
An Analysis of Mobile Application Update
Strategies via Cordova

Cristiano Inácio Lemes, Michiel Willocx and Vincent Naessens
Faculty of Engineering Technology, MSEC, imec-DistriNet,

KU Leuven, Technology Campus Ghent,
Gebroeders Desmetstraat 1, 9000 Ghent, Belgium
{inaciolemes.lemes,surname.name}@kuleuven.be

Marco Vieira
CISUC – Centre for Informatics and Systems

FCTUC – University of Coimbra
3030-290 Coimbra, Portugal

mvieira@dei.uc.pt

Abstract—The demand for mobile apps is increasing steadily.
To maximize revenue in Business to Customer (B2C) settings,
multiple platforms and devices must be supported, which leads
to increased development cost. Mobile App Cross Platform Tools
(CPTs) tackle this problem as they allow to deploy and run
a single codebase on multiple platforms. Cordova is a popular
framework for cross-platform development. Multiple plugins sup-
port often recurring concerns. One prototypical example is update
plugins. This paper focuses on the assessment of update plugins in
Cordova, supporting the distribution of code updates. The paper
evaluates the most commonly employed ones and compares them
against traditional version updates with respect to security and
relevant quality parameters. We show that improvident plugin
selection and bad developer practices may seriously undermine
the security and quality of the mobile apps.

Keywords–Cross-Platform Tools; Security.

I. INTRODUCTION

The power of mobile devices such as smartphones and
tablets has begun to rival personal computers over the last
decade. The number of available devices has been increasing
and, simultaneously, the amount of apps available in app stores
has grown significantly, ranging from business-critical (e.g.,
banking) to social media [1], [2], [3], [4]. From the operating
systems currently available on the market, two players have
a substantial market share: Android and iOS. App developers
must at least support those platforms to reach a large number
of end users, although this fragmentation places a significant
burden on the overall development cost. In practice, app
development companies must acquire expertise in both iOS
and Android development, and the development cycle must be
undertaken for two distinct platforms.

Mobile App Cross-Platform Tools (CPTs) allow to deploy
a single codebase on multiple platforms, and a wide variety
of CPTs exist today [5]. Cordova [6] – formerly known
as Phonegap – is very popular and applies web-to-native
technology. This CPT enables the development of mobile
apps using JavaScript, HTML5 and CSS3 instead of using the
native development language [7], [8]. The app code is wrapped
into a stand-alone application integrated with a Webview.
Cordova offers a set of plugins for accessing device sensors
like cameras, calendar, and GPS. Each plugin is split into two
parts: (i) the native code which accesses the device feature
and (ii) the web code that creates an interface between the
application and the native code.

Update plugins are frequently used in Cordova, as they
support updating application code without having to upload

a new version to the platform’s app store (this strategy only
enables the updating of webcode, as native code cannot be
changed via any channel except the app store). Although
multiple update plugins exist and may therefore be integrated
within a Cordova app, different approaches are employed
internally to support web code updates.

This paper assesses and compares the major update plugins
considering their functional behaviour and impact on qualita-
tive properties. We selected major security, user experience,
and performance criteria of the Cordova update plugins based
on in-depth interaction with Small and medium-sized enter-
prises (SMEs) [9] The selection of the most appropriate plugin
is demonstrated as being crucial to increase the overall app
quality and that not all plugins are equally trustworthy. For
example, a bad selection strategy can undermine an app’s
overall security. Finally, the paper compares the Cordova
update strategies against more traditional Android version
updates. This paper shows that hot code updates offer a
viable solution for minor updates and bug fixes to applications.
However, large version updates that introduce new permissions
or add new plugins require the user to go through the OS
supplied application update process. Moreover, using plugins
for remote code updates can potentially introduce additional
vulnerabilities. Note that the scope of this work is updating
strategies on the Android platform. Android was selected for
this research because many update plugins only have Android
support. Nevertheless, most ideas presented in this work also
apply for iOS, as described in Section VI.

The remainder of this paper is structured as follows. Sec-
tion II discusses background and related work. A classification
of code update strategies in the context of mobile apps in
addition to an overview of Cordova plugins selected for this
study are detailed in Section III. Section IV lists the criteria
used when assessing the update strategies. The evaluation
of each strategy and a comparison among all strategies is
provided in Section V. Section VI reflects on the results.
Finally, conclusions are drawn in Section VII.

II. BACKGROUND AND RELATED WORK

Web apps allow servers to host their code and clients can
launch the code in their browser by typing in the correct
URL. This is a straightforward means of offering content or
services to smartphone or tablet users by way of a single
codebase. The code consists of web technologies like HTML,
CSS and Javascript and may be easily updated without app
store intervention. Also, end users are not required to install

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

an additional app. Although this approach is highly flexible,
it is also associated with drawbacks. First, the availability
and responsiveness of the application is dependent upon the
Internet connection of the mobile device. Second, mobile
browsers do not support advanced access to hardware sensors
and data, which constrains functionality and negatively impacts
user experience.

Hybrid approaches [10] are applied in many CPTs and aim
at combining the advantages of web technologies and native
functionalities. This requires a native web container embedded
in the application to allow web code to be executed on multiple
platforms. Native capabilities are accessible via a Javascript
bridge and native code execution enables access to device
sensors. A hybrid application must be included in the app store
and subsequently installed on the user’s device. Cordova is the
most popular hybrid approach available nowadays [7].

Recent research has focused on assessing and comparing
different CPTs in both a qualitative and quantitative way.
Heitkötter et al. [6] evaluate four CPT strategies and compare
them against native app development. Their work focuses on
two major characteristics: infrastructural support and develop-
ment. The latter covers an analysis of all development cycle
steps. Assessments are completed using a scale from 1 (very
good) to 6 (very poor). Rieger and Majchrzak [11] build
further on this work and propose extensions and revisions
for evaluations CPTs. They compared two CPTs and applied
their assessment to multiple devices. The evaluation criteria
was split into four groups: infrastructure, development, app,
and usage. A weight was also assigned to each criterion for
each CPT. A detailed evaluation of CPT performance was
realized by Willocx et al. [12]. Ten CPTs were assessed and
compared against native development using multiple perfor-
mance criteria. The assessment was performed on multiple
iOS, Android and Windows Phone devices. Other studies focus
on selecting the most feasible CPT for a specific application
or set of applications [7], [8], [13]. All these contributions
focus on usability and performance. However, update strategies
in particular and plugins in general are not evaluated from a
research perspective.

Many mobile applications rely on the Internet to download
or upload content. This makes them potentially vulnerable
to both passive and active attacks [14]. De Ryck et al. [15]
analyze such network attacks. Vashisht et al. [16] propose
splitting mobile threats into three categories: application-based
threats are vulnerabilities concerning applications installed
on the device; web-based threats expose security issues in
the mobile browser and applications which download content
from the Internet; and network-based threats originate from
the mobile or local wireless network. In practice, mobile
applications that access the Internet are potentially vulnerable
to any of these threats.

Other research focuses on assessing the security of major
mobile operating systems. La Polla et al. [17] offer an overview
of mobile threats and vulnerabilities before presenting possible
solutions to such threats. Peijnenburg [18] studied security con-
siderations concerning Android. Bhardwaj et al. [19] present
an in-depth security comparison between Android and iOS.

This paper evaluates and compares alternative Update
Strategies for mobile applications developed with Phone-
Gap/Cordova. It focuses on the strengths and constraints re-
lated to security, user experience and performance of multiple

Cordova update plugins. Moreover, we compare our findings
to traditional version updates in Android.

III. UPDATE STRATEGIES OVERVIEW

Mobile apps may be upgraded after they are published in
an app store. Multiple reasons can trigger code modifications,
including the addition of new features, the modification of
graphical user interface, and fixing defects, for example. In
practice, code update strategies can be classified according to
three categories: installing a new version, storing new mobile
code in a client side dedicated folder, and loading updated
code from a web server. These approaches are discussed below
in greater detail. Our analysis focuses on plugins that are
available at the official Cordova plugin store [20].

a) Installing updates: The developer submits a new
installation file to a server and the end users may upgrade
the app by installing this file on their devices.

• Google Play [21] is the default store for Android
applications, but other marketplaces exist [4]. APK
files are submitted to the store and published shortly
after human revision has taken place.

• Although the Cordova framework does not support
modifications in the native code of the application, a
dedicated plugin Cordova-plugin-app-update enables
updating the application by executing an installation
file. The installation file can reside at any server
selected by the developer.

b) Storing modified web code: The developer submits a
set of files containing app code to a server, after which the app
may download and store them in the device. Cordova uses a
dedicated www folder to store, amongst others, business logic
and user views. New, updated web code, cannot be stored
in this folder because it is read-only. Hence, update plugins
store updates outside of the applications. Four frequently used
plugins apply this strategy:

• The most frequently downloaded Cordova update plu-
gin according to the plugin store is cordova-plugin-
meteor-webapp. This is a new version of meteor-
cordova-update-plugin that fixes some bugs while
introducing new features such as performing a rollback
to the previous version when the new version is
unstable. Any server can host code updates.

• Cordova-plugin-code-push is developed by Microsoft
and is the second most frequently downloaded update
plugin belonging to this category. Each new app
release is stored on a server hosted by Microsoft.
CodePush CLI [22] is a tool that helps developers
managing app updates.

• The cordova-hot-code-push-plugin is the third most
frequently downloaded plugin. Updates are hosted on
an Amazon server. Cordova Hot Code Push CLI [23]
assists developers on managing new releases of the
application.

• Finally, cordova-plugin-dynamic-update does not em-
ploy any mandatory server, so developers can host the
update on any server. This plugin only implements
the most basic functionalities i.e. downloading new
content from the Internet and pointing the WebView
to the new files.

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

c) Loading remote code updates at runtime: This strat-
egy downloads remote code each time the app is running. The
user launches the application using a browser that connects to
the server from which the application is loaded.

IV. EVALUATION CRITERIA

Two major stakeholders may be identified in the context
of the update process, namely the developer and the end
user. The developer is responsible for upgrading a mobile
app and submitting the upgrade to the server. The end user
retrieves new releases when they are available on the server
and integrates it in the mobile app. At least two components
(or hardware platforms) are involved in a upgrade operation:
the server and the mobile. The server stores new application
releases sent by the developer, after which they may be
downloaded to a mobile device. This is based on two main
operations: submit and retrieve. In practice, developers submit
new app code to the server, whereas end users retrieve the
update some time afterwards. Both the server and the mobile
device need Internet access to perform these operations.

This section lists the set of properties that are used to com-
pare alternative update strategies. It resulted from compilation
of feedback offered by mobile app developers in the scope of
a technology transfer project CrossMoS [9].They are split in
two groups: Security Criteria and Quality Criteria. The former
concerns the security aspect of the update process, while the
latter focuses on user experience and performance.

A. Security Criteria
Figure 1 shows the interaction between the stakeholders

and the components involved in the update process, as well as
security concerns and their relation to the update process.

Figure 1: Security Parameters

Secure transport is a major security concern during both
the submission and retrieval phase. Inappropriate communica-
tion properties can compromise mobile app security and even
the device itself after the upgrade. An attacker should not be
able to modify the code in transit, typically attempted by Man-
In-the-Middle (MiTM) attacks (see details in the Section VI).

Developer authentication is an important security concern
during the submission phase. It discourages misbehaving enti-
ties from uploading malicious code. Depending on the specific
authentication strategy used, multiple updates may be linked to
the same (pseudonymous) user, or even linked to an identifiable
person or organization.

Accountability goes one step further than authentication
and requires a stakeholder to be held accountable by a dispute
handler (such as a law enforcement entity) for malicious be-
haviour. This study focus particularly on the accountability of
developers themselves. More specifically, we evaluate whether
developers can be held accountable for the submission of
malicious code to the server. Appropriate authentication can
already identify the individual behind a malicious submission,
but only signed code can be probably linked to a physical
entity.

Access control measures are implemented on the server
side and restrict the possible actions that may be taken by
stakeholders when accessing the server. Only authenticated
developers and, maybe, collaborators or employees within the
same organization, can modify application code (potentially
with different access restrictions).

Code analysis/verification can be performed by the update
server to check for malicious behaviour in the submitted code.
Malicious code potentially exploits privileges (or permissions)
already granted to apps and likely leaks sensitive personal
data stored in the mobile device to an attacker. Moreover, it
can disturb the correct functioning by draining the battery or
stealing money in the background. The update server should
check whether the code performs any malign tasks before
making it available for download.

Secure storage implies that no third party or process
running on the server can modify the app code without the
consent of the developer. Insecure storage potentially results
in malware attacks such as those aforementioned.

Server authentication should be mandatory during the
retrieval phase. Mobile devices must be capable of verifying
the authenticity of the server hosting the code updates to avoid
malicious code being downloaded in the context of the client
app.

Our assessment also focuses on how the update strategy
deals with privileges (or permissions), as the amount of sen-
sitive personal data that can be leaked by an app is highly
dependent upon the privileges it is granted. Therefore it is
crucial to implement measures that maintain the number of
privileges granted under control. This property assesses what
permissions are granted to the app if the update plugin is
installed.

The overall security of the update strategy also depends
on the quality and codebase of the additional software that
must be installed to support updates. Some update strategies
rely solely upon OS software components, while others require
the installation of additional software plugins that may be
composed by integrating third party software libraries. Inte-
grating them can also increase the number of permissions
that are required to run the app. In practice, both plugins
and the software libraries on which they rely may contain
vulnerabilities. In its turn this can increase the impact of
successful attacks both from privacy as well as security point
of view.

The storage location of the mobile device may also have
an impact on the security status of the update strategy. Code
can either be stored in shared memory or solely be accessible
by the app itself, which obviously provides different levels of
security.

35Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

B. Quality Criteria
The set of quality criteria is depicted in Figure 2. They

primarily focus on user experience, performance, and overall
code quality.

Figure 2: Quality Parameters

For each update strategy, the extent to which user in-
teraction is required is evaluated. Either the update can be
performed fully transparently, or consent must be explicitly
given by the user. If user interaction is required, the type
and quality of information returned to the end user is eval-
uated. Similar, the properties of the schedule strategy and
its context are evaluated. Such properties can influence user
experience. First, the update time and context may differ
between alternative approaches. For instance, large (automatic)
updates over an xG network are associated with substantial
costs and consume unnecessary bandwidth, especially in a
roaming context. Second, the update process can either lock
the application until finished, or allow the user to use the
application during the update. Finally, the possibility of rolling
back unstable updates is investigated. This may be required if
an update results in crashes on certain devices.

Memory and transfer footprint define the amount of storage
required to store both the plugin and updated code and the
bandwidth needed to retrieve the update, respectively. Com-
pressed code can be transferred more efficiently and hence
has less impact on the time required to install the update
than non-compressed code. Similarly, downloading either a
complete new version or an increment with respect to the
previous version may be needed.

Code quality is often impacted by developer practices and
may potentially result in performance decreases or even app
crashes after installation. We define code quality in this work
from the user’s point of view, and evaluate if the mechanism’s
characteristics meet the user’s needs [24]. Code analysis per-
formed by update servers before the update is actually made
available and helps avoiding (un)intentionally introduced bugs.

The final quality criterion focuses on the tool support
available for the update process, like support associated with
the management of new releases, enabling collaboration, or
tools for covering the entire development cycle (such as design,
implementation, and testing).

V. RESULTS AND COMPARISON

This section details the results of the assessment of the
update strategies introduced in Section III. First, a general
overview of each strategy is provided, after which the security

and quality criteria are discussed. In the remainder of this
work, the update strategies are denoted as shown in Table I.

Table I: UPDATE STRATEGY NOTATIONS

Update Strategy Notation
Installation I

Google Play I1
Cordova-plugin-app-update I2

Storage S
Cordova-plugin-code-push S1
Cordova-hot-code-push-plugin S2
Cordova-plugin-meteor-webapp S3
Cordova-plugin-dynamic-update S4

Loading L

A. Overview of update strategies

1) Installation (I): New application code can be stored in
the commercial store managed by the OS provider or in another
marketplace selected by the developer. Software on the mobile
can poll whether a new version is available or new version
notifications can be sent to the mobile. Within this class, an
entire new version is typically submitted by developers and
can subsequently be downloaded.

Developers submit new versions of an app to the standard
Google Play (I1) store after having assigned it a higher
version number. Google reviews the application code using
two different approaches. First, an automatic malware scan
is performed. Second, a human reviewer investigates possible
violations with Google policy rules [25]. Two strategies can be
adopted to retrieve a software update: apps are either updated
automatically by the Google Play application or the update
process is manually controlled by the owner of the device.
Note that user consent is always asked when new permissions
are required. To save bandwidth, only files differing from
the previous version installed on the device are downloaded
[26]. Finally, the cordova-plugin-app-update (I2) supports the
installation of new executables without visiting the default
app store, even though the OS does not support this behavior
by default and even discourages it. For this, device owners
must modify OS configuration settings and the execution of
installation files from unknown sources must be allowed. The
content of the file is not reviewed, unlike the Google Play
strategy. When the app initializes, the plugin checks the version
number of the installed app against that of the version available
at the update server. A new APK is installed if an update is
available.

2) Storage (S): Native mobile apps are typically installed
in a read-only folder, which means that only the OS may alter
its content. Cordova uses this folder only to store the core files
of mobile apps (the native code), including the Webview. This
Webview can be pointed to a folder with write permissions
and the Web code is then stored and updated via this folder.
Any updates to core files can only be performed by submitting
and installing a new version. Each plugin follows a slightly
different strategy, as discussed next.

The cordova-plugin-code-push (S1) checks for updates at
a dedicated server and returns a URL from which the latest
update can be downloaded. The user must give their consent
after which a ZIP file containing the new web code can be
downloaded.

36Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

The cordova-hot-code-push-plugin (S2) checks for updates
by reading a configuration file from the server containing a
hash of all web code files. The plugin identifies the files
that were changed and only updates those files. When the
application is launched for the first time, all web code files
are copied in the writable www folder. The cordova-plugin-
meteor-webapp (S3) employs a similar approach.

Finally, the cordova-plugin-dynamic-update (S4) down-
loads the entire content of the www folder each time an
update is available. The previous update of the application is
overwritten.

3) Loading (L): App updates occur almost instantly. The
app is launched using a browser that loads the content from the
server and the only requirement is for the developer to submit
the new code to the server. The primary disadvantage of this
strategy is that the application only works when an Internet
connection is available. In the worst case scenario, the mobile
device must contact the server every time the user requests a
new page.

B. Security parameter assessment
Malicious individuals may exploit vulnerabilities and

thereby compromise the security of mobile app updates. Bad
design decisions as well as weak implementations can result
in security vulnerabilities. Table II summarizes the results of
the analysis of the security concerns listed in the previous
when assessing update strategies.

Table II: EVALUATION OF STRATEGIES ACCORDING TO
SECURITY PARAMETERS

Criteria/Strategy I1 I2 S1 S2 S3 S4 L
Submit update

Accountability yes no no no no no no
Secure transport (submit) yes no yes yes no no no
Developer Authentication yes no yes yes no no no
Access control yes no yes yes no no no
Secure storage (server) yes no yes yes no no no
Code analysis (server) yes no no no no no no

Retrieve update
Secure transport (retrieve)

HTTPS forced yes no yes yes no no no
SSL Certificates checked yes yes no yes yes yes yes
Hash check after download yes no yes yes no no -

Server Authentication yes no no no no no no
Privileges no yes yes yes yes yes no
Code verification (device) yes no no no no no -
Additional software no yes yes no no no -
Secure storage (device) yes yes yes yes yes yes -

Two approaches are possible for setting up an update
server. First, the update server can be fixed in the update
plugin. This means that each developer that uses the plugin
must push updates to that third-party server. The server often
represents a reliable Cloud platform (examples of such include
Android Play Store or Microsoft Azure) associated with a
series of advantages like high availability and small security
vulnerability due to regular software updates. Second, some
plugins enable developers to select their own storage server.
Therefore, security is highly dependent upon both the reputa-
tion of the developer and selected server. The plugins that fix
a specific update server (I1, S1, and S2) also provide a secure
communication channel between the developer and the server.
Other strategies are dependent upon the server hosting code
updates. Storage security also relies on the trustworthiness of

the server that hosts the updates. Similarly, some plugins rely
on existing back-end infrastructure and, hence, benefit from the
access control procedures offered by the used infrastructure.
Only the owner (and possibly collaborators) can modify code
within a particular application. The quality of other plugins
depends on the particular update server selected. Therefore, if
the developer is free to choose an update server, they must
select one that has good security practices. Note that the end
user is unaware of the selected server.

For the security of the end user, it is also important that
the update reaches the device securely. The Android Play
store is tightly integrated with the underlying operating system
and offers all required security measures, as a secure HTTPS
connection is strictly used for all communication.

Secure communication is not always guaranteed when
using a plugin approach. In fact, some plugins do not force
the use of HTTPS on the developer. S1 and S2 are an
exception to this. They respectively make use of the Amazon
and the Microsoft Azure platform to distribute updates, and
therefore always make use of HTTPS. In the other cases, the
responsibility to use HTTPS lies with the app developer.

When using an HTTPS connection, it is mandatory to
check the SSL certificates before accepting communication.
Plugins I2, S2 and S4 have custom native code for
downloading the update. They make use of Android’s
HTTPUrlConnection, UrlConnection and
HTTPClient, respectively, and are therefore secure
when HTTPS is used. Android provides the necessary
checks to secure the connection once an HTTPS domain
is detected in the URL (for more information [27], [28])
Plugin S1 contains no native code to download the update but
instead automatically includes the file-transfer-plugin in the
application when installing the update plugin, and contains
Web code to call the plugin to download the update. For
developers, it is important to know that the file-transfer-
plugin’s download() method contains an ”AllowAllHosts”
parameter. When this parameter is set to true, it overrides
Android’s HostnameVerifier’s [29] verify() method to
always return true. In this case, SSL certificates are blindly
accepted without any checks, which raises severe security
threats. Plugin S1 sets this parameter to true and is therefore
not secure. Developers using this plugin should manually
change this variable to false in the its web code in order to
ensure secure communication. Plugin S3 contains no code
for the actual download of the update. The straight-forward
way to download the update in this case is to include the
file-transfer-plugin in the application manually. Some example
code provided by the developers of the plugin also applies
this strategy. In this example, no AllowAllHosts parameter is
specified, thus the default value is false. Hence, developers
can use this example to provide secure communication.

After downloading the update, I1, S1 and S2 make use of
a hashing function to determine if nothing was changed during
the download. This acts as an additional measure against
MiTM attacks, and also ensures that no communication errors
occurred.

When loading web content in the Webview or a browser
(L), the security depends only on whether HTTPS is used or
not. When HTTPS is used, the communication is handled by
the Webview and is therefore secure.

37Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

Strategy I1 supports developer accountability. It relies on
the OS platform builder and requires one to update the submis-
sion via the Android store, and developers must sign the code
before submitting it to the server. This procedure verifies if the
files were submitted by a particular developer (or organization).
In addition, Play store examines the code submitted by the
developer before publishing the application on its store. In
practice, it looks for malicious code and violation of system
rules in the application files. If an unacceptable security or
privacy threat is discovered the application is not published,
the developer can be judged and their profile removed from
the store. Other storage platforms do not explicitly mention
code revision. Except for the Google Play Store downloads
and updates [30], no other strategy applies client side code
verification, despite there being some tools and methods cur-
rently available to execute it. Such tools could mitigate threats
introduced by selecting unreliable update servers.

The Google play store (I1) is the only update mechanism
that requires the user to authenticate to the update server.
Android requires the user to be logged in before allowing
downloading or updating applications.

The OS coordinates code updates within strategy I1. It
saves new files in a folder that cannot be overwritten (unless
a new code update is available) by the application or possible
malware. All other strategies retrieve updates stored in memory
only accessible by the app itself. This means that other,
potentially malicious apps, cannot access or modify that code.
Hence, once updates are installed on the mobile device, the
security depends upon the trustworthiness of the OS version.

Update plugins often require extra privileges to support
their tasks. Two permissions that every Cordova plugin re-
quires are internet and write_external_storage
permission. The former allows apps to open network sock-
ets and is enabled by default in the Cordova framework;
the latter allows apps to write content to external storage
on the device. These permissions can be abused by locally
installed untrusted code which downloads malicious content
from the Internet before writing it to the device and al-
tering the application to make it use this malicious con-
tent. The mount_unmount_filesystems permission is
used by I2 to manage the file systems for removable stor-
age. S2 also requires the access_network_state and
access_wifi_state permissions for accessing informa-
tion concerning network status.

Additional Cordova plugins (also called dependencies) are
installed automatically when strategies I2 or S1 are applied.
I2 installs an additional Cordova plugin for accessing the
OS version. S1 relies on a set of seven other plugins that
handle sending notifications to users, accessing configuration
information from the device, handle runtime permissions, file
management, among others. Note that installing such plugins
weakens the privacy properties of the app and weak implemen-
tations may ultimately lead to vulnerabilities that can, in turn,
compromise app security. Although S3 does not automatically
introduce any dependencies, it requires additional plugins to
work properly.

C. Quality parameters assessment
Table III provides an overview of the quality related

parameters for each update strategy. Strategies S3, S4, and
L neither require user confirmation nor notification of the end

user regarding code updates. All other strategies ask the user
to confirm the update. I1 also provides feedback to the user;
I2, S1, and S2 do not inform the user about the scope of the
updates, although certain code updates may negatively impact
the user’s privacy or security (as learned from the security
assessment).

Table III: EVALUATION OF STRATEGIES ACCORDING
TO QUALITY PARAMETERS

Criteria/Strategy I1 I2 S1 S2 S3 S4 L
User interaction yes yes yes yes no no no
Schedule strategy and its context

Update time and context req. any any any any any any
Lock the application yes yes no no no no -
Roll back automatically yes no yes yes yes no yes

Memory and Transfer footprint ++ ++ + - - + ++
Code Quality Verification yes no no no no no no
Tool Support yes no yes yes no no no

Manage new release yes - yes yes - - -
Manage collaborators yes - yes no - - -
Manage environment yes - yes yes - - -

I1 supports automatic updates of non-active applications.
Other approaches typically check whether an update is avail-
able when it launches or resumes, automatically. Alternatively,
the developers may provide a button in the app to begin the
update process. Strategy L receives updates when the page is
(re)loaded. Cordova update strategies Sx do not enforce any
constraints on running applications. In contrast, I1 and I2 lock
the application until the update process has ended.

Strategy I2 and S4 do not support roll backs to a previous
valid version in case of crashes caused by the update. When
such a situation arises the end users must reinstall the applica-
tion. All other strategies perform roll backs automatically when
an error occurs. Crashes in strategy I1 occur rarely, due to
heavy code revision by Google and the reporting of unexpected
behavior by the end-users [25]. This strategy guarantees that a
stable version of the application is available on the store until
the developer provides a valid new version.

A large amount of code and data is potentially downloaded
during the update process. Strategies I1 and S2 support contex-
tual constraints related to updates. For instance, these strategies
permit developers to specify that updates may only occur over
WiFi. Other strategies do not support this control and, hence,
the update can be downloaded via the mobile network operator,
thus potentially incurring additional costs.

Most strategies do not ensure code quality thresholds.
Indeed, only strategy I1 performs code quality analysis to
ensure stable app behaviour. Thus, other strategies may lead
to poorly implemented features, wasted processing time and
memory. Such situations can result in bad user experiences and
the misuse of the application given the resource constraints of
the device.

Strategies I1, S1, and S2 offer tool support to aid de-
velopers when building a new application release. All these
tools provide a feature to manage releases and make it easy to
uploade new releases to the server, and make them available
for download. The developer must change the version number
of the application in strategy I1, which also allows automatic
code signing before upload. In contrast, the tool used by
strategies S1 and S2 changes the version number automatically
during the upload process. These tools also calculate the hash

38Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

of the files in the current version, enabling mobile devices
to download only the altered files, and hence decreasing
bandwidth. I1 and S1 also support collaboration within a team
of developers via developer profiles. The application owner is
responsible for adding and removing collaborators and may
also identify who submits particular code updates. Strategy S2
does not offer this feature and only the owner may upload
releases on the server. All tools provide a production and test
environment. The latter enables the developer to simulate real
world situations.

VI. EVALUATION AND REFLECTION

Especially in the case of Cordova applications, man-in-the-
middle attacks on code transfers impose severe risks for the
security of the end user. Attackers can, for example, insert
malicious code in JavaScript files while in transit. The impact
of such a MiTM attack strongly depends on the capabilities
and privileges of the application. For example, many Cordova
applications include several plugins to provide desired func-
tionality such as access to the GPS, contacts, pictures and
the camera. Malicious code, injected by attackers, also has
access to the API’s of these plugins, and can use them to steal
personal information. In order to demonstrate the mechanisms
and the risks of a MiTM attack, the next paragraph describes
an example setup of such attack. It demonstrates a straight-
forward, realistic setup for executing MiTM attacks on regular
HTTP connections.

The setup is displayed in Figure 3 and consists of two
workstations, connected to the same network, and a mobile
device.

Figure 3: MiTM demonstration setup.

• Workstation 1 contains a classic Linux distribution.
This workstation is set up to create its own wireless
network, thereby acting as a public wireless access
point. All incoming wireless regular communication
(wlan0) is redirected to workstation 2.

• Workstation 2 runs a proxy tool. BurpSuite [31] was
used in our setup. It listens for the traffic forwarded
by workstation 1. An attacker can now read and alter
all requests and responses.

• The mobile device is connected to the Internet via
the wireless network provided by Workstation 1 and
contains the application under attack. All HTTP traffic
on the mobile device is now routed transparently
through both workstations.

This attack describes the situation when a user accesses a
public access point. Traffic can be eavesdropped and altered

without the user noticing. For the sake of clarity, workstations
1 and 2 are displayed as two separate entities. Note that
the functionality of both workstations can be combined into
a single one. MiTM attacks on unsecure SSL connections
(e.g. certificate checks are lacking) work similarly to the
demonstrated setup, but require an SSL stripping step in the
proxy (Workstation 2).

Our assessment mainly focused on the Android operating
system. Nevertheless, most ideas presented in the paper also
apply for iOS. In iOS, it usually takes several days before
an application is approved and available the app store, hereby
making hot code updates even more valuable than in Android.
On the other hand, iOS developers have strict limitations for
what a hot code update can change in an application [32].
The features and functionality have to be consistent with
the intended and advertised purpose of the application as
submitted to the App Store. Developers who do not comply
with these rules can lose their access to the App Store.Not all
Cordova plugins described in this work are available for iOS.
Naturally, Cordova-plugin-app-update (I2) provides no iOS
implementation because it relies on downloading and installing
an APK file. Also, cordova-plugin-dynamic-update (I4) does
not provide an iOS implementation. However, the security risks
discussed also apply for iOS. For example, if developers do not
secure the communication with the update server, the attack
described above can also be executed on iOS applications.

Independently of the targeted operating system, developers
have to be aware that plugins might contain unsafe behavior
and ignore the best development practices for the platform.
Hence, the source code should always be checked before
including it in applications. In Android, examples of this are
introducing too many permissions and overriding the security
mechanisms of the platform, as described in Section V. iOS
implementations of plugins can contain similar insecure behav-
ior. For example, the cordova-plugin-meteor-webapp plugin
disables Apple App Transport Security, introduced in iOS 9
[33].

VII. CONCLUSION

This paper presented an analysis of hot code updates
in Cordova, and compared them against traditional updates
through the app store and the loading strategy. Two sets of
parameters were discussed in this work. The first group of
parameters focused on the security aspect of the updating
mechanisms. One of the major concerns when using hot code
updates is the secure storage of the update and transition of
the update to the device. Some plugins are developed for one
specific type of server (e.g. Amazon, Microsoft Azure). In
this case, the developer can rely on these mature platforms
for securely hosting the update (secure storage on the server
and only use HTTPS for communication), and has access to
additional tools for managing the update. Other plugins do
not offer this complete solution. Hence, the developer is re-
sponsible for implementing a secure server to host the update.
Besides the server, the plugin is also responsible for secure
communication. Developers should check the implementation
before installing it in an application. Plugin developers should
rely on the underlying platform’s APIs as much as possible in
order to ensure secure communication.

The second group of parameters focused on the functional-
ity and the usability. The conclusion here is that, in many cases,

39Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

hot code updates offer a viable solution for minor updates
and bug fixes to an application. Based on the needs of the
developer and the application, different plugins can be selected.
Some plugins offer a simple but limited API, and are therefore
quick and easy to integrate in applications. The disadvantage
is that these plugins do not offer support for user interaction
such as asking permission from the user and giving the user
a visual overview of the progress. Other plugins offer a more
advanced API to the developer and allow more customization.
Hence, these plugins are also more complex to implement for
the developer.

REFERENCES

[1] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app launching
for mobile devices using predictive user context,” in Proceedings of
the 10th international conference on Mobile systems, applications, and
services. ACM, 2012, pp. 113–126.

[2] AppBrain. Number of android applications. [Online]. Available: http:
//www.appbrain.com/stats/number-of-android-apps [retrieved: October,
2016]

[3] C. Reese Bomhold, “Educational use of smart phone technology: A
survey of mobile phone application use by undergraduate university
students,” Program, vol. 47, no. 4, 2013, pp. 424–436.

[4] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and
T. Karagiannis, “Rise of the planet of the apps: A systematic study of
the mobile app ecosystem,” in Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pp. 277–290.

[5] S. Amatya and A. Kurti, “Cross-platform mobile development: chal-
lenges and opportunities,” in ICT Innovations 2013. Springer, 2014,
pp. 219–229.

[6] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, Evaluating Cross-
Platform Development Approaches for Mobile Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 120 – 138.

[7] P. R. de Andrade, A. B. Albuquerque, O. F. Frota, R. V. Silveira, and
F. A. da Silva, “Cross platform app: a comparative study,” arXiv preprint
arXiv:1503.03511, 2015.

[8] B. R. Mahesh, M. B. Kumar, R. Manoharan, M. Somasundaram, and
S. Karthikeyan, “Portability of mobile applications using phonegap: A
case study,” in Software Engineering and Mobile Application Modelling
and Development (ICSEMA 2012), International Conference on. IET,
2012, pp. 1–6.

[9] K. Leuven. Crossmos. [Online]. Available: https://www.msec.be/
crossmos/ [retrieved: June, 2017]

[10] M. Latif, Y. Lakhrissi, E. H. Nfaoui, and N. Es-Sbai, “Cross platform
approach for mobile application development: A survey,” in 2016
International Conference on Information Technology for Organizations
Development (IT4OD). IEEE, 2016, pp. 1–5.

[11] C. Rieger and T. A. Majchrzak, “Weighted evaluation framework for
cross-platform app development approaches,” in EuroSymposium on
Systems Analysis and Design. Springer, 2016, pp. 18–39.

[12] M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance
parameters of mobile app development strategies,” in Proceedings of the
International Workshop on Mobile Software Engineering and Systems.
ACM, 2016, pp. 38–47.

[13] A. Pazirandeh and E. Vorobyeva, “Evaluation of cross-platform tools
for mobile development,” 2015.

[14] G. S. Kearns, “Countering mobile device threats: A mobile device
security model,” Journal of Forensic & Investigative Accounting, vol. 8,
no. 1, 2016.

[15] P. De Ryck, L. Desmet, F. Piessens, and M. Johns, Primer on client-side
web security. Springer, 2014.

[16] S. Vashisht, S. Gupta, D. Singh, and A. Mudgal, “Emerging threats in
mobile communication system,” in Innovation and Challenges in Cyber
Security (ICICCS-INBUSH), 2016 International Conference on. IEEE,
2016, pp. 41–44.

[17] M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on security for
mobile devices,” IEEE communications surveys & tutorials, vol. 15,
no. 1, 2013, pp. 446–471.

[18] F. Peijnenburg, “Security in android apps,” 2013.
[19] A. Bhardwaj, K. Pandey, and R. Chopra, “Android and ios security-

an analysis and comparison report,” Int’l J. Info. Sec. & Cybercrime,
vol. 5, 2016, p. 30.

[20] A. Cordova. Plugin search - apache cordova. [Online]. Available:
http://cordova.apache.org/plugins/ [retrieved: June, 2017]

[21] Google. Google play. [Online]. Available: https://play.google.com
[retrieved: June, 2017]

[22] Microsoft. Codepush. [Online]. Available: http://microsoft.github.io/
code-push/ [retrieved: June, 2017]

[23] Github. Github - nordnet/cordova-hot-code-push-cli. [Online]. Avail-
able: https://github.com/nordnet/cordova-hot-code-push-cli [retrieved:
July, 2016]

[24] B. Kitchenham and S. L. Pfleeger, “Software quality: the elusive target
[special issues section],” IEEE software, vol. 13, no. 1, 1996, pp. 12–21.

[25] S. Perez. App submissions on google play now reviewed by staff, will
include age-based ratings. TechCrunch. [retrieved: March, 2015]

[26] A. Morris. Improvements for smaller app downloads on google play.
Android Developers Blog. [retrieved: July, 2016]

[27] Google. Httpurlconnection - android developers. [On-
line]. Available: https://developer.android.com/reference/java/net/
HttpURLConnection.html [retrieved: June, 2017]

[28] ——. Security with https and ssl - android developers. [Online].
Available: https://developer.android.com/training/articles/security-ssl.
html#HttpsExample [retrieved: June, 2017]

[29] ——. Hostnameverifier - android developers. [On-
line]. Available: https://developer.android.com/reference/javax/net/ssl/
HostnameVerifier.html [retrieved: June, 2017]

[30] T. N. Web. Google describes how android 4.2’s app verification checks
your downloads for malware. [retrieved: November, 2012]

[31] PortSwigger. Download burp suite - portswigger. [Online]. Available:
https://portswigger.net/burp/download.html [retrieved: June, 2017]

[32] Apple. Apple developer program information. [Online].
Available: https://developer.apple.com/programs/information/Apple
Developer Program Information 8 12 15.pdf [retrieved: December,
2015]

[33] ——. ios 9.0. [Online]. Available: https://developer.apple.com/library/
content/releasenotes/General/WhatsNewIniOS/Articles/iOS9.html [re-
trieved: June, 2017]

40Copyright (c) IARIA, 2017. ISBN: 978-1-61208-568-5

MOBILITY 2017 : The Seventh International Conference on Mobile Services, Resources, and Users

