
A Design of Mobile Trusted Module

for Application Dedicated Cryptographic Keys

Daewon Kim, Yongsung Jeon, and Jeongnyeo Kim

Cyber Security Research Department

Electronics and Telecommunications Research Institute

Daejeon, Korea

emails: {dwkim77, ysjeon, jnkim}@etri.re.kr

Abstract—Normally, users encrypt data with cryptographic

keys to protect original contents from various hackings. The

use of cryptographic keys means that the protection of crypto-

graphic keys is also an important problem as much as that of

the encrypted data. A common way for protecting the keys is to

authenticate user’s key access authorities through some key

passwords. However, nowadays the passwords can be easily

exposed to a variety of password hacking techniques. The facts

that the encrypted data is stored in unsafe storage, such as

hard disk drivers or secure digital memory cards and that the

cryptographic keys are accessed with any passwords mean that

the encrypted original contents are no longer safe from the

hackings. It is because hackers can decrypt user’s encrypted

data with the acquired passwords after they modify user’s

original applications or create new malicious applications. To

solve this issue, we have developed a new mobile trusted mod-

ule chip and management middleware based on the architec-

ture with a key access mechanism dedicated to an application.

In this paper, we present the design and operation of mobile

trusted module chip and middleware together with some ex-

perimental results.

Keywords-trusted platform module; mobile trusted module;

hardware security module; integrity verification; cryptography.

I. INTRODUCTION

Data encryption is a common way to protect original con-
tents from data hackings. For encrypting, some cryptograph-
ic keys and the authorities, which can be passwords for using
the keys, are required. Normally, the encrypted data and keys
are stored in some unsafe storage devices, which may be
Hard Disk Drivers (HDD) or Secure Digital (SD) memory
cards. Moreover, the passwords with authorities for access-
ing the keys can be easily exposed to various password hack-
ing techniques. It means that the encrypted data can be de-
crypted by the malicious applications modified or created by
hackers who already know the passwords of cryptographic
keys. Finally, the traditional systems for managing crypto-
graphic keys and passwords cannot guarantee the confidenti-
ality of original contents included in the encrypted data from
hackers.

From a few years ago, some hardware modules [1]-[5]
have been used for encrypting data and for managing crypto-
graphic keys. They are representatively Hardware Security
Module (HSM) [1]-[4], Trusted Platform Module (TPM) [5],
Mobile Trusted Module (MTM) [5], and so on. The hard-

ware modules independently attached to user's devices in-
clude access control functions and require any authority in-
formation such as a password to access the critical data,
which may be cryptographic keys, in the modules. Therefore,
although hackers acquire the privileged authority of a target
device itself, they cannot directly get important data in the
modules.

The hardware modules can partially provide the safe
storage for important data such as cryptographic keys and the
access control functions commonly based on passwords.
However, the reliability of password safety is gradually de-
creasing by a variety of password hacking techniques such as
key hooking, screen capturing and social engineering meth-
ods. Additionally, if the password inputs are frequently re-
quested, it can make normal users uncomfortable. In our
previous work [9], we discussed some problems of pass-
word-based key access and proposed a mechanism verifying
the integrity of application executed for accessing crypto-
graphic keys in our MTM.

Another consideration of key management based on pre-
vious hardware modules is that the cryptographic keys can
be accessed by each other applications. It means that mali-
cious applications created by hackers can use the keys as
well. Moreover, if several regular applications share a cryp-
tographic key, due to a password exposed to any security
vulnerability of an application the encrypted data of other
applications sharing the key can also be at risk of infor-
mation leakage. As the mobile work environment of Bring-
Your-Own-Device (BYOD) is spreading more, the issue
needs to be treated carefully.

As our considerations of the above problems, in this pa-
per, we describe the design and operation of our prototype
MTM and management software. The paper also includes a
brief of our previous work related to the authority for access-
ing keys in the MTM. In the MTM, there are cryptographic
keys dedicated to the authorized application and the applica-
tion only can use the keys in the MTM. It means that hackers
cannot use the keys to decrypt target encrypted data through
the applications maliciously made by them although they
know the passwords of keys. Additionally, our prototype
basically supports the default cryptographic keys per applica-
tion for users. Therefore, users do not need to create and
manage the cryptographic keys with complex options for the
simple and quick encryptions. It is sure that the users can

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

Figure 1. The overview of MTM architecture.

also create and manage the keys with various options suita-
ble to their purposes.

The rest of paper is organized as follows; Section II rep-
resents the related works about hardware modules to be at-
tached to user devices for securities. Section III describes the
operations and features of our MTM architecture together
with our previous work [9]. Section IV shows the detailed
operations of our mechanism with some experiment results.
Finally, Section V concludes this paper with a summary and
future works.

II. RELARED WORKS

HSMs [1]-[4] are hardware modules including crypto-
graphic hardware engines for specific services. They are
commonly composed of cryptographic key generator, public
key cryptography engine, symmetric key cryptography en-
gine, the composition engine of two cryptographies, random
number generator, and so on. Internal critical keys of HSMs
do not be exposed to any outside and for accessing or using
the keys, application users have to input any passwords to
the HSMs. Normally, additional safe storage is not supported
in them.

TPM and MTM [5] are hardware modules for user device
security introduced by Trusted Computing Group (TCG),
and TCG is documenting specifications for hardware mod-
ules and software stacks. HSM is a hardware module speci-
fied to a service, and otherwise TPM and MTM have the
feature of common platform with the standardized Applica-
tion Programming Interfaces (APIs) for data protection.
They have an Endorsement Key (EK), which is a key em-
bedded from the factory, and a Storage Root Key (SRK) is
generated from the EK if a user gets the ownership of them.
Other cryptographic keys are generated by the random num-
ber generator and cryptographic key generator in TPM and
MTM, and after the keys are encrypted by key chains started
from the SRK, the encrypted keys are stored into the file
system of user device. Data encrypted by the cryptographic
keys are confidential because the EK and SRK are not ex-
posed to the outside of TPM and MTM. For using the keys
that the platform of TPM and MTM manage, application
users have to input passwords through TCG key manage-
ment APIs.

There are a few researches [6]-[8] for simplifying the
complex processes for accessing the keys in TPM and MTM.
They provide wrapper APIs that integrate TCG APIs with
commonly needed functions and minimize the effort that
developers write applications with the standardized TCG
APIs. However, user-friendly minimization of TCG APIs has
a limit because its integration level is bounded under the
basic hardware operations of TPM and MTM.

Our previous work [9] described a mechanism to authen-
ticate an application for accessing the important data and
keys in the new MTM designed by us. When an application
with a certificate is installed into a user mobile device with
the MTM, the integrity information of application is stored
into the MTM. The application executed by a user is verified
with the integrity information in the MTM and acquires the
authority for accessing the application dedicated data in the
MTM. The dedicated data such as cryptographic keys and

private information can be accessed only by the verified ap-
plication.

III. THE MTM ARCHITECTURE FOR APPLICATION

DEDICATED CRYPTOGRAPHIC KEYS

A. Overview

Fig. 1 shows the architecture for presenting the operation
mechanism of our MTM. The detailed mechanism for verify-
ing application integrity has been described in our previous
work [9]. By the previous work, if an application is regally
installed in a user mobile device, the AppID and the meas-
ured integrity value of the application are stored into Appli-
cation Integrity and Handle Table (AIHT) of our MTM and a
default Storage Key (SK) of KeyID 0 is created in an APP
ID Table of KeyDB. The SK is for the reserved key slot and
is not used currently. The Table ID of KeyDB is also record-
ed to the KeyDB ID related to the integrity-verified applica-
tion in AIHT.

When the installed application is executed by the user,
the MTM middleware with an Integrity Measurement Agent
[9] verifies the integrity of application and inserts an applica-
tion-specific handle value randomly generated by the mid-
dleware into the MTM. The handle value is related to a
communication channel between the middleware and the
application. The middleware adds the handle value to the
commands requested by the application and transfers them to
the MTM. Through the handle value, MTM can access a
table with APP ID in KeyDB and Private Information DB.
Malicious applications cannot get a handle value from the
middleware and cannot directly access to the MTM because
they cannot know current handle values in the MTM.

B. Features of Our Prototype MTM

1) Integrity-based MTM Access Authority (IAA): If the
integrity of application installed or executed by an user is
successfully verified, Command Controller in our MTM
inserts a handle value received from the MTM middleware
into AIHT. It means that regal user applications can access
some information, such as keys in the MTM without any
passwords. Therefore, malicious or tampered applications

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

Figure 2. Experiment environment.

cannot access to the MTM due to none of handle values in
MTM.

2) Application-dedicated cryptographic Key access
Authority (AKA): The integrity-verified application has an
authority for accessing a dedicated cryptographic key table
in KeyDB. The middleware adds a pre-allocated handle
value to every command messages received from the
application. The application can access own keys by
cryptography-related commands with the handle value.
Therefore, applications cannot access keys of each other
applications.

3) Default cryptographic Keys Ready (DKR): MTM
prepares three default keys in the application-dedicated key
table in KeyDB for supporting cryptography using MTM. If
an application is verified and installed in the user mobile
device, MTM automatically generates a SK in the key table.
The KeyID of SK is zero, and it is first default key for
reserving the zero of KeyID and is not used yet. KeyID is a
index that the application accesses a key. Applications, n-
ormally, can use symmetric and asymmetric cryptographies,
which are representatively Advanced Encryption Standard
(AES) [10] and Rivest Shamir Adleman (RSA) [11]. If for
the first time the application uses a cryptography command,
our middleware and MTM processes the command after
they automatically generates an symmetric or asymmetric
key set. We defined the generated default keys with a 256-
bit symmetric key of KeyID 1 and 2048-bit asymmetric
keys of KeyID 2. Therefore, the application can simply use
256-bit AES and 2048-bit RSA, and it can also create new
keys with user-defined KeyIDs.

IV. EXPERIMENTS

For verifying the cryptography feasibility of our MTM
and middleware, we have experimented with a few examples
in Android environment. Fig. 2 shows the experiment envi-
ronment. In Fig. 2, a left upper part is the board that MTM
chip has been mounted and a left lower is the interface board
connecting user mobile device to the MTM board.

A. Specifications

For MTM, we use a smart card chip which includes CPU,
OS, memory, and so on. The size of MTM chip is width 5
mm and height 5 mm. The MTM can support each 10 key
sets about 300 dedicated applications except for normal ap-
plications. In this paper, we do not explain other detailed

specifications of our MTM chip because the information is
confidential yet. Fig. 4 shows user mobile device specifica-
tion that applications are executed.

B. Experiment Scenario

For cryptography testing, we have experimented RSA
encryption and decryption commands. We defined the com-
mands as Bind and UnBind, which are same API names with
TCG. The (a) and (b) of Fig. 3 shows real sample codes for
Bind and UnBind. Like (b), users and applications do not
need to manage keys for basic cryptography because the
application dedicated default keys are supported through our
middleware and MTM. Fig. 5 shows the message flows in
(b) of Fig. 3 between an application and our MTM. The mid-
dleware adds a handle value on every command and sends a
command for creating a default key to the MTM if there is
not an appropriate key in the MTM.

C. Performance Estimation

1) Key Creation: We measured the elapsed time for
creating a key set of RSA 2048 bits. As the experiments of
100 times, we presents the average time in Table I. Through
the experiments, we also measured the overheads of our

Figure 3. The sample codes for estimating performance: (a) java class for

Bind/UnBind and (b) the example code for Bind/UnBind.

 Kernel version: 3.0.15 SMP PREEMPT
 Android version: 4.0.4
 Core: ARM Cortex-A9 based Dual CPU
 Clock Speed: 1.2GHz
 Internal RAM: 128MB

 Memory: mobile DDR2 1GB, embedded Multi Media Card
(eMMC) 16GB

Figure 4. Android mobile device specifications for experiments.

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

softwares. In Table I, MTM Service Provider (MSP) is a
client library linked to the application and MTM Core
Service (MCS) is a service daemon with middleware
functions. The time for generating RSA keys is variable
because of the algorithm features of RSA key generation.
We are trying to enhance the performance and the issue for
waiting users will be treated as future work.

TABLE I. THE PERFORMANCE ESTIMATION OF CREATEKEY

Command

Name

Round Trip Time (ms)

Application to

MTM

Driver to

MTM

MSP+MCS

Overhead

CreateKey 5486 5485 1

2) Bind: We measured the elapsed time for encrypting

the data of 1 and 214 bytes. In current, our MTM for RSA
2048 bits encryption with Optimal Asymmetric Encryption
Padding (OAEP) mode can process maximum 214-byte data
per one command message. As the experiments of 1000
times in Table II, we present the average Round Trip Time
just from the application to MTM because the software
overhead (MSP+MCS) 1 ms is a small part of full elapsed
time.

3) UnBind: We measured the elapsed time for
decrypting 256-byte data encrypted as RSA 2048 bits. As
the experiments of 1000 times, we present the average time
in Table II.

TABLE II. THE PERFORMANCE ESTIMATION OF BIND AND UNBIND

Command

Name

Application to MTM RTT (ms)

1 Byte 214 Bytes 256 Bytes

Bind 88 116 -

UnBind - - 289

Currently, our prototype has about 30 commands includ-

ing the above three commands.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the design and operation ex-
amples of our MTM and middleware. They have the features
of Integrity-based MTM Access Authority (IAA), Applica-
tion-dedicated cryptographic Key access Authority (AKA),
and Default cryptographic Keys Ready (DKR). The features
have the advantages that users can access the cryptographic
keys, private information, and the secure operation of finan-
cial services user-friendly to the MTM. The comprehensive
functions are not supported in other hardware security mod-
ules yet.

In current prototype, the time for generating RSA keys is
too long to wait users when the default RSA key is used for
the first time. In future work, we will create the default RSA
keys at the time for installing an application instead of the
time for using the keys. Additionally, the hardware logics for
creating the RSA keys will be optimized.

ACKNOWLEDGMENT

This work was supported by the IT R&D program of
MSIP/KCA. [12-912-06-001, Development of the Security
Technology for MTM-based Mobile Devices and next gen-
eration wireless LAN].

REFERENCES

[1] T. Souza, J. Martina, and R. Custodio, “Audit and backup

procedures for Hardware Security Modules,” Proc. of the 7th
symposium on Identity and trust on the Internet, 2008, pp. 89-
97.

[2] B. Rosenberg, “Handbook of Financial Cryptography and
Security,” Chapman and Hall/CRC, 2010.

[3] J. Kang, D. Choi, Y. Choi, and D. Han, “Secure Hardware
Implementation of ARIA Based on Adaptive Random
Masking Technique,” ETRI Journal, vol. 34, no. 1, Feb. 2012,
pp. 76-86.

[4] M. Wolf and T. Gendrullis, “Design, implementation, and
evaluation of a vehicular hardware security module,” Proc. of
the International Conference on Information Security and
Cryptology (ICISC 2011), Springer Berlin Heidelberg, 2012,
pp. 302-318.

[5] Trusted Computing Group. TPM main specification. Main
Specification version1.2 rev116, Trusted Computing Group,
March 2011.

[6] G. Cabiddu, E. Cesena, R. Sassu, D. Vernizzi, G. Ramunno,
and A. Lioy, “The Trusted Platform Agent,” IEEE Software,
vol. 28, 2011, pp. 35-41.

[7] C. Stuble and A. Zaerin, “uTSS – A Simplified Trusted
Software Stack,” Proc. of the 3rd International Conference on
Trust and Trustworthy Computing, 2010, pp. 124-140.

[8] R. Toegl, T. Winkler, M. Nauman, and H. Theodore,
“Specification and standardisation of a java trusted computing
api,” Software: Practice and Experience, vol. 42, no. 8, 2012,
pp. 945-965.

[9] D. Kim, J. Kim, and H. Cho, “An Integrity-Based Mechanism
for Accessing Keys in A Mobile Trusted Module,” Proc. of
the International Conference on ICT Convergence, 2013, pp.
780-782.

[10] J. Daemen and V. Rijmen, “The Design of Rijndael: AES -
The Advanced Encryption Standard,” Springer, 2002.

Figure 5. The message flows in (b) of Fig. 3. The middleware can support

multiple applications communicating with MTM simultaneously.

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

[11] R. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”

Commun. ACM, vol. 21, no. 2, 1978, pp. 120-126.

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

	I. Introduction
	II. Relared Works
	III. The MTM Architecture for Application Dedicated Cryptographic Keys
	A. Overview
	B. Features of Our Prototype MTM
	1) Integrity-based MTM Access Authority (IAA): If the integrity of application installed or executed by an user is successfully verified, Command Controller in our MTM inserts a handle value received from the MTM middleware into AIHT. It means th...
	2) Application-dedicated cryptographic Key access Authority (AKA): The integrity-verified application has an authority for accessing a dedicated cryptographic key table in KeyDB. The middleware adds a pre-allocated handle value to every command messag...
	3) Default cryptographic Keys Ready (DKR): MTM prepares three default keys in the application-dedicated key table in KeyDB for supporting cryptography using MTM. If an application is verified and installed in the user mobile device, MTM automatically ...

	IV. Experiments
	A. Specifications
	B. Experiment Scenario
	C. Performance Estimation
	1) Key Creation: We measured the elapsed time for creating a key set of RSA 2048 bits. As the experiments of 100 times, we presents the average time in Table I. Through the experiments, we also measured the overheads of our softwares. In Table I, MTM ...
	2) Bind: We measured the elapsed time for encrypting the data of 1 and 214 bytes. In current, our MTM for RSA 2048 bits encryption with Optimal Asymmetric Encryption Padding (OAEP) mode can process maximum 214-byte data per one command message. As the...
	3) UnBind: We measured the elapsed time for decrypting 256-byte data encrypted as RSA 2048 bits. As the experiments of 1000 times, we present the average time in Table II.

	V. Conclusions and Future Work
	Acknowledgment
	References

