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Abstract— Optimizing traffic signal timing is an effective and 

economical way to improve mobility in an urban area and 

reduce traffic congestion. The objective of the proposed 

algorithm is to enable traffic to traverse through the maximum 

number of downstream intersections without a stop. In this 

study, Bluetooth technology, to measure travel times on arterial 

roads, is used as input for an optimal bandwidth progression 

algorithm. The trajectories of vehicle platoons are tracked and 

decomposed into link-based samples using adaptive smoothing 

method, and paired with signal timing on each signalized 

intersection. Predicted travel time, a value representing the 

travel time between signalized intersections, is obtained by 

Support Vector Regression (SVR) model. According to 

bandwidth efficiency and attainability, the signal timing 

generated by the proposed model yields lower delays than the 

current signal planning. The applicability of the proposed model 

has been validated. 

Keywords-Bluetooth technology; bandwidth optimization; 

adaptive smoothing; support vector machine 

I.  INTRODUCTION 

Mobility is a key performance area, the enhancement of 
which supports the economy and the community by 
facilitating the movement of people and goods [1]. It is critical 
to maintain reliable traffic flow: travelers can plan and execute 
their journeys seamlessly using available software 
applications, and vehicles will flow more freely through 
existing infrastructure. To overcome the increasing 
congestion of arterial roads, investments on infrastructure 
have increased. However, expanding infrastructure is not the 
only way to improve mobility. Making better use of existing 
roads can also increase transport capacity.  

Arterial street signal systems must coordinate timing of 
adjacent intersections to improve mobility of platoons. 
Vehicles in the platoons could encounter fewer red lights, 
shortening the travel time, decreasing number of stops, and 
reducing time delays. Bandwidth efficiency and attainability 
are major criteria for judging the quality of a coordinated 
signal timing plan. Bandwidth-based solutions, the most 
visible indicator to individual drivers, generally outperform 
delay-based solutions [2]. To provide an optimal bandwidth 
progression, traffic engineers are faced with problems of 
providing accurate travel time between intersections. Various 
models have been developed to accurately estimate arterial 
travel times or delays. However, collecting reliable traveling 
time data on signalized intersections is challenging. Previous 
sensor technologies have issues with privacy protection, 
quality of data, and cost of dedicated hardware.  

The number of mobile phones used worldwide has grown, 
and more than half of those were smartphones in 2013 [3]. 
Wireless communications are considered enablers of 
innovation in the field of smart mobility in smart cities [4]. 
Therefore, it will be worthwhile to identify vehicles carrying 
mobile phones. One of the latest technologies using wireless 
communication is the Bluetooth detector, becoming more 
common to enable real-time continuous traffic monitoring. 
This paper introduces Bluetooth technology as an effective 
means of data collection of ground truth travel time. Measured 
travel time data is used as input for an optimal bandwidth 
progression algorithm. Compared to traditional method 
depending on point speed at their fixed locations, Bluetooth 
technology provide point-to-point travel time over the 
segments. A new traffic light based on traffic data collected 
by Bluetooth technology also make traffic flow more smooth 
and fast [5]. By placing sensors along roads, tracking 
Bluetooth devices in passing vehicles, the solution is able to 
accurately detect and record how long it takes a car to drive 
along a corridor, segment by segment. Fig. 1 presents a well-
configured signal coordination system using Bluetooth 
technology. 

 
Figure 1.  A signal coordination system for arterial roads   

The trajectories of vehicle platoons are tracked and 
decomposed into link-based samples in this study. However, 
Bluetooth sensors, collecting the data in a point-to-point 
format, may not be used directly for real-time purposes. It 
takes time for the actual trip to be realized and for the travel 
time to become available. In most urban networks, the actual 
travel time is not available within one discrete time step, as 
traffic congestion increases. Therefore, we use predicted 
values of link travel time. The performance of travel time 
prediction varies with many variables, such as day-to-day 
traffic demand and other factors. Considering the complex and 
dynamic nature of traffic flows in the system, traditional 
models cannot capture the complete characteristics of the 
stochastic traffic data and may not predict the traffic under 
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variation with high accuracy. We develop Support Vector 
Regression (SVR) to predict link travel time. 

The Bluetooth technology is introduced for travel time 
data collection in Section II. Usages of travel time for optimal 
signal timing is proposed in Section III. We present 
decomposition and prediction of travel time in Section IV. The 
signal timing plan is evaluated and future work is presented in 
Section V and Section VI, respectively. 

II. STATE-OF-THE-ART 

A. Sensor Technologies 

Accurate travel time information between two 
intersections can be essential to get optimal signal 
coordination, yet reliable methods for travel surveillances are 
slow in coming.  

1) Until recently, inductive loop detectors [6] were the 
most common traffic data collection for arterial streets even 
though they are not always reliable. These sensors disrupt 
traffic during installation and repair, and therefore have high 
installation and maintenance costs. 

 2) License plate matching has been used to travel time 
data collection purpose. However, this system have high 
equipment costs and their accuracy depends on environmental 
conditions.  

3) Acoustic sensors are attractive especially for their 
low cost and simple and non-intrusive installation. However 
they require a sophisticated post-processing algorithm for 
extracting useful information [7]. These sensors depend on 
measurements at a point that will over-represent the number 
of fast vehicles and under-represent the slow ones, and hence 
give a higher average speed than the true average. 

4) Recently, mobile phones have been used as primary 
source of floating car data. A camera-based traffic signal 
detection algorithm was used to learn traffic signal schedule 
patterns and predict their future schedule. Based on when the 
signal ahead will turn green, drivers can then adjust speed so 
as to avoid coming to a complete halt [8]. It is also possible to 
accurately infer traffic volume through Global Positioning 
Systems (GPS) collected from a roving sensor network of taxi 
probes that log their locations and speeds at regular intervals 
[9]. However, energy consumption of GPS on some phones 
can be a challenge, then less energy-hungry but noisier sensors 
like WiFi can be used to estimate both a user’s trajectory and 
travel time along the route [10]. 

B. Bluetooth Technology  

The traditional floating car method is very costly and 
produces a sparse amount of data [11]. As a result, a new data 
collection methodology was developed that receives 
anonymous emissions from Bluetooth equipped accessories in 
passing vehicles that have been activated in the discovery 
mode. Bluetooth technology is good for collecting high-
quality travel time data that can be used as ground truth for 
evaluating other sources of travel time [12]. This method 
proved to be more cost-efficient than floating car method. 
Various application of Bluetooth technology can be found in 
[13].  

Bluetooth is a telecommunications industry specification 
that defines the manner in which mobile phones, computers, 
personal digital assistants, car radios, and other digital devices 
can be easily interconnected using short-range wireless 
communications. One example of the use of this technology 
is the interconnection of a mobile phone with a wireless 
earpiece to permit hands-free operation. Bluetooth enabled 
devices can communicate with other Bluetooth-enabled 
devices anywhere from 1 m to about 100 m (300 ft). This 
variability in the communications capability depends on the 
power rating of the Bluetooth sub-systems in the devices. The 
Bluetooth protocol uses a 48-bit electronic identifier, or tag, 
in each device called a Machine Access Control (MAC) 
address. Bluetooth transceivers transmit their MAC ID for the 
purpose of identifying a device with which to communicate. 
This “inquiry mode” is used to establish a link with the 
“responding devices.” Inquiries are made by a Bluetooth 
transceiver, even while it is already engaged in 
communication with another device. The continuous nature of 
this process facilitates the identification of passing vehicles 
containing Bluetooth devices, since all equipped and activated 
devices will be transmitting inquiries as long as they have their 
discovery mode enabled.  

The main purpose of this paper is a temporary (i.e., two 
weeks) installation of sensors on a small network. Our future 
study also includes dynamic installations of sensors so that 
sensors can cover the entire network in several stages [14]. 
However, there is a case for permanent installation of 
Bluetooth sensors running on solar energy with an overall 
power budget of less than 5 watts. For details on the 
technology, readers can refer to [15]. 

The Bluetooth traffic monitoring system calculates travel 
times by matching public Bluetooth wireless network IDs at 
successive detection stations. The time difference of the ID 
matches provides a measure of travel time and space mean 
speed based on the distance between the successive stations. 
Each vehicle at the same signal timing in a different time of 
day is categorized to represent vehicle platoon. 

C. Data Quality Issues 

Although Bluetooth has been demonstrated as a promising 
technology, there remain problems which affect the accuracy 
of the estimation such as difficulty of distinguishing between 
multiple transportation modes (e.g., passenger cars, buses, 
bicycles, or pedestrians.). For example, the probability of 
multiple Bluetooth travel time records from a bus was 
analyzed [16]. It is observed that bus is overrepresented in the 
BMS dataset and it is rare to have overrepresentation by more 
than six travel time points. The chances of observing more 
than three travel time records for a bus, is less than 20 %. 
Nevertheless, in our study, there is no data suspected to be 
other mode than motor vehicles. However, an effort to 
distinguish different transportation mode may need in more 
congested urban area. 

The Bluetooth receiver can pick up signals within a 300-ft 
radius around the sensor. Having two sensors at both ends of 
an arterial segment implies that in the resulting travel time 
samples obtained using this technology, one might expect to 
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see errors caused by a maximum of 600-ft error in the length 
traveled. Since Bluetooth devices might be detected at any 
point within the detection zone, this study used the first 
detection in a group to calculate travel times from the MAC 
address data. 

The Bluetooth traffic detectors sample only a fraction of 
the vehicles in the traffic stream. To approximate the sampling 
ratio of the new technology, actual traffic volume in a 
roadway segment is needed. Traffic volume data are available 
where other sources of traffic surveillance systems are in 
place. The average Bluetooth hourly sampling rate is between 
2.0% and 3.4%. 

D. Privacy Concerns 

The anonymous nature of this technique is due to the use 
of MAC addresses as identifiers. MAC addresses are not 
directly associated with any specific user account (as is the 
case with cell phone geo-location techniques) or any specific 
vehicle (as is the case with deriving travel time from 
automated toll tags). The MAC address of a cell phone, 
camera, or other electronic devices, though unique, is not 
linked to a specific person through any type of central 
database thus minimizing privacy concerns. Additionally, 
users concerned with privacy can set options in their device 
(referred to as “Discovery Mode” or “Visibility”) so that the 
device is not detectable. 

III. BANDWIDTH OPTIMIZATION ALGORITHMS  

Bandwidth optimization algorithm using three signals 
with simple two-phase operations is illustrated (Fig. 2). An 
intersection with the minimum arterial green split, Gmin, is 

called the critical intersection (e.g., the middle intersection). 
The arterial green times for the other intersections in the 
system are all greater than Gmin. This minimum green time, 

Gmin, determines the largest possible bandwidth progression 

that can be achieved for the system. 

 

Figure 2.  Optimization of bandwidth progression 

The system bandwidth is reduced if the progression band 
encounters interference from other signals in the system. 
Only one type of interference, either an upper interference, 
IU, or a lower interference, IL, can occur at each signal. The 

final system bandwidth, B, is determined by Gmin minus the 

minimum possible combination of the upper interference and 
the lower interference, 

B = Gmin – min {max(IU,i) + max(IL,j)}              (1) 

where B=bandwidth(s); IU,i=upper interference at 

intersection i (s); Il,j lower interference at intersection j (s); 

max(IU,i)=maximum value from all signals producing upper 

interference and max maximum value from all signals 
producing lower interferences. 

The enhanced Brook’s algorithms [17], such as those in 
PASSER II [18], search for the best phasing sequences and 
offsets at each signal location to minimize the combined 
interference. The optimization process simultaneously 
considers progression in both directions.  

To maximize the progression bandwidths for both 
directions, the offset and phasing of each signal should be 
carefully designed. For an intersection j with multi-phases 
(e.g., the option of a leading left turn phase or a lagging left 
turn phase), the interference for one direction is also related 
to the timing parameters for the other direction. Equations 
(2) and (3) show how the upper interference or the lower 
interference can be calculated for intersection j with respect 
to a master intersection m for one of the directions 

IU,j(p) = [Gmin − Tmj + Tjm − Om(n) + Oj(p) + Gj]mod C   (2) 

IL,j(p) = [Tmj + Tjm − Om(n) + Oj(p) − Sj]mod C               (3) 

where IU,i(p), IL,j(p)=upper interference and lower 

interference at intersection j with phase sequence p (only 
one phase sequence could occur) (s); Tmj , Tjm=travel times 

between intersections m and j (s); Om(n)=relative offset 

between direction a green time and direction b green time at 
signal m with phase sequence n (s); Oj(p)=relative offset 

between direction a green time and direction b green time 
at signal j with phase sequence p (s); Gj=direction a green 

time at signal j (s); Sj=difference between green  times  of  

intersections  j  and  m  in  direction  b  (s);  and C=cycle length 
(s). 

The interference (either upper or lower) is largely affected 
by the signal spacing as reflected by the travel times, T

mj 
 and 

T
jm

. Representative travel time has been predicted by using 

decomposition and SVR in travel time prediction section of 
this paper. With the increase of the number of signals in a 
system, the chances of having larger interference values also 
increase. For example, there might be a signal whose spacing 
may actually produce maximum interference, which equals to 
G

min
, the green time of the reference intersection. In this case, 

the bandwidth would be zero. 
The arrival sequence of green time at each intersection 

presents four scenarios.  

• Scenario 1. upstream bands projected to arrive after 
downstream queue discharges  

• Scenario 2. upstream bands projected to not arrive 
after downstream queue discharges 

• Scenario 3. upstream bands projected to arrive before 
queue discharges 
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• Scenario 4. upstream bands projected to arrive after 
downstream queue discharges  

To evaluate the proposed algorithm, delay is calculated for 
each vehicle compare to free flow traffic condition. Calculated 
delay for each signal cycle at specific time of day is 
aggregated for forty seven days. Efficiency and attainability 
measure the quality of through progression provided by a 
timing plan. Efficiency for a direction is the percent of cycle 
used for progression. Attainability is the percent of bandwidth 
in a direction in relation to the minimum green split in the 
same direction. When attainability is at 100%, the bandwidth 
is at its maximum. Theoretically, the maximum bandwidth in 
a direction can be no more than the smallest through green 
split in that direction. We calculate efficiency and attainability 
for the two arterial directions (4) and (5).  

Efficiency(%) =
(BU +  BL) 

2 × Cycle length 
× 100               (4) 

Attainability(%) =
(BU +  BL)  

𝐺min, U + 𝐺min, L
× 100            (5) 

IV. ARTERIAL TRAVEL TIME 

While license plate matching techniques are several miles 
apart due to associated costs, Bluetooth sensors are deployed 
0.7-1 miles apart. A normal segment between Bluetooth 
sensors has two or three intermediate intersections. Proposed 
decomposition method reconstructs the trajectory of point-to-
point path into intersection to intersection link data. Accurate 
prediction of travel time provides inputs for optimal 
bandwidth progression.   

A. Decomposition of Path Travel Time 

For a vehicle traveling from an origin point A to a 
destination point B through x intersections, we decompose the 
travel time as the sum of travel times on each link (Fig. 3).  

 

Figure 3.  Reconstruction of travel time 

We use link-based travel time, in which traffic conditions 
(speed reported by loop detectors) are assumed to be constant. 
The vehicle speed is considered linearly increasing or 
decreasing between intersections.   

A serious challenge in traffic data is that the typical scale 
of some traffic patterns, such as the wavelength of stop-and-
go waves, is similar to the spacing of stationary detectors. 
Consequently, important dynamical features may be lost in the 
interpolation process, and even entirely spurious patterns may 
be reconstructed [19]. 

The switch between free and congested traffic is then 
managed by an adaptive speed filter. A smoothing function 
performs two-dimensional interpolation to reconstruct the 
spatiotemporal traffic state from discrete traffic data. The 
adaptive weight factor 0 < 𝑊𝑠(𝑡) < 1  controls the 
superposition of the free and congested velocity fields and can 
be estimated as  

Ws(t) =
∑ LTTx(t)l

1 − ∑ LTTx
fl

1  

∑ LTTx
jl

1 − ∑ LTTx
fl

1  
                         (6)

where 𝐿𝑇𝑇𝑙
𝑗

 denotes congested traffic operations and 

𝐿𝑇𝑇𝑙
𝑓

 denotes free flow conditions from historical data 

between intersections. 𝐿𝑇𝑇𝑥
𝑠(𝑡)  is smoothed 𝐿𝑇𝑇(𝑡)  of 

detector x at time interval t, estimated by combining the values 
for free and congested traffic:  

LTTx
s(t) = Ws(t)LTTx

j
 + (1 − Ws(t))LTTx

f            (7) 

The ratio of 𝐿𝑇𝑇𝑥
𝑠(𝑡) is used to generate piece-wise link 

travel times 𝐿𝑇𝑇𝑥(𝑡): 

LTTx(t) = 𝑃𝑇𝑇𝐴𝐵(𝑡) ×
LTTl

s(t)

∑ LTTl
s(t)l

1

                     (8) 

B. Travel Time Prediction  

Support Vector Machines (SVMs), learning machines 
implementing the structural risk minimization inductive 
principle, is used to obtain good generalization on a limited 
number of learning patterns in travel time prediction. SVMs 
work by solving a constrained quadratic problem where the 
convex objective function for minimization is given by the 
combination of a loss function with a regularization term [20]. 

Traditional regression procedures are often stated as the 
processes deriving a function f(x) that has the least deviation 
between predicted and experimentally observed responses for 
all training examples. One of the main characteristics of 
Support Vector Regression (SVR) is that instead of 
minimizing the observed training error, SVR attempts to 
minimize the generalized error bound to achieve generalized 
performance. This generalization error bound is the 
combination of the training error and a regularization term that 
controls the complexity of the hypothesis space. 

The approximate function is determined by a small subset 
of training samples called Support Vectors (SVs). A specific 
loss function is developed to make a sparseness property for 
SVR. In order to learn the non-linear relations by linear 
machines, selecting a set of non-linear features and rewriting 

52Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users



the data in the new representation are needed, equivalent to 
applying a fixed non-linear mapping of the input space to a 
feature space in which the linear machine can be used. In 
SVR, the input x is first mapped onto a m-dimensional feature 
space using some fixed (nonlinear) mapping. Then, a linear 
model is constructed in this feature space. Using mathematical 
notation, the linear model in the feature space, ),( xf , is 

given by 

bgf

m

j

jj 
1

)(),( xx                             (9) 

where mjg j ,...,1),( x denotes a set of nonlinear 

transformations, and b is the “bias” term. Often the data are 
assumed to be zero mean, so the bias term in (9) is dropped. 

The quality of estimation is measured by the loss function

)),(,( xfyL . The SVR uses a new type of loss function 

called  -insensitive loss function   
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The empirical risk is 






n

i

iiem p fyL
n

R

1

)),(,(
1

)(   x           (11) 

Note that  -insensitive loss coincides with least-modulus 
loss and with a special case of robust loss function when 

=0. Hence, we shall compare prediction performance of SVM 
(with proposed chosen  ) with regression estimates obtained 

using least-modulus loss (  =0) for various noise densities. 

SVM regression performs linear regression in the high-
dimension feature space using  -insensitive loss and, at the 
same time, tries to reduce model complexity by minimizing

2|||| . This can be described by introducing (non-negative) 

slack variables *, ii   ( ni ,...1 ), to measure the deviation of 

training samples outside  -insensitive zone. The SVR is 
formulated as minimization of the following objective 
function: 

min   




n

i

iiC

1

*2 )(||||
2

1
                         (12) 

   s.t.   
















ni

yf

fy

ii

iii

iii

,...,1,0,

),(

),(

*

*







x

x

                                   

This optimization problem can transformed into the dual 
problem, and its solution is given by   

 ),()()( *

1

xxx iii

n

i

Kf

SV

 


               (13)  

s.t. Ci  *0  , Ci 0                        

where SVn is the number of Support Vectors (SVs) and 

the kernel function  

 dzxczxK ,),(                      (14) 

In this study, polynomial kernel with c = 1, and d = 2 is 
used for prediction of link travel time (Fig. 3).   

 

Figure 4.  Instantaneous and Predicted Travel Times. 

To handle fully dense quadratic optimizations in SVR, 
decomposition methods are designed. Unlike most 
optimization methods that update the whole vector α in each 
step of an iterative process, the decomposition method 
modifies only a subset of α per iteration. This subset, denoted 
as the working set B, leads to a small sub-problem to be 
minimized in each iteration. An extreme case is the Sequential 
Minimal Optimization (SMO) [21], which restricts B to have 
only two elements. Then, in each iteration one does not require 
any optimization software in order to solve a simple two-
variable problem.  

The model is applied to real world transportation network 
from the FHWA test data set [22]. The network consist of 4 
intersections on 82nd street for afternoon peak hours (4:00 
PM–6:00 PM) from 9/15/2012 to 11/14/2012. The data 
include following information: 

 Phase and timing data consists of active calls and 
phasing information for four signals.  

 Bluetooth data consists of travel times derived from 
matching MAC addresses that are captured by the 
Bluetooth readers between a pair of locations  

 Loop detector data consists of speed on link between 
upstream and downstream.   

In order to compare the performance measures before and 
after the field implementation, forty seven weekdays travel 
time need to be trained, after paring signal timing and 
reconstructing link travel time. The polynomial kernel 
function is used for SVR travel time prediction model. We 
examine the travel time of three links from the intersections of 
82nd and Woodward to 82nd and Foster. Relative Mean 
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Errors (RME), the ratio of difference between predicted error 
and actual travel time to the quantity, is calculated to evaluate 
prediction performance of the model, for 60 seconds interval. 
The results in Table I show the RME and RMSE of SVR for 
different travel distances over all the data points of the testing 
set. They show that the SVR predictor represent each temporal 
and spatial vehicle platoon in a feasible range. However, if 
penetration rate is higher, shorter interval with higher 
frequency of detection will be available and we can provide 
more accurate inputs for signal optimizations.  

TABLE I.  PREDICTION RESULTS 

 RME RMSE 

Link 1 (0.5mi) 10.52% 19.56% 

Link 2 (0.6mi) 9.84% 17.94% 

Link 3 (0.6mi) 12.32% 22.54% 

 
The optimized offset values were implemented on 

afternoon peak hours on 11/15/2012. The arterial outbound 
bandwidth is 29 seconds, and 25 seconds for the inbound. 
Arterial bandwidth efficiency is 21.16%, and bandwidth 
attainability is 63.74%, which means a fair progression 
according to the guidelines of bandwidth efficiency [23].  

The existing field offset setting is {0, -24.9, -21.6, 4.6}, 
and its weighted total delay per cycle for each intersection is 
183.8 seconds. In comparison, the optimized offset values 
were implemented and the best offset result is {0, -21.4, -21, 
-20.9} for four intersections, and the weighted total delay per 
cycle is 30.4 seconds. We should note that the above offset 
values are computed under the transformed time coordinates. 

Table II compares the calculated travel time delays of both 
eastbound (from stop line of Boone to stop line of TH100) and 
westbound (from stop line of TH100 to stop line of Boone) 
based on different offset settings.  

TABLE II.  AVERAGE DELAY COMPARISION BEFORE AND AFTER  

 
Original 

(Before) 

Optimized          

(After) 

Change 

percentage 

Northbound 

average delay 

(seconds) 

784.8 678.4 13.6% 

Southbound 

average delay 

(seconds) 

119.8 107.4 10.4% 

 
As we can see, both eastbound and westbound travel time 

delays are substantially reduced after the offset adjustment. 
On average, the northbound travel time delay with original 
offset (9/3/2009) is 784.8 seconds and it decreases to 678.4 
seconds after optimization (9/14/2009), which is a 13.6% 
reduction. For southbound, average travel time delay with 
original offset is 119.8 seconds and it decreases to 107.4 
seconds after optimization, which indicates a 10.4% 
reduction. As traffic condition is more congested 
(northbound), reduction of travel time delay is higher. 

Considering that the original offset setting was already 
optimized, the improvement is significant.  

V. CONCLUSION AND FUTURE WORK 

In this paper, we proposed an application of Bluetooth 
technology to signal control by improving the quality of travel 
time prediction. Proposed method presents fair bandwidth 
progression efficiency and attainability, and lower delays than 
the current signal planning.  

A number of possible future research directions exist. For 
example, the applicability of the proposed model is currently 
limited to through movement of traffic. A worthwhile research 
effort would be to generalize the model to the network level 
to obtain network-wide movements into signal controls. A 
challenging part of Bluetooth data is the small number of 
sample data. By using distribution of travel time data collected 
from each loop detector, Bluetooth data can be augmented. 
Accurate estimation of queue and arrival dynamics can be 
integrated for the optimal signal timing.  
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