
Empowering Mobile Users: Applications in Mobile Data Collection

Arlindo F. Conceição
Institute of Science and Technology

Federal University of São Paulo (UNIFESP)
São J. dos Campos, Brazil

Email: arlindo.conceicao@unifesp.br

Dario Vieira
French School of Electronics and Computer Science (Efrei)

Paris, France
Email: dario.vieira@efrei.fr

Abstract—This paper presents an architecture for collecting and
analyzing mobile data. The system offers simple and intuitive
interfaces to create mobile applications (Apps). It allows the
collection of conventional data, such as numbers and text, and
also non-conventional data, such as multimedia files, location
information, and barcodes. The collected data can be shared
among users on a social network. In addition, we propose a
pipeline architecture to data analyzing.

Keywords–Mobile services; Smartphones; Data Collection.

I. INTRODUCTION

The mobile communication market has evolved fast. This
evolution is mainly characterized by three factors: reduced
smartphone prices, launch of mobile devices with high pro-
cessing capability, and emergence of new technologies for
the development of Mobile Applications (Apps). These factors
have created conditions for the large-scale usage of Apps.

However, despite the advances in hardware and software,
the creation of mobile applications continues to demand pro-
gramming efforts and involvement of programmers and IT
professionals. In our opinion, this is the main limitation to
wider usage of mobile solutions and applications. The re-
sources (money or/and programmers) to develop these mobile
applications are not always available. In general, the end user
cannot pay for the development of customized applications.

In order to mitigate this problem, we are developing an
open cloud infrastructure for data collection and automatic
creation of mobile Apps [1]. The platform allows the user
to create and customize their own mobile applications using
simple interfaces. The user does not need to know how to
program.

By providing new tools to the users, we are opening op-
portunities for new applications, services and usage of mobile
devices. We refer to this concept as Mobile User Empowering,
which includes the following goals:

• To allow customization of mobile software require-
ments using simple interfaces.

• To host data and applications, transparently, in the
cloud.

• The service must be free and the data must be that of
the user.

To create a proof of concept of Mobile User Empowering,
we focused on applications for Mobile Data Collection (MDC)
and mobile surveys. These applications usually have the format
of a questionnaire and contain a pre-established number of
objective questions [2]. There are several good reasons to
use mobile applications instead of traditional methods. First,
we can reduce or even eliminate the usage of paper. Second,

mobile applications may enhance the reliability of the collected
data by implementing validation procedures. Finally, if we
collect data using electronic devices, the information does not
need to be manually moved from paper to an information
system.

The project was called Maritaca (MARitaca Is a Tool to
creAte Cellular phone Applications). Furthermore, Maritaca is
also the name of a bird in Brazil. The project is open source
and was designed to be highly scalable. The tool is available
for evaluation [3].

The remainder of this paper is structured as follows:
Section II presents the related works, Section III describes the
distributed architecture, Section IV briefly shows the interfaces
and features of the platform and integration model of the
project and Section V proposes a pipeline architecture to data
analysis. Section VI explores applications of the platform.
Finally, we present future work and our final considerations.

II. RELATED WORK

There are several projects with similar purposes to Mari-
taca. For example, App Inventor [4] allows to build applica-
tions for Android visually. It focuses on the drawing interface
components, step-by-step, connecting their respective events.
The advantage of Maritaca over App Inventor is that it allows a
simpler and more intuitive design of interfaces. This is possible
because it focuses on MDC applications.

Nokia Data Gathering [5] is a system that allows question-
naires to be built which can be accessed by mobile devices with
connection to the Internet. Data is gathered and stored in the
mobile devices and can be transmitted to a server. However,
it is a proprietary solution.

Another tool is Open Data Kit (ODK) [6], which consists
of a set of open source tools that help to create and manage
mobile data collection. It is composed of three tools: Build,
Collect and Aggregate. Build is used for modeling the forms.
Collect is used to start data collection on mobile devices that
run the Android operating system, and also for sending the data
to the server. Finally, Aggregate gathers the collected data on
the server and converts to standard formats. It should be noted
that the tool Collect generates the interfaces of the mobile
application from a file format XForm, a standard formatting
of forms, specified in XML. However, ODK does not offer an
infrastructure, but sets standards and APIs.

The product DoForms [7] allows the creation of multi-
platform and mobile questionnaires. It is similar to Maritaca,
however, it is not open source.

The Mafuta Go project [8] is a specific mobile application
designed to find the nearest gas stations in Uganda (located in

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

East Africa). The App also compares the prices of gas. The
Maritaca could be used to create the same application.

Fulcrum [9] allows the creation of Android and iOS appli-
cations for data collection. It also collects location information,
so that the collected data can be viewed on maps. It is
quite similar to Maritaca. On the site of the project it is
possible to see several Apps created using the system; the Apps
are organized in several categories, such as tourism, utilities,
financial tools, etc. However, Fulcrum is not a free platform.

All these products have similarities to Maritaca, but none
of them implements all proposed features, and none of them
allows flexible data analysis.

III. SYSTEM ARCHITECTURE

The Maritaca project was developed as a cloud appli-
cation [10]. The data collected using Android devices are
stored in the cloud and can be visualized using standard web
browsers.

There are two main components:
Mobile component: this is an Android application that in-

terprets the XML file (questionnaire descriptor) and generates
the interfaces automatically. In fact, the mobile component is
an engine, based on the design pattern Interpreter [11]. The
mobile component design was the key factor for allowing to
create mobile applications automatically.

Server component: the server side was written in Java,
using the application server JBoss [12] and the framework
Spring [13]. All web services were implemented based on
the RESTFul approach [14]. The server also integrates the
following products: Form Editor, Analytics Editor, Cassandra
database, Hadoop file system, Solr search engine, and Mon-
goDB.

• Form Editor: this is an independent Web applica-
tion, written using HTML5 and Ajax. It allows the
quick and intuitive development of questionnaires by
implementing drag-and-drop interfaces. As a result,
this component generates a questionnaire descriptor,
which is persisted in XML format, and is parsed by
the Mobile component.

• Analytics Editor: it is also an independent Web
application used to create queries about the collected
data.

• Cassandra database: it is used for scalable storage of
information. It is based on the paradigm NoSQL [15],
[16].

• Hadoop file system: this is a distributed file sys-
tem [17], [18] used to store non structured data, such
as Apps and multimedia files.

• Solr Engine: it is a distributed search engine [19],
[20] used to enable searching of Apps. Each App has
a description; we used Solr to index the keywords of
this description, so that it is possible to search for
specific Apps.

• MongoDB: this is a scalable distributed database [21]
used to analyze collected data. MongoDB is a NoSQL
data repository that implements data queries using a
semantic similar to SQL [22].

The Figure 1 illustrates the system architecture and the
relation among server components.

Figure 1. System architecture and main components of the server side.

A. System integration
The interaction between mobile devices and the system is

always done with RESTFul services. The web layer and the
RESTFul services interact with the business layer using the
framework Spring.

The architecture predicts the usage of many instances from
the system components (JBoss, Cassandra, MongoDB, and
Hadoop) in one computational cluster. The load balance of
the requisitions will be implemented using nginx [23].

The project also includes one additional component, the
RabbitMQ [24], that is used to enqueue messages, mainly to
send email messages. For example, it is used to send new
passwords (if they have been forgotten), send invitations to
new users, etc.

B. Funcionalities of Mobile component
The mobile component is an engine that translates the

descriptor of the questionnaire (represented in XML format)
into a hierarchy of instantiated objects. These objects are
responsible for rendering the interfaces and implementing data
validation. The computational model used to represent the
questionnaires is sophisticated, and it was this technological
innovation that makes the solution possible.

The technique of mapping XML into a list of objects was
based on the design pattern Interpreter [11], where we can use
a hierarchy of classes to simplify message protocol and data
interpretation. In our case, see Figure 2, the mobile application
is a Context Manager, which always points to the object
currently in use (question being answered). Each subclass of
type Question [25] can implement its own policies, such as,
field validation, interfaces, and data storage methods.

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

Figure 2. Application controller and XML mapping into objects using Interpreter design pattern.

1) Hierarchy of objects: We create a hierarchy of classes in
which the questions are mapped. The interfaces for manipulat-
ing objects allows, for example, to validate the value collected
(using method validate), to render the interface for each type of
question (method getLayout) and to control navigation between
each of the questions (methods getNext and getPrevious).

The validate method allows, for example, to validate mini-
mum and maximum limits for the inputs of numeric data. Thus,
if a form contains a question about the interviewee‘s age, the
minimum and maximum value for the answers can be defined,
for example, respectively as 0 and 105. Data validation is
implemented in the class that defines the type of question and
is a very effective method to prevent incorrect data collection.

2) Techniques for XML interpretation: The project uses the
Simple framework [26] for the serialization and deserialization
of the XML files. That is, the framework directly converts
XML files into objects and vice versa. This technique is
simpler to implement than a XML parsing, which simplifies
code maintenance and extension.

3) XML file format: The mobile component interprets the
XML file generated by the form editor. In this file, each
question is represented as a XML tag with the following basic
attributes: id, next, previous, required, label, help, type and
default.

The following fields: id, next and previous are numeric
type; id identifies the number of the current question, next
points to the id of the next question and previous points to the
previous question.

The field required determines whether the question is
mandatory; its value is defined as: true or false. The field label
must contain a question text to be shown in the questionnaire.
The attribute help is not mandatory and contains a clarification
about the question. The attribute type defines the type of the
data, and can assume, for example, the following values: text,
number, radiobutton, combobox, video, gps, etc. The attribute
default contains a default value of the current question.

Furthermore, some types of questions may have a con-
ditions structure, which is used to define the conditional
navigation between questions. By using this tag, the response

to the current question is used to determine which question will
be displayed. For example, consider the following question:
“How old are you?”. If the answer is a value under 18
years, the next question might be: “What is the name of your
parent?”; otherwise, this question could be omitted.

4) Authentication: Before the first data collection, the
mobile application user must authenticate their identity on
the server; this guarantees that the user has permission to
collect data for that form. This process is done using the
OAuth authorization framework [27] that enables third-party
applications to obtain limited access to an HTTP service.
All data transfer is implemented using RESTFul services and
JSON message format.

C. Capturing unusual data
In addition to collecting usual data, such as texts and

numbers, the solution also allows collection of unusual data,
such as multimedia (audio, video and images) [28], geolo-
cation [29], drawings, barcodes, etc. In summary, the ques-
tionnaire can include questions such as: What is your current
location? Take a picture! Record an audio message!

The implementation of new types of data captured can be
easily performed. To do this, simply extend the class Question
and make the appropriate changes in the parsing class.

D. Automatic generation of Apps
Every time a form is saved in the Form Editor, the system

generates a new Android App (executable APK file format)
and stores it in the Hadoop distributed file system. This was
not the first approach adopted. Initially, we planned to create a
single Android application, where the XML descriptors would
be loaded.

However, it was difficult to maintain several versions of
Apps, thus we implemented this new process of form publica-
tion. The process of compilation takes a few seconds, but it is
done in the background, and thus does not affect the perceived
usability of the server system.

IV. SYSTEM USAGE

This section briefly describes how the system can be
used [3], [30].

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

First, the user can access the system and create an App
(mobile application) for data collection; the user must be
registred in the platform. The App can be installed onto any
compatible mobile device that runs Android 2.2, or above. The
installation of the mobile App is simple and straightforward.

On the mobile device, the application allows data to be
collected using user-friendly interfaces. Figure 3(a) shows
the main interface of the application. Figure 3(b) shows a
screenshot of a data collection interface. By default, it uses
a Wizard interface design pattern, i.e. each question is shown
on a screen. The user can also choose to see a complete list
of questions, it is useful in large surveys.

(a) Screenshot of the home interface
of the Mobile component.

(b) A data collection interface for a
question of type Text.

Figure 3. Interfaces automatically created.

To carry out the data collection, it is not necessary to be
connected to the Internet. After collection, data is stored on
the mobile device. An Internet connection is needed only for
authentication and data upload.

The user can use the web interface to visualize and manage
forms, see Figure 4. The list of forms is organized in two
panels, forms created by the user (top) and shared forms
(bottom).

Figure 4. Form management interface.

Currently, the system allows the creation of three types of
forms: private, public and shared. In Table I, these policies are
summarized. As the names indicate, the private form can be

only used by its owner and the public form can be viewed by
any user of the platform.

For shared forms, the owner can invite other users, and
the owner can see all data collected. Furthermore, the shared
forms can be divided into two subtypes: hierarchical and social.
For shared-hierarchical forms, the owner can invite users, for
example, users A and B, but the data gathered by user A is not
visible by user B, and vice versa. In turn, for shared-social
forms, all invited users can visualize the data collected by one
another.

TABLE I. DATA SHARING POLICIES.

Private Shared Hierarchical Shared Social Public

Forms Read Owner Owner and List Owner and List All
Update Owner Owner Owner Owner

Answer Read Owner Owner Owner and List All
Collect Owner Owner and List Owner and List All

V. PIPELINE DESIGN FOR DATA ANALYSIS

In addition, we recently created a solution that allows to
analyze the data. The user can configure a pipeline for data
processing, as illustrated in Figure 5. The user can: filter the
data (time, specific fields, or geographical region), apply data
transformations similar to SQL commands (order by, sum,
average, etc.), and, finally, choose a data visualization mode,
such as table or map.

Figure 5. Analytics module, based in a pipeline of information

For example, suppose that a user creates a App to collect
the price and location of restaurants. Then, the user can define a
query using the pipeline architecture. A filter can be applied to
restrict the results to restaurants near the user. A transformation
can be applied to order the restaurants by price. Finally, the
user can choose to see the results as a map. Figure 6 shows
the result of a query created using the Analytics module. In
fact, every time a user makes a query request, the data is
imported from the Cassandra database to the MongoDB, where
the filters and transformations are applied using a map reduce
strategy [22].

VI. APPLICATIONS

The project allows:

• The creation of your own mobile data application.
The user can create and modify their own app for data
collection. A salesman can coordinate a customer’s
orders, students can share pictures of a party, and
parents can visualize where their children are. There
are no costs and no need for programming skills.

• Your own Social Network. The user can create
an application for data collection and define three
different models of data sharing. Thus, it is possible
to create social networks for specific interests.

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

Figure 6. A result of Analytics module.

• Extracting Collective Intelligence. By using the
Analytics module, the user can define special views of
the data, offering services with high aggregated value.

Therefore, the user can create an effective and complete
mobile solution using simple interfaces. There are many pos-
sibilities. Currently, we are using the system to collect data in
homecare health services and nutritional monitoring.

VII. CONCLUSION AND FUTURE WORK

We explored the concept of Mobile User Empowering,
that provides to the user the power to create, modify and
use his own mobile applications. The project offers tools to
collect, share and analyze mobile data, allowing users total cus-
tomization of software requirements using simple interfaces,
without needing knowledge of programming languages or IT
infrastructure. The architecture has been developed to cover
most mobile applications based in questionnaires, storing both
conventional (number, text, etc.) and non-conventional data
(video, pictures).

In addition, we proposed a pipeline architecture and its
cloud implementation that can be used to data analysis.

Currently, the project can create mobile applications on
Android platform. We are developing a multi-platform version
using the Phonegap technology. In addition, we are deploying
the solution in a private cloud with high processing power.

The latest version of the project is available for evalua-
tion [3]. The source code and additional documentation can
be found at the code repository [30].

ACKNOWLEDGMENT

We thank FINEP [31] by funding this research project.

REFERENCES
[1] A. F. da Conceição, J. V. Sánchez, T. Barabasz, A. H. Mamani-Aliaga,

B. G. dos Santos, and M. F. Mendonça, “Open architecture for mobile
data collection using cloud computing,” in International Workshop on
Mobile Cloud Computing: Data, Management & Security (mCloud). In
conjunction with 14th IEEE International Conference on Mobile Data
Management (IEEE MDM). Milan, Italy., 2013.

[2] R. Ghiglione, B. Matalon, C. Pires, and A. de Saint-Maurice, O
inquérito: teoria e prática. Lisboa: Editora Celta, 1997.

[3] A. F. da Conceição et. al, “Maritaca,” http://maritaca.unifesp.br, ac-
cessed: 2014-06-07.

[4] MIT, “Mit App Inventor,” http://appinventor.mit.edu, accessed: 2014-
06-07.

[5] Nokia Corp., “Nokia Data Gathering,” https://nokiadatagathering.net,
accessed: 2014-06-07.

[6] ODK Community, “Open Data Kit,” http://opendatakit.org, accessed:
2014-06-07.

[7] doForms Inc., “DoForms,” http://www.doforms.com, accessed: 2014-
06-07.

[8] MafutaGo, “Official Mafuta Go website,” http://www.mafutago.com,
accessed: 2014-06-07.

[9] Fulcrum, “Gather data anywhere, anytime with fulcrum,” http://
fulcrumapp.com, accessed: 2014-06-07.

[10] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, 2010, pp.
50–58.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison-Wesley Professional, 1994.

[12] S. Davis and T. Marrs, “JBoss at work: A practical guide,” 2005.
[13] B. Tate and J. Gehtland, Spring: a developer’s notebook. O’Reilly

Media, Incorporated, 2005.
[14] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media,

Incorporated, 2007.
[15] E. Hewitt, Cassandra: the definitive guide. O’Reilly Media, Incorpo-

rated, 2010.
[16] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, 2010, pp.
35–40.

[17] T. White, Hadoop: The definitive guide. O’Reilly Media, 2012.
[18] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop dis-

tributed file system,” in Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST). Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–10.

[19] D. Smiley and E. Pugh, Solr 1. 4 Enterprise Search Server: Enhance
Your Search with Faceted Navigation, Result Highlighting, Fuzzy
Queries, Ranked Scoring, and More. Packt Publishing, 2009.

[20] O. Gospodnetic and E. Hatcher, Lucene. Manning, 2005.
[21] K. Chodorow, MongoDB: the definitive guide. O’Reilly, 2013.
[22] MongoDB Aggregation, http://docs.mongodb.org/manual/aggregation,

accessed: 2014-06-09.
[23] nginx, http://nginx.org, accessed: 2014-06-07.
[24] “RabbitMQ Messaging,” http://www.rabbitmq.com/, accessed: 2014-06-

07.
[25] A. Durham, E. Sussumu, and A. da Conceição, “A framework for

building language interpreters,” in Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications (OOPSLA). Educators Symposium. ACM,
2003, p. 196.

[26] Simple Framework, http://simple.sourceforge.net, accessed: 2014-06-
07.

[27] A. Tassanaviboon and G. Gong, “OAuth and ABE based authorization
in semi-trusted cloud computing: aauth,” in Proceedings of the second
international workshop on Data intensive computing in the clouds, ser.
DataCloud-SC ’11. New York, NY, USA: ACM, 2011, pp. 41–50.

[28] A. da Conceição, R. Pereira, J. Rezende, B. Silva, R. Correia,
H. Domingues, R. Kon, and F. Kon, “Projeto Borboleta: Ferramentas
Móveis e Multimı́dia para Atenção Básica Domiciliar,” in Congresso
Brasileiro de Informática em Saúde. Artigo curto, 2008.

[29] A. El-Rabbany, Introduction to GPS: The Global Positioning System.
Artech House Publishers, 2002.

[30] Maritaca Team, “Maritaca Source Code,” http://sourceforge.net/p/
maritaca, accessed: 2014-06-07.

[31] Financiadora de Estudos e Projetos (FINEP), http://www.finep.gov.br,
accessed: 2014-06-07.

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-366-7

MOBILITY 2014 : The Fourth International Conference on Mobile Services, Resources, and Users

