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Abstract—In mobile computing, nearest-neighbor queries are of
the form “find me the nearest service of type S” or “find me k
nearest services of type S.” It is known that such queries, while
convenient for the consumer, are associated with privacy threats.
For addressing such privacy threats, one of the approaches
suggested by researchers is spatial transformation via Hilbert
curves. A Hilbert curve fills a 2-dimensional grid with a one-
dimensional sequence that may be viewed as a curve. It is
thus usable as a hash function that is order-preserving, in the
sense that adjacent elements in the single dimension represent
physically contiguous space in two dimensions. It provides an
encryption of the two-dimensional space coordinates with the
parameters involved in its construction serving as the key. The
origin of the two-dimensional grid that is conceptually overlaid
on the physical space and the choice of two canonical forms of the
curve are crucial elements of the key. In this paper, we examine
the ramifications of these parameters on the Quality of Service
(QoS) provided to mobile users and suggest that these parameters
be chosen based on acceptable QoS thresholds. By considering
rotation and transposition, we enhance the space of keys, thus
providing more options in the choice of those parameters.

Keywords–Mobile Privacy; Spatial Transformation; Hilbert
Curves; Location-Based Queries; Location-Based Service.

I. INTRODUCTION

Privacy is a challenge in mobile environments. Users are
happy with location-based queries of the form “find me the
nearest service of type S” or “find me k nearest services
of type S.” Unfortunately, their satisfaction is reduced by
the underlying threat to their privacy. One of the two main
approaches suggested by researchers for addressing this threat
involves spatial encoding via Hilbert curves. The idea is that
the Location Based Server (LBS) handling these user queries
can be made unaware of the actual geographical coordinates
of the users, the Points of Interest (POIs), and the categories
of those POIs (e.g., restaurant, gas station), by being provided
encoded spatial coordinates instead of actual geographic coor-
dinates and encrypted identifiers instead of plaintext categories
by another server, a trusted one (referred to as Trusted Server
(TS)). The spatial encryption seems infeasible to break (invert)
because of the large number of possible keys, i.e., ways the
curve construction parameters can be chosen. In this paper,
we explore the effect on the end-user of the choice of two
of those parameters: origin and rotation, by defining QoS
metrics around them; and propose an optimal strategy for their
selection using quantitative thresholds.

A. Introducing the Hilbert Curve
A Hilbert curve is a space-filling transformation of

bounded 2-dimensional space. Assume that a square space
is divided into 22N cells arranged in a 2N × 2N grid. A
Hilbert curve H of order N is defined by a bijective function

h that maps each (x, y) pair, where x and y are integers in
0··(2N−1), into an integer in 0··(22N−1). Figure 1 shows an
example with N = 3 (i.e., an 8x8 grid); values of h for each
cell is shown within it; the sequence 0 · ·63 defines a curve that
fills the grid passing through each cell exactly once. By abuse
of notation, we will use this function h to refer to the curve H
as well. The bottom left cell corresponds to the origin of the
X-Y coordinates. We also refer to the map as a 2-dimensional
matrix: In Figure 1, H[0, 0] = 0;H[1, 0] = 1; and H[0, 1] = 3.
Figure 2 shows a transposed curve with a similar logic but
starting with cells 0 · ·3 numbered anticlockwise. Since H[i, j]
in this transposed curve is equal to H[j, i] in the normal curve,
this is essentially a matrix transpose operation (the original
paper [10] described it as rotated). Hence, we are calling it a
transposed curve. Rotated representations of the curve are in
Figures 3 (90◦), 4 (180◦), and 5 (270◦).

Figure 1. Normal Hilbert Curve for N = 3. The bottom row and leftmost
column correspond to row 0 and column 0 of the corresponding matrices.

Figure 2. Transposed Hilbert Curve for N = 3.

This function h is contiguity-preserving (i.e., two cells
mapped into i and (i + 1) must represent 2-dimensional
spaces that are contiguous). However, h may map contiguous
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Figure 3. Hilbert Curve for N=3 rotated by 90 degrees clockwise.

cells in 2D-space into Hilbert numbers that are not close
(e.g., numerically distant cells 5 and 58 in Figure 1 represent
contiguous spaces).

B. Utilizing the Hilbert Curve for Location Privacy
It was first suggested in [10] that a Hilbert curve can be

applied to location-based services. Such a Hilbert curve is
generated by a Trusted Server (TS) by deciding the curve’s
parameters. They are: (1) the order of the curve N ; (2) the
(physical location of the) point of origin X0, Y0; (3) the
orientation Θ (normal or transposed as in Figures 1 and 2
respectively); and (4) a scaling factor Γ that captures the
number of meters that each unit cell represents (in both figures,
Γ is the distance in meters covered by the grid in either the
X- or Y-direction divided by 8). Using Γ and the origin, any
geographic location (x0, y0) in the 2-D space (which could
be represented by latitude and longitude), can be converted
into a grid cell (x∗0, y

∗
0), where x∗0, y

∗
0 ∈ 0 · ·(22N − 1). Thus,

the transformation parameters (unknown to any adversary) are
[X0, Y0, θ,N,Γ].

The parameter N is chosen in an effort to maintain a low
average number of POIs per cell (POIH ratio); N is increased
until that ratio is less than a given threshold. Some have
suggested a hierarchy of curves with different N when the
POI distribution varies markedly across the region [3] [15].

With knowledge of the map of the area and POIs, the TS
first converts the geographical coordinates of each POI into
a corresponding Hilbert cell number (in 0 · ·(22N − 1)); and
next, using an encryption key e, it encrypts the description
of the POI as well as its category or domain (e.g., restaurant)
and subcategory (e.g., Vietnamese). Thus, the TS generates the
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Figure 4. Hilbert Curve for N=3 rotated by 180 degrees clockwise.
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Figure 5. Hilbert Curve for N=3 rotated by 270 degrees clockwise.

curve H , creates a table of POIs of the kind shown in Table
I, and sends it to the LBS, which uses it to answer location-
based queries from users. Disruption of services from the TS
and LBS can be avoided by using the well-known strategy of
replication of servers and storage.

TABLE I. TABLE T SENT FROM THE TS TO LBS.

Cell POI description Category Subcategory
43 05A4C3BB02F568489 9A4027D 4715
... ... ... ...
16 47923CC19B6C71AA0 7399BBA 02AA
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Figure 6. Interaction among actors to process a user query.

A mobile user queries the LBS using the Hilbert cell
number corresponding to his/her location’s two-dimensional
coordinates; the LBS searches for the numerically closest
Hilbert cell number that contains appropriate POIs and re-
turns them to the user. A computational module obtains the
transformation parameters from the TS by sending a getKey()
request; transforms the user’s geographic location (xu, yu)
(e.g., latitude, longitude) into a grid cell (x∗u, y

∗
u), and then

applies h() to obtain a Hilbert cell number h(x∗u, y
∗
u); and

also decrypt the returned POI descriptions using the inverse of
e. To perform the above mentioned steps, this module needs a
KEY from the TS:

KEY = {[X0, Y0, θ,N,Γ], e−1}. (1)

The practical implementation of the system is feasible in
terms of performance because (a) the generation of the curve is
done offline; (b) at the LBS, the POI retrieval is a range query
that can exploit a B+ tree; [8] and (c) at the computational
module, the computation of a Hilbert cell number can be done
in time O(n) or faster [2].
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C. The Problem
We have found it useful to represent the overall scheme

using Figure 6; by exploring the knowledge available to the
four agents, we have argued elsewhere [16] that the computa-
tional module must reside in the user’s device while remaining
opaque to the user.

Now, the restriction on POI
H mentioned above often dictates

the determination of N and Γ, i.e., the placement of the 2N ×
2N grid on the physical map, making the number of choices
of the origin and rotation crucial for a robust encryption. So,
the question we ask is the following: assuming the grid is
decided and the only variables are the origin and θ, what are
the ramifications of the choices? Can the origin be moved to
any cell in the grid? This leads to the question, are there cells in
the grid that can remain unused, i.e., unmapped by the Hilbert
curve? The answer is no when every grid cell is a potential
POI location and cannot be ignored; the answer is yes when
the fringe areas of a city consist of uninhabited open spaces
or mountains or streams.

When the answer is no, we explore a wraparound scheme
for re-indexing unmapped cells. Since this has the potential
of degrading the nearness of returned POIs, we have used a
QoS measure and found a correlation between the defined QoS
measure and the number of contiguity violations.

When the answer is yes, the number of unmapped cells is
a QoS measure; it can increase dramatically for many choices
of origin. Here, we have outlined an opportunistic shift-plus-
rotation scheme that reduces the degradation considerably.
Thus, in both cases, origin shifts can be chosen based on
a quantifiable acceptability criteria as well as considerations
regarding the importance of those POIs either left unmapped
or mapped violating contiguity.

The paper is structured as follows. In section 2, we present
related work. In sections 3 and 4 we explore the no and yes
answers respectively. Finally, we present our conclusions and
future work in section 5.

II. RELATED WORK

Abel et al. [1] compare Hilbert curves with four other
spatial transformation orderings (row, row prime, Morton and
Gray code) for geographical data processing. They conclude
that Hilbert curves are poorer than Morton ordering in terms
of oversearch for windowing operations but are much better
in preserving contiguity. Dai et al. in [4], present an analytical
study on the locality properties of Hilbert curves. Moon et
al. [14] focus on the curve rotation concept while evaluating
the clustering properties of Hilbert curves. They show that the
clustering properties of Hilbert curves are better than z-order
curves for range queries. A shift operation is implemented
on the Hilbert curve in [13] and [5] to address the loss of
proximity in the Hilbert space introduced by the gap in the U-
pattern. Liao et al. in [13] introduce multiple shifted copies of
the Hilbert curve that are indexed and stored in (d+1) B-trees
where d is the dimensionality of the space. Dai et al. [5], uses
multiple B+-trees for storage of the curves and evaluate range
query performance in terms of number of pages accessed.

k-anonymity and spatial encoding have been the two
primary approaches to address location privacy. In the k-
anonymity-based approach, the goal is to send an obfuscated
region instead of an exact user location ensuring that it contains

at least (k−1) other users. Such a region is constructed either
by relying on a Trusted Third Party (TTP) with which all users
share their exact locations or through a Peer-to-Peer (P2P)
approach collaborating directly with (k−1) other users nearby.

Khoshgozaran et al. [11] use a Private Information Re-
trieval (PIR) technique: the untrusted server does not have
complete knowledge of the user’s request and related response.
But this approach is computationally very expensive.

Kalnis et al. [9] proposed a k-anonymity-based Hilbert
Cloaking (HC) scheme that generates a cloaked (obfuscated)
region using a Hilbert Curve. In [12], Lee et al. address the
Hilbert curve’s drawback while generating a cloaked region
i.e., an extended cloaked region is generated (while using
Hilbert curves) due to the disconnect in adjacent cells resulting
from the U-pattern. Ghinita et al. [7] use Hilbert curves in a
P2P setting. Damiani et al. in [6] propose Hilbert curve-based
obfuscation. The map knowledge of the adversary and user’s
privacy preferences are taken into account while creating the
obfuscated region over the target encoded space. Niu et al.
[15] introduced the FGcloak algorithm that generates Hilbert
curves with finer orders based on the query probability in
the target region. Thereby, customizing the curve for high
query probability regions. Cui et al. [3] propose a Hierarchical
Hilbert Curve-based spatial k-anonymity that uses the average
query density and constructs a hierarchical index to fill layers
of the region with a curve.

III. ORIGIN SHIFT VIA WRAPAROUND

Here, we explore the question, can any of the 22N cells be
chosen as the origin when no cell can be ignored? This would
provide a very large key space — a desirable feature. We refer
to this as shifting the origin.
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Figure 7. Hilbert curve for N = 3 with origin shifted to (2, 1). Unmapped
cells are shown blank.

Suppose the origin is shifted to, say, (2, 1); the situation is
as shown in Figure 7. The result is that a portion of the grid is
empty, i.e., a portion of the geographical area is unmappable
and hence inaccessible. Assuming that this is unacceptable,
the easiest solution would be a wraparound of the grid that
conceives the space as continuous by merging the left boundary
with the right and the top with the bottom. In other words, if
cell j maps to (x, y) where x ≥ 2N , replace x by x mod 2N

(similarly y). The result is shown in Figure 8 for the origin
at (4, 4) and (2, 1). For (4, 4), only three pairs of cells ( (15,
16), (47, 48) and (31, 32) ) become discontinuous (red lines).
These violate the contiguity assurance given by the Hilbert
curve. Since the LBS is blind to the physical space, such
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Figure 8. Hilbert curve for N = 3 with origin shifted to (4, 4) and (2, 1).
Unmappable cells are re-mapped by a wraparound and connected.

discontinuities can result in poor search quality. For example,
it may return a POI in cell 48 when the user is in cell 47,
perhaps the other end of the city. However, the number of
violations is small (only 3). On the other hand, for (2, 1), there
are many more red lines indicating multiple discontinuities.
Multiple discontinuities indicate a higher probability of poor
QoS for the mobile user.

To quantify the effect of the contiguity violations intro-
duced by the origin shift on the mobile user, we use a param-
eter we call Distance Penalty (D.P.) which was introduced in
[10] as Displacement Measure. Assume the user is at location
lu and desires k nearest POIs; D.P. is defined as follows:

D.P. =

k∑
i=1

| lu − oi |
k

−
k∑
i=1

| lu − o
′

i |
k

(2)

where | lu − oi | is the Euclidean distance between the user
location lu and the ith closest POI returned when the LBS
searches in Hilbert space, i.e., is kept blind; and | lu − o

′

i |
is the Euclidean distance between lu and the ith closest POI
that would be returned if the LBS was searching in Cartesian
space, i.e., was not kept blind.

Even when the curve origin is at (0, 0), i.e., is not shifted,
and k = 2, a certain D.P. is introduced since the Hilbert curve
does not exactly preserve the distance between the Cartesian
and Hilbert space. We take this to be an acceptable amount
based on the POI distribution, user location and k values.
We want to measure how much worse it gets as the origin
is shifted. We took N = 3 and conceived a situation where
there was exactly one POI in each Hilbert cell, and the user
posed a query from the center of each cell in turn (a total of
64 queries), each time asking for k = 2 POIs. (Since there
is one POI in each cell, k = 1 would be trivial.) Setting up
our origin at (0, 0), we computed the D.P. for each query and
averaged over all queries. This was δ0, our baseline D.P. Then
we repeated the experiment for k = 3 and 4. Next, we repeated
the above for each cell as the origin. After normalizing all D.P.
values by dividing by δ0, we plotted the three D.P. results (for
k = 2, 3, 4) in Figure 9.

Next, for each origin, we counted the number of pairs of
cells that violated the contiguity guarantee (e.g., 3 for the
origin at (4, 4)); these counts form the last bar in Figure 9.
Visually discernible in that figure is our finding that the count
of contiguity violations correlates with the D.P. The figure
shows that the distance penalty is maximum when the origin
is shifted to (3,1) and (5,1), least when the origin shift is (0,0)
and (4,0) and varies for different origin shifts. Thus, the D.P.

is a QoS metric that the TS can use to control the degradation
by rejecting origin shifts for which it is beyond an acceptable
value. Moreover, since it is correlated with the number of
contiguity violations which is intrinsic to the Hilbert curve, the
TS can reject the origin shifts for which those actual violations
are unacceptable because they involve high-interest POIs.

IV. WITHOUT WRAPAROUND

Next, we consider the situation where fringe areas can
remain unmapped. The question is, how many cells become
unmapped as we move the origin? It is possible to show from
the rectangular geometry that when the origin is at (i, j), the
number of unmapped cells is given by is given by

U = (i+ j) ∗M − ij, where M = 2N . (3)

Clearly, this naive method is not feasible when the origin
moves to any other quadrant. For example, when the origin
is at (5, 5), only 9 cells are mapped and the unmapped cells
occupy the central core of the grid not the fringes. Obviously,
it would be more practical to rotate the grid. Since POIs inside
the unmapped cells become inaccessible as a consequence,
their number relates to the QoS.

A. Combining Shift with Rotation
The original paper [10] had introduced two canonical forms

of the curve: the normal and transposed (they called the latter
curve rotated). Moon et al. [14] introduced two more canonical
forms of the curve. Their idea can be explained by flipping
the normal curve (Figure 1), which they called 1+, about a
vertical (horizontal) line running through its middle, i.e., the
red line NS (WE) in that figure. After a flip about the horizontal
(WE), the resulting shape is changed but after a flip about
the vertical (NS), it is not. They called the new shape 1−.
Similarly, flipping the transposed curve 2+ around the vertical
line yielded a new curve they called 2−. We use their idea but
we make use of the unchanged shapes as well because they
do yield a different hash function or numbering scheme and
that is what we care about. To make this process precise, we
propose two orthogonal transformation operators:

1) Transposition, creating HT from H;
2) Rotation by 90◦; creating H90 from H; repeated com-

position of this provides H180 and H360 respectively.

The results of rotating the normal curve by 90, 180 and
270 degrees are shown in Figures 3 (H90), 4 (H180), and 5
(H270) above. Similar rotations for the transposed curve (HT )
are not shown for shortage of space.

The following can be proved (though we omit the proofs
for shortage of space). For a Hilbert curve H (= H0), any
integer n ≥ 0, θ ∈ {0◦, 90◦, 180◦, 270◦} and where raising to
a power n means repeated composition:

((Hθ)T )T = Hθ (4)

(Hθ)n = Hnθ mod 360 (5)

(HT )θ = (Hθ)
T

(6)

(HT )θ ∼ Hθ+90 (7)

where H ∼ H ′ means that H,H ′ are related (by shape
symmetry) through the following:

H ′[i, j] = (2N − 1)−H[i, j] (8)
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Figure 9. Contiguity Violations and (Normalized) Distance Penalty versus Origin Shift.

Figure 10. Number of unmapped cells with naive shift and opportunistic shift+rotation.
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Figure 11. Instead of shifting the origin to (5, 5) and leaving 86% of the
cells unmapped, an opportunistic shift strategy allows better coverage.

Notice that this effectively shifts the origin to (−2,−2).

Equation 6 allows us to replace both (HT )θ and (Hθ)
T by

HT,θ. In equation 7, the ∼ is especially interesting. It shows
that pairs of these transformed curves are similar (capturing
the similarity in shape) though not identical. Moreover, they
involve a swap of origins: the equation shows that 0 is swapped
with 63. Such curves, which are similar but not identical are
very useful to us because they provide another hash function,
i.e., another key combination for encryption. Thus, we obtain

8 canonical forms:

{H,HT } ∪ {Hθ, Hθ,T | θ ∈ {90◦, 180◦, 270◦}}. (9)
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Figure 12. Transformations and Relations among 8 canonical forms.
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Figure 12 indicates the relationships (rotation, transposi-
tion, and ∼) among all eight. Within each square is a thumbnail
of the 8×8 matrix showing only the positions of the two end
cells: 0 and 63. It is important to note that these eight canonical
forms incorporate origin shift: each of the four corner cells is
an origin in exactly two of the eight.

B. Opportunistic Shifting with rotation
Now we wish to apply the above operators for arbitrary

origin shifts in order to make the shift useful in leaving only
the fringe unmapped and in reducing the number of unmapped
cells. We propose an opportunistic origin shift. Suppose the
origin is to be shifted to (i, j). Depending on the quadrant
(i, j) occupies, we choose any one of the 8 canonical curves,
find the cell in its outermost corner that is nearest to (i, j), and
drag (translate the grid) it to (i, j). For example (Figure 11),
when the origin is shifted to (5, 5), instead of leaving out 86%
of the grid unmapped, let us choose the normal curve H as
the canonical curve; since cell 42 is the outermost corner of
H nearest to (5, 5), we translate H dragging cell 42 to (5, 5).
Note that the origin is now effectively (−2,−2). (If we had
chosen H180 or HT,180 instead of H , the origin would have
been at (5, 5).) This along with the choice of any of the 8 forms
demonstrates that we have expanded on the space of possible
keys. The key now includes boolean T and W , transposition
and wraparound flags:

KEY = {[X0, Y0, θ, T,W,N,Γ], e−1}. (10)

Figure 10 shows the number of unmapped cells with and
without this scheme (labeled correction in the figure). It shows
that this scheme is very effective at reducing the number of
unmapped cells. The TS can reject certain origin shifts in either
of two ways: if the number of unmapped cells exceeds an
acceptable threshold, or if those unmapped cells contain high-
value POIs. The opportunistic scheme clearly gives a much
better set of options in this choice.

V. CONCLUSION AND FUTURE WORK

In this paper, we explored two parameters underlying the
Hilbert curve: the origin and ‘rotation’. The ability to choose
among many values of these two parameters is crucial because
we are often constrained in our choice of the others. We
considered two scenarios: in the first, it is not acceptable to
leave some cells unused, i.e., every cell needs to be used; and
in the second, it is, e.g., when fringe areas of a city do not
have useful POIs.

For the first scenario, we introduced a wraparound strategy
for varying the origin parameter (X0, Y0). This works quite
well for some choices of origin but not for others. We
quantified this QoS issue using a D.P. metric and found that
it correlates with the number of contiguity violations resulting
from the origin shift. For the second scenario, the number of
unmapped cells is our QoS metric. We introduced transforma-
tion primitives that clarified the process of combining rotation
with origin shift, enlarged the number of canonical curves from
four to eight, and enabled our opportunistic shift with rotation
which greatly improved the number of unmapped cells.

In both cases, we enable the TS to choose the origin shifts
not only by thresholding the QoS metric, but also by checking
if high-interest POIs are among the cells suffering contiguity

violations or being left unmapped. Further, by increasing the
number of canonical forms and allowing the origin to move
outside the grid, we have expanded the space of keys, thereby
giving more options in choosing feasible origin shifts.

For future work, we will test the robustness of our approach
by taking subsets of maps of actual cities and simulating
attacks. Other avenues of inquiry include a user in motion
and a user specifying a cloaking region.
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