
Improving Quality on Native and Cross-Platform
Mobile Applications

Rudy Bisiaux, Mikael Desertot, Sylvain Lecomte, Joachim Perchat, Dorian Petit
FRANCE

name.firstname@univ-valenciennes.fr

Abstract—This paper discusses quality markers for a mobile
application, both during conception and development, to propose
the most suitable way to validate them automatically. We focus
on native and cross-platform applications, as well as component
based development. To achieve this, we rely both on research
papers of the domain, and on our partnership with the Keyneosoft
company. An industrial expertise is useful to identify real prob-
lems encountered with quality processing for mobile applications.

Keywords–Mobile, Quality, Product Line.

I. INTRODUCTION

With more than 4 billion mobile devices around the world
[5] and more than 5 million applications in the different
stores [2], the mobile is omnipresent. But developing mobile
applications means complying with several constraints and
that comes at a cost [22]. In this paper, we highlight the
differences between the implementation of classic apps (for
Desktop, Web or server) and mobile apps. Afterwards, we
define the quality of a mobile application [24] and determine
some quality checkpoints. Finally, we describe a solution for
validating these checkpoints, to be able to evaluate the overall
quality of a mobile application. The objective is to reduce
the cost of creating and maintaining these applications by
addressing quality control in these two phases. A lot of time is
wasted to rollback, hot-fix or replace parts of the application
during conception, development or tests, if a minimum quality
threshold is not reached. To do this, we introduce the mobile
application development concept in Section II. We define the
needs for mobile application development, software quality
and software engineering in Section III. We detail our approach
in Section IV. To finish we conclude in Section V.

II. MOBILE DEVELOPMENT

Developing mobile applications is different from developing
classic software even if some similarities exist (like concep-
tion, development, test or continuous integration). Two main
divergent points are explained based both on the Keyneosoft
experience and a survey about mobile applications develop-
ment challenges [15].

A. Market constraints
A mobile application is produced and released only in a

few weeks. This implies the creation of the application quickly
and correctly from the beginning. Once deployed, there is no

time left to correct mistakes. Moreover, the first release of a
mobile application will contain only a few primary features.
Afterwards, more and more features are added. The quality of
the initial application and all its additional features have to be
certified. An application with poor development quality will
be more difficult to manage, and adding features will cause
regressions.

The heterogeneity of mobile Operating Systems, even in
the same family, is also a major problem. The behavior of
an application can be different between two OS versions. An
example is given by Android version 6.0, where an application
needs runtime permissions to work whereas these permissions
were not mandatory on previous versions of this OS [11]. To
reach all the market stores (Android, iOS) with an application,
we have to multiply the supported OS (different languages
imply a higher cost of production). Some answers have been
proposed, offering cross-platform solutions. Multiple cross-
platforms frameworks exist, which are based on web develop-
ment like Ionic [14] or cross compiling like COMMON [17]
and Xamarin [6].

Another heterogeneity issue is due to the manufacturers
who apply overlays on OS. Once again, the behaviour of
the application can be disturbed by these overlays and the
developer has to check for all of them. The last heterogeneity
drawback concerns the device screen size. The user interface
has to be clear and consistent regardless of the screen size.
But with Android or iOS devices, managing the screen size
has also a cost, even when using cross-platform solutions.

All these constraints are imposed by the market; they can
not be changed but need to be considered when developing
mobile applications.

B. Development constraints

To deal with the complexity of mobile applications, different
kinds of designs are available. The most popular is the MVC
(Model-View-Controler) pattern [19], but some technologies
like Xamarin replace this design pattern with MVVM (Model-
View-ViewModel) [20], where a view-controller replaces the
current controller to notify the view. With these two kinds
of designs, the application does not embed a lot of data.
The data is usually extracted from a database or a Web
service call. For remote sources, a mobile application needs
to be connected to collect them. Then, the quality of these
services can not be certified because they are externals. This
identifies one of the most important challenges, namely, how

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

to maintain the distributed quality over the business logic of
mobile applications.

Another challenge is the integration of third party libraries,
like when using social networks for connection/identification.
These libraries contain uncontrollable code, which has a high
risk for quality criteria. They are often interdependent from
the main application, and do not follow the releases of the
platform’s update. When changing an obsolete library, the
developer has to verify the impacted code in the application,
especially since it has a strong dependency to it.

These constraints produce a lot of bugs, like code quality
bugs or integration bugs. In addition, there is currently a
context difference between the development of the application
and its actual use after release. Indeed, the context like the
number of users or the stability of the remote services can
change the final quality.

In this paper, we present a suitable solution to take these
constrains into account.

III. STATE OF ART

In this section, we discuss the different aspects needed to
qualify the mobile software process.

A. Software product line
To understand how mobile software is made, let us have

a look at the Software Product Line (SPL) defined by the
Software Engineering Institute (SEI) to manage and organize
a software product processing [12]. This SPL describes the
different steps of the process. At the beginning, the entry points
are the client needs (functionalities), used at the conception
phase to determine the different implementations technologies.
But it also helps to define the way functionalities will be
isolated in different modules, relying on the components stan-
dards. These technical and functional requirements are done by
experts. The components designed are then produced during
the implementation phase. Finally, the test phase intends to
validate the different components and functionalities created
during the implementation phase. Afterwards, the release phase
is triggered to distribute the final product. Continuous integra-
tion is the usual way to automate these phases. In Figure 1,
we detail the common use of continuous integration. With
some tools, we can automate some parts of the software’s
process. An orchestrator can play defined jobs to control source
repositories or source codes with different versions, compile
the code, run tests and delivery the final product. A feedback
of all these operations can be provided to developers and to
managers. These processes are associated with management
methods from the way to develop a software, to the product
team management. The team management can impact the
quality of the process so we have to consider it. The size of
the team and the development’ speed time leads us to Scrum
management methods [18]. Indeed, this method is specially
well suited to these features as said in [22].

B. Software quality
Our research mainly focuses on the quality in mobile

applications. Quality is an important characteristic of software.

Figure 1: Continuous integration example

When many solutions exist for classic applications, the previ-
ous constraints are not embedded in these solutions. The need
for a specific mobile quality model is real, as described in
[22] or [24]. Software quality is a widespread subject already
validated by different kinds of certifications.

Firstly, we have certifications based on the software
company structure, like CMMI (Capability Maturity Model
Integration)[21]. This approach evaluates the maturity of the
company in order to determine its capability to produce quality
software. This approach is not suitable for mobile application
development because this kind of application is deployed
quickly [15] and also because they are organization specific
and our approach considers the source code level of the
process. Secondly, we have production certifications, where the

Figure 2: Square Software Quality criteria

most popular is Square from the ISO9126 certification [25].
The quality of the application is defined by rating different
criteria, as described in Figure 2. In our approach, we are
looking for validating these criteria by using mobile context
checkpoints. When Square certification gives a criterion, we
need to find a way to check it during mobile development.
Some approaches define a mobile quality model. For example,
Zahra [24] proposes to add data integrity notions to validate
data consistency when the application is paused or stopped. But

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

it is not enough. Because business logic distribution is strongly
used in mobile software, the data integrity must be constant
when the application interacts with other systems like servers.
So, we have to generate checkpoints that match the quality
criteria of the Square certification for every component in a
mobile application. Finally, we have to generate checkpoints
that match the quality of these components’ implementation.

Based on our definition of the mobile development con-
straints II-B, we notice that every constraint can not match
these criteria. The logic distribution as well as the high
dependency to third party libraries are too specific and can not
be associated with any criteria. For mobile software processes,
we use two new criteria to define the quality of remote services,
and the usability, quality and quality of integration, of a third
party library.

All of these checkpoints need to be controlled so we need to
monitor them and decide when we should process them. The
next section will tackle these problems.

IV. PROPOSITION

The first step to validate the checkpoints identified above,
is defining the stages of a basic software product line [12] :

• Conception, to generate the applications architecture.
• Implementation, to produce the sources.
• And finally, testing, which is done by multiple actors.

But these stages are validated by testing the final product.
Our approach is based on defining key points that have to
be checked at each level of the software product line.

Figure 3: mobile software product line

Figure 3 shows a basic mobile software product line. We
added, in green and purple, some steps for checkpoints val-
idations. Thanks to them, the goal is to have, at the end of
the process, a qualitative and sustainable mobile application
to match the market constraints. These steps are going to be
done simultaneously with the software product line ones, and
automatically powered by continuous integration tools [7].

A. Conception validation
At first, we generate control points (based on the software

engineering standards) for the conception phase of the appli-
cation. This will allow to validate the usage of design patterns
[23], libraries’ dependencies and isolation of components [3].
This step will be done by experts. The organizational part of
quality in a company is a key to permit these validations. Due
to delay constraints imposed by the market, this validation
could be time consuming. But agile project managements
like Scrum provide time management solutions. An exemple
of standard used in mobile development, is the component

based development. A component [3] is a reusable self-
working element. A mobile application is an aggregation of
these components. Each component has its own properties and
interfaces which allow other components to interact with him.
The quality of this component has to be validated for all the
constraints we saw above. As a component needs to work for
every OS and version, it has to work against any environment
and it can be modified without affecting the other components
using it. When all the components are validated individually,
and the integration of these components is validated too, we
can validate the whole application.

B. Implementation validation

Then, we are looking for implementation validation, and this
will be done in two ways. To guarantee that the implementation
is matching the conception, we use different methods.
• Generate class diagram using UML (Unified Modeling

Language) tools and compare them with the conception
phase.

• Use pair programming to validate the implementation by
different developers.

• Perform code revision, using version merge requests.
These approaches match with the organizational concept of
quality. Afterwards, some differences persist between concep-
tion granularity and implementation caused by the technology
environment. Because Android and Apple display guidelines to
establish implementation standards, they also provide tools to
check these rules. But these guidelines are not enough. For ex-
ample, there is no guideline description to explain the best way
to integrate a third-party library. The use of component based
programming imposes some rules too. These new rules are
suitable for mobile development and can easily be integrated in
static analyse tools (like Android lint). They can also be easily
integrated to a continuous integration platform. Furthermore,
a component or library developer can embed these rules in
their components or libraries. This analysis should be done on
every code modification and automatically, based on different
checkpoints we are going to formalize.

C. Test validation

Then, we check the validity of both unit and integration
tests. As shown in our software product line with Figure 3, the
tests can be split in three different domains, Unit, Integration or
Functional. The objective here is to define proper tests, check
implementations and finally run them over different devices,
under different OS versions and different context of use (with
or without network etc...). This allows us to validate that the
software does what it intend to in each context. We have to
define a severity threshold to reach for an application to be
released. These tests have to be written manually, but can
also be automatically recorded and played on several devices
with different tools. Once again, component based engineering
offers the possibility to embed tests with the component. The
continuous integration platform should integrate these tools to
automatically run tests.

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

D. Continuous validation
These different validation steps can certify the quality of

the application. We need to ensure that the conception and
the implementation are sustainable and that the tests are
continuously validating. For example, if just one month after
the release, Android releases a new version of its OS, some of
our checkpoints can be in a wrong state and our application
does not validate any more. We need a way for measuring
this impact without releasing a new version of the application.
To achieve this, trackers will be added to the application
source code to verify the different checkpoints sustainability
like in [16]. Once these track events are set, they retrieve
information about any potential anomaly and could alert the
developer. These notions are already used for crash reporting
and runtime healing like [16] but are not used yet to do the
same treatment we exposed. This method is used to keep an
eye on implementation, when the final user is interacting with
the application. Thanks to data callback, we can determine the
sustainability of a suitable implementation for evolutions.

The validation system has to be flexible, as some check-
points are more important than others and priorities may vary
during all the process time (configurable severity level).

E. Literature overview
Some papers report challenges like user acceptance [13],

highlighting quality criteria from user experience, like Appli-
cation interface design, Application performance, battery effi-
ciency, phone features and connectivity cost. In [4], Dehlinger
and Dixon point out the differences between classic applica-
tions and mobile applications, affecting the engineering pro-
cess. Criteria like mobile screen size heterogeneity, platform
heterogeneity etc. are a challenge for developers. Some papers
propose a new definition of quality criteria like [10] for a
specific branch of mobile app, the M-commerce, by question-
ing the user. Franke et al. propose a framework automating
some existing quality check [9] and to extract a quality model
ISO9126 [8]. The tradeoff between speed development and
quality is discussed by Hansen [1]. It shows that Agile develop-
ment is the best suited for mobile development and that quality
automatic tools can be used to reduce cost/tile/risk in mobile
applications. But the time spent to set up the automation and
to maintain it costs more than quality control by different ways
for small projects.

F. Realization
To illustrate our approach, we use the case of the Network

Http request. As said above, mobile software relies on network
to retrieve data from servers and to do this they use http re-
quest. We need an exhaustive list of our checkpoints in this use
case. These checkpoints are defined by using the specifications
of an http request like body, header and error code, pairing with
the use case of http request and the development skills. These
checkpoints can be embedded in third party libraries. When
these checkpoints pass, we can be sure that the application can
use an http request call or a library without errors or degrading
the quality. In the conception part we have to ensure that the

Http request is made by only one component (singleton). For
the implementation part, we have to check if every checkpoint
is validated by parsing the source code. For instance, we have
to be sure that when a POST request is sent, the body part is
filled. To finish, we add trackers to monitor the quantity and the
reason of rejected requests. We have defined every parameter
that compose an HTTP request to generate checkpoints and
validate all the parameters for an Http request.

V. CONCLUSION

Our goal is to increase the quality of mobile applications.
To achieve this, we identify a mostly exhaustive list of quality
checkpoints extended from the quality model ISO9126 to
verify. This quality level will be improved and simplified by re-
lying on component models, from common mobile application
functionalities to the core components. These checkpoints have
to be validated during all the software process (conception,
implementation, test and release) to guarantee its sustainability.
A checkpoint, the way to validate it and the actors are led by
the phase involved. Moreover, a tracking system is added to
monitor checkpoint validation, even after the application’s re-
lease. For now, we are working on implementing and validating
checkpoints over a simple distributed application in a software
product line.

REFERENCES

[1] Hansen Aaron. A mobile software quality framework. Lionbridge
Technologies, 2007.

[2] AppFigure. Mobile application quantity on appstore by statrista.
http://www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/, 2015.

[3] Xia Cai, Michael R Lyu, Kam-Fai Wong, and Roy Ko. Component-
based software engineering: technologies, development frameworks, and
quality assurance schemes. In Software Engineering Conference, 2000.
APSEC 2000. Proceedings. Seventh Asia-Pacific, pages 372–379. IEEE,
2000.

[4] Josh Dehlinger and Jeremy Dixon. Mobile application software engi-
neering: Challenges and research directions. In Workshop on Mobile
Software Engineering, volume 2, pages 29–32, 2011.

[5] DeviceFigure. Mobile device quantity in 2015 by statrista.
http://www.statista.com/statistics/274774/forecast-of-mobile-phone-
users-worldwide/, 2015.

[6] Jared Dickson. Xamarin mobile development. 2013.
[7] Paul M Duvall. Continuous integration. Pearson Education India, 2007.
[8] Dominik Franke, Stefan Kowalewski, and Carsten Weise. A mobile

software quality model. In Quality Software (QSIC), 2012 12th
International Conference on, pages 154–157. IEEE, 2012.

[9] Dominik Franke and Carsten Weise. Providing a software quality
framework for testing of mobile applications. In Software Testing,
Verification and Validation (ICST), 2011 IEEE Fourth International
Conference on, pages 431–434. IEEE, 2011.

[10] John D Garofalakis, Antonia Stefani, Vasilios Stefanis, and Michalis Nik
Xenos. Quality attributes of consumer-based m-commerce systems. In
ICE-B, pages 130–136, 2007.

[11] Google. Android 6.0 change. https://developer.android.com, 2015.
[12] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid.

Dynamic software product lines. Computer, 41(4), 2008.
[13] Selim Ickin, Katarzyna Wac, Markus Fiedler, Lucjan Janowski, Jin-

Hyuk Hong, and Anind K Dey. Factors influencing quality of expe-
rience of commonly used mobile applications. IEEE Communications
Magazine, 50(4), 2012.

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

[14] ionic. Ionic home page. http://ionicframework.com/, 2016.
[15] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. Real chal-

lenges in mobile app development. In 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
pages 15–24. IEEE, 2013.

[16] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon: Pro-
gram analysis and transformation in java. PhD thesis, Inria, 2006.

[17] Joachim Perchat, Mikael Desertot, and Sylvain Lecomte. Common
framework: A hybrid approach to integrate cross-platform components
in mobile application. Journal of Computer Science, 10(11):2165, 2014.

[18] Ken Schwaber and Jeff Sutherland. The scrum guide (2013).
http://www. scrum. org/Scrum-Guides¿. Acessado em, 16:18, 2013.

[19] Kishori Sharan. Model-view-controller pattern. In Learn JavaFX 8,
pages 419–434. Springer, 2015.

[20] Artem Syromiatnikov and Danny Weyns. A journey through the land of
model-view-design patterns. In Software Architecture (WICSA), 2014
IEEE/IFIP Conference on, pages 21–30. IEEE, 2014.

[21] CMMI Product Team. Cmmi for development, version 1.2. 2006.
[22] Anthony I Wasserman. Software engineering issues for mobile applica-

tion development. In Proceedings of the FSE/SDP workshop on Future
of software engineering research, pages 397–400. ACM, 2010.

[23] Pree Wolfgang. Design patterns for object-oriented software develop-
ment. Reading, Mass.: Addison-Wesley, 1994.

[24] Sobia Zahra, Asra Khalid, and Ali Javed. An efficient and effective
new generation objective quality model for mobile applications. Inter-
national Journal of Modern Education and Computer Science, 5(4):36,
2013.

[25] Dave Zubrow. Software quality requirements and evaluation, the iso
25000 series. Software Engineering Institute, Carnegie Mellon, 2004.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

