494
6144 2048 6 14,56403317 2694
7168 1792 5 15,73381667 2110
4096 4096 5 13,16168417 3336
6144 3072 5 15,5311505 3490

...
6912 6912 4 12,29584317 5626
7168 3584 3 14,45041367 3394
7168 7168 3 12,21908233 5882

TABLE III
CALCULATED DESIGN POINTS D(m,s) = (DB , DM , DR). THE PARETO

OPTIMAL ONES ARE HIGHLIGHTED.

The binary overhead for our evaluation example stayed
between 30% and 12% (compare the values DB of Table III),
which is a reasonable increase in code size of the components.
We used the design point D(2048,2048) for the evaluation,
which resulted in a final component size m = 2048 bytes
and reconfiguration memory size s = 2048 bytes. Using this
design point limited the number of concurrent components on
the Smart Card to one. Thus, each time a dependency edge is
taken between two components a reconfiguration needs to take
place. The worst case path consisted of seven reconfigurations.
Using the UDP connection to the Linux computer running
the reconfiguration server the maximum reconfiguration time
for one component (2048 Bytes) took 153 ms. A connection
request to the web-server was delayed by a median value
of 920 ms. This demonstrates that it is possible to run the
web-server application on the Smart Card with a memory
requirements of 35 KB. This results in a memory saving of
approximately 22%. However the memory saving is paired
with a much higher run-time of the application.

Interesting to see is that simply increasing the amount of
reconfiguration memory space does not always yield better
design points. This can be seen by comparing D(4864,4864)

with D(2816,5632). Although the latter design point offers a
higher amount of reconfiguration space the system parameters
are worse. This shows that the design optimization step is
mandatory if the system parameters need to be optimized
and/or known beforehand.

V. RELATED WORK

Many approaches have been created to solve parts of the
goals described in this thesis. Link-Time optimization ap-
proaches [14][15] allow binary code to be optimized for speed
and memory requirements. This is a valuable technique which
already grants huge benefits for software programs. However,

it does not solve the general problem if the execution space
is still too small for an application to run on an embedded
device. It also is not intended as an approach which allows
software programs to be adapted at runtime.

Binary Analysis approaches have been used for many
reasons for years. Most of the efforts are concerned with
analyzing source code which is not available in the contents
of this approach. Approaches which analyze binary code are
focused on different problems. On the one hand they are used
for the link-time optimization described above. On the other
hand it is used to cope with security issues of applications [16],
[17] quality assurance or compliance testing [18]. Recently
Binary Analysis and Binary Rewriting gained popularity inside
the research community again. Modern run-time compiler use
data flow analysis techniques do to optimizations by using,
e.g., trace-scheduling techniques [19][20]. In this approach,
we use binary analysis techniques for a different purpose: it is
used to gather information on the binary objects, which will
enable run-time reconfiguration of binary objects. To the best
of our knowledge, there exists no approach which tries to use
binary analysis to support software reconfiguration of legacy
software systems.

Run-Time Reconfiguration approaches have been proposed
for small embedded devices for different goals. It has been
shown to be indispensable for some kinds of applications as
it allows for re-tasking, fixing bugs, adding functionality or
replacing functionality due to memory restrictions. Reconfig-
uration is supported by some operating systems, particularly
often used inside sensor-networks. For example, Agilla [21] or
TinyOS [22] support some form of reconfiguration. However
the reconfiguration either consist of full binary upgrades
(TinyOS) or requires the source code (Agilla), which makes
the use of legacy code impossible. Other forms of binary
adaptation may be categorized by the following approaches.
Whabe et al. [23] propose the creation of adaptable binaries by
adding information to the binaries, which may then be used to
modify the binary later on. The approach in [24] is based on
using new architectures and creating adaptable and reloadable
components on source code level. A promising approach has
been shown in [25] by creating so called ”delta files”, which
contain the byte streams of the adaptations to be made on
binary level. However, the delta files are created by compiling
the adaptations from source code for the different kinds of
configurations. All these approaches have in common that they
cannot be used with proprietary libraries that already have been
compiled and may not be rebuilt with these kind of information
or adaptation support.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated an approach which allows
binary objects as they are contained inside legacy libraries
to be used as components inside a reconfigurable system.
By using control flow and data flow analysis techniques the
approach derives a high level representation of the binaries.
Combined with a constraint satisfaction problem solver the
system allows the user to easily define components based on

129Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

high level constraints. The components are then optimized
regarding parameters as number of reconfigurations at runtime,
binary overhead due to the added instrumentation code and
memory fragmentation. In the end, the approach allows these
components to be seamlessly added and removed at runtime.
The evaluation showed that it is possible to extract components
out of the binary objects. The optimization step derives a
Pareto optimal set of design parameters. In the end the legacy
objects can be used as components inside a reconfigurable
system which can have a lower memory consumption while
maintaining the functionality offered by the legacy objects.

Future adaptations may further increase the benefit gained
as in the presented work we only used a simple linear basic
block scheduling technique inside the components. Using more
sophisticated placing algorithms may further decrease the
binary and reconfiguration overhead. We may also consider
profile based information to better identify components and
to identify heavily used program paths. This may allow the
design space exploration to find better design points, which
will decrease the median number of reconfigurations.

REFERENCES

[1] “RFC 791 - Internet Protocol Version 4.” [Online]. Available:
http://www.ietf.org/rfc/rfc791.txt

[2] “RFC 2460 - Internet Protocol Version 6.” [Online]. Available:
http://www.ietf.org/rfc/rfc2460.txt

[3] “RFC 793 - Transmission Control Protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc793.txt

[4] “RFC 768 - User Datagram Protocol.” [Online]. Available:
http://www.ietf.org/rfc/rfc768.txt

[5] “RFC 4346 - Transport Layer Security Version 1.1.” [Online]. Available:
http://www.ietf.org/rfc/rfc4346.txt

[6] ARM Ltd., “ELF for the ARM Architecture,” 2009.
[7] C. Cifuentes and M. V. Emmerik, “Recovery of jump table case

statements from binary code,” in Science of Computer Programming,
1999, pp. 2–3.

[8] B. D. Sutter, B. D. Bus, K. D. Bosschere, P. Keyngnaert, and B. Demoen,
“On the static analysis of indirect control transfers in binaries,” in In
PDPTA, 2000, pp. 1013–1019.

[9] C. Cifuentes, “Interprocedural data flow decompilation,” Journal of
Programming Languages, vol. 4, pp. 77–99, 1996.

[10] C. Cifuentes, D. Simon, and A. Fraboulet, “Assembly to high-level
language translation,” in In Int. Conf. on Softw. Maint. IEEE-CS Press,
1998, pp. 228–237.

[11] D. Baldin, S. Groesbrink, and S. Oberthür, “Enabling constraint-based
binary reconfiguration by binary analysis,” GSTF Journal on Computing
(JoC), vol. 1, no. 4, pp. 1–9, January 2012.

[12] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification (CAV ’07). Berlin, Germany:
Springer-Verlag, July 2007.

[13] J. Jahn, “Vector optimization, theory, applications and extensions.”
Springer-Verlag, 2011, p. 345.

[14] D. W. Goodwin, “Interprocedural dataflow analysis in an executable
optimizer,” 1997.

[15] W. E. Weihl, “Interprocedural data flow analysis in the presence of
pointers, procedure variables, and label variables,” in Proceedings of the
7th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, ser. POPL ’80. New York, NY, USA: ACM, 1980, pp.
83–94. [Online]. Available: http://doi.acm.org/10.1145/567446.567455

[16] N. Xia, B. Mao, Q. Zeng, and L. Xie, “Efficient and practical
control flow monitoring for program security,” in Proceedings of the
11th Asian computing science conference on Advances in computer
science: secure software and related issues, ser. ASIAN’06. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 90–104. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1782734.1782742

[17] D. Wagner and D. Dean, “Intrusion detection via static analysis,” in
Proceedings of the 2001 IEEE Symposium on Security and Privacy, ser.
SP ’01. Washington, DC, USA: IEEE Computer Society, 2001, pp. 156–
. [Online]. Available: http://dl.acm.org/citation.cfm?id=882495.884434

[18] R. Venkitaraman and G. Gupta, “Static program analysis of embedded
executable assembly code,” in Proceedings of the 2004 international
conference on Compilers, architecture, and synthesis for embedded
systems, ser. CASES ’04. New York, NY, USA: ACM, 2004, pp. 157–
166. [Online]. Available: http://doi.acm.org/10.1145/1023833.1023857

[19] N. V. Mujadiya, “Instruction scheduling for vliw processors under
variation scenario,” in Proceedings of the 9th international conference
on Systems, architectures, modeling and simulation, ser. SAMOS’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 33–40. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1812707.1812717

[20] E. Yardimci and M. Franz, “Mostly static program partitioning
of binary executables,” ACM Trans. Program. Lang. Syst.,
vol. 31, no. 5, pp. 17:1–17:46, Jul. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1538917.1538918

[21] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A mobile agent
middleware for self-adaptive wireless sensor networks,” ACM Trans.
Auton. Adapt. Syst., vol. 4, no. 3, pp. 16:1–16:26, Jul. 2009. [Online].
Available: http://doi.acm.org/10.1145/1552297.1552299

[22] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” SIGPLAN
Not., vol. 35, no. 11, pp. 93–104, Nov. 2000. [Online]. Available:
http://doi.acm.org/10.1145/356989.356998

[23] R. Wahbe, S. Lucco, and S. L. Graham, “Adaptable binary programs,”
IN, Tech. Rep., 1994.

[24] S. Kogekar, S. Neema, and X. Koutsoukos, “Dynamic software recon-
figuration in sensor networks,” in Proceedings of the 2005 Systems
Communications. Washington, DC, USA: IEEE Computer Society,
2005, pp. 413–420.

[25] R. Keller and U. Hölzle, “Binary component adaptation,” in Proceedings
of the 12th European Conference on Object-Oriented Programming.
London, UK: Springer-Verlag, 1998, pp. 307–329.

130Copyright (c) IARIA, 2012. ISBN: 978-1-61208-229-5

MOBILITY 2012 : The Second International Conference on Mobile Services, Resources, and Users

