
Use of Persistent Meta-Modeling Systems to Handle Mappings forOntology Design

Valéry Téguiak
LIAS/ISAE-ENSMA
Futuroscope, France
teguiakh@ensma.fr

Yamine Ait-Ameur
IRIT-ENSEEIHT
Toulouse, France

yamine@enseeiht.fr

Éric Sardet
CRITT Informatique
Futuroscope, France

sardet@ensma.fr

Abstract—To enable data intensive application including
global information systems with heterogeneous models, the
model mapping problem in which a source model is mapped to
a target one should be addressed. Current work about mapping
provides a finite set of mapping constructors available for
writing mappings. In this case, adding a new concept in a
meta-model describing mapped schemas could have the effect
of building new types of mapping constructors. Thus, this
paper attempts to provide a generic and systematic approach
for modeling mapping constructors, so that new mapping
constructors could be handled efficiently without requiring to
rebuild completely the mapping repository system.

Keywords-data integration; mapping; meta-modeling; model
transformation; ontology engineering.

I. I NTRODUCTION

The huge amount of data created by several application
domains and development activities was at the origin of the
emergence of several heterogeneous data models and model-
ing languages. The need of exploiting data and these models
in an integrated manner led to several studies on data and
model integration and heterogeneous modeling [1], [2]. Two
particular and interesting studies are model mappings and
mapping languages. Moreover, these approaches have also
been developed in the context of the semantic web where
model mappings were required for defining transformations,
instance migration, etc.

In order to deal with various heterogeneous models used
to represent the same real word domain, several mapping
languages [8], [12], [20] have been proposed. Their central
objective is to establish relationships between models. Most
of these approaches run in central memory and do not
address the scalability problem when dealing with huge
amount of data, instances of those models.

However, many information systems rely on databases to
ensure scalability. As a consequence, the need of managing
mappings in a persistence context appeared. Therefore, the
availability of a repository of mappings is required. Also,a
way for exploiting mappings by interpreting, handling and
manipulating such mapping operators is also required.

The work of Miller et al. [3] and Ling et al. [4] was
precursor. It addressed the problem of mapping management
in a database. The main assumption in this work consists in
modeling mapping constructors as a finite set of operators.

This assumption is acceptable if models to be mapped are
encoded in a meta-model that will not evolve dynamically
due to the fixed set of mapping constructors.

Nevertheless, offering the capability to manipulate and/or
to modify the meta-model could offer more flexibility and
extensions capabilities dynamically. Indeed, offering the
capability for the meta-model to evolve by supporting the
creation of new concepts would also offer the capability to
dynamically define on the fly new mapping constructors. As
a consequence, the definition of mapping constructors in a
generic way becomes possible.

Moreover, because the size of models and instances are
growing drastically, the traditional approaches for mapping
models need to scale up. Therefore, offering persistent
settings for managing such mappings and instances becomes
a necessity if one wants to address real sized problems.

This paper focuses on the definition of a generic infras-
tructure for managing mappings in a database context. It uses
a specific database architecture that supports definition of
meta-models and their instances. This database infrastructure
consists of: (1) a space for representing mapping construc-
tors, (2) a space for representing models and mappings
between these models and finally (3) a space for representing
data (instances of models).

This paper is organized as follows. Section II outlines
related work on mappings. Then, our contribution using
constructive data models to model mappings is presented
in Section III. In Section IV, we discuss how to represent
a graph of mappings in a persistent context. Once our
persistent solution for handling mappings in a database
structure, through model repositories, is presented in Section
V, we briefly present, in Section VI, how this approach has
been set up to encode the transformation process for building
ontologies starting from texts. This work has been conducted
in the context of the DaFOE4App (Differential and Formal
Ontologies Editor for Application) project [22]. We finally
conclude and give some perspectives of this work.

II. RELATED WORK

Many proposals address model mapping and data trans-
lation problems. These proposals can be splitted into two
categories: hard encoded and rule-based approaches.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

A. Hard encoded approach

By the termhard encoded, we refer to approaches where
both mappings and mapped models representations are
hidden within a framework as a program. It means that
these representations are not exposed as declarative and
user-comprehensible rules. This leads to several difficulties.
First, models and mappings can only be extended by the
framework designers. Secondly, because of the program-
based representation of models and mappings, any exten-
sion requires changes at the framework code level. As a
consequence, correctness of these representations has to be
accepted by users as a dogma. For example, the approach
of Papotti and Torlone [14] can be said to be hard encoded.
In that context, the expressed transformations are imperative
programs, which have the weaknesses described above. The
instance translation process is achieved by firstly converting
the source data into XML, and then by performing an
XML-to-XML translation expressed in XQuery to reshape
instances in order to be compatible with the target schema,
and finally, by converting the XML representation into the
target model.

B. Rule-based approach

Weaknesses of the hard encoded approach can be solved
using a rule-based approach. This approach attempts to
provide a generic way to handle models, mappings and
data translation without using a hard encoded program.
For example, the approach proposed by Bernstein et al.
[13] is a rule-based one. In that approach, they focus on
a flexible mapping based on inheritance hierarchies, and
in the incremental regeneration of mappings each time the
source schema is modified. Other rule-based approaches are
driven by a dictionary of schemas, models and translation
rules. Among them, we can quote the work of Bowers and
Delcambre [11] that proposes Uni-Level Description (UDL).
UDL is a meta-model in which models and translations can
be described and managed in a uniform process environment
for models, schemas and instances. UDL is used to express
specific model-to-model translations of both schemas and in-
stances. Like the approach of Atzeni et al. [16], translations
are expressed as Datalog rules and the source and target
models are stored in a generic relational dictionary.

Our approach is also considered as a rule-based approach.
But, compared to the previous quoted approaches,
we provide a more abstract level where, in addition,
the dictionary is explicitly represented and becomes
manageable. Indeed, the dictionary representation according
to a meta-meta-model allows the user for example, to
modify mapping models without modifying the underlying
program.

Furthermore, Kalfoglou and Schorlemmer [7] address
the problem of mapping discovery which consists of an

automatic synthesis of an alignment between models. In
our proposal, we assume that the discovery process has
already been achieved. Indeed, our work deals with mapping
specification and instance mediation in database environ-
ment. More discussions on topics around mapping problems
and provided solutions can be founded in [4], [9], [15],
[18]. As illustrated in Figure 1, mappings can be composed
transitively. This requirement has been formalized in [10],
[19], where an approach to use composition among mod-
els has been proposed. Because this paper focuses on a
repository for storing mappings, we do not discuss handling
composition between mappings (composition is handled by
a query engine in our framework). Furthermore, [3], [4]
introduce the notion ofvalue correspondenceas a proposal
of representation for mapping operators.

III. O UR APPROACH

In our approach, modeling mapping consists in creat-
ing mapping constructors (Model level mapping, Entity
level mapping, Attribute level mapping, etc.). In this sec-
tion, we present a formal model for mapping construc-
tors. Furthermore, before connecting domain models us-
ing mappings, these models should be represented in a
way allowing them to be managed efficiently. The meta-
modeling-based approach is often used for this purpose.
We use a meta-model called Entity-Attribute meta-model
(E-A meta-model) to handle domain models. Using this E-
A meta-model, a modelm is formally defined bym =
〈E,A, I, T, dom, range, its entity〉 where:

• E represents the set of entities of the modelm;
• A represents the set attributes used to describe entities

of the modelm;
• I represents the set of entity instances of the modelm;
• T is a set of primitive types (Int, String, Boolean, etc.);
• dom : A → E defines the domain of an attribute;
• range : A → E ∪ T defines the range of an attribute;
• its entity : I → E returns the entity associated to a

given instance.

Figure 1. An mLink graph of model mappings.

A. Model level mapping: mLink

Correspondences between models are represented by a
directed acyclic graph whose nodes are models. Formally,

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Figure 2. eLink graph. Figure 3. aLink graph.

if M represents a set of models, the graphGm of cor-
respondences between models (Cf. Figure 1) is defined by
Gm = (Nm, Lm) where:

• Nm ⊆ M represents the set of nodes of the correspon-
dence graph;

• Lm = {(ms,mt, αm) ∈ Nm ×Nm × [0; 1]} repre-
sents a set of correspondences between a source model
(ms) and a target model (mt). Here,αm is a confidence
degree of this correspondence.

Through this paper, we will use the termmLink, formally
defined as element ofLm, to refer to a correspondence or a
mapping between models.

B. Entity level mapping: eLink

Correspondences between entities of the models are repre-
sented by a directed acyclic graph whose nodes are entities.
Formally, if E represents a set of entities, the graphGe of
correspondences between entities (Cf. Figure 2) is defined
by Ge = (Ne, Le) where:

• Ne ⊆ E is the set of nodes of the correspondence graph;
• Le = {(es, et, αe,mL) ∈ Ne ×Ne × [0; 1]× Lm}

represents correspondences between a source entity (es)
and a target entity (et) built in the context of themLink
mL with confidence degreeαe.

Through this paper, we will use the termeLink, formally
defined as element ofLe, to refer to a correspondence
between entities.

C. Attribute level mapping: aLink

The arity of correspondences between attributes is n:0
reflecting the fact that one needs zero or more attributes
of the source entity to compute an attribute of the target
entity. Formally, if A represents the set of attributes, the
graphGa of correspondences between attributes (Cf. Figure
3) is defined byGa = (Na, La) where:

• Na ⊆ A represents the set of nodes of the correspon-
dence graph;

• La =
{

(As, at, αa, ϕ, eL) ∈ Nk
a
×Na × [0; 1]× Φ× Le

}

represents a set of correspondences from a set of
sources attributesAs = (as1, as2, ..., ask) to a target
one (at ∈ Na) where:

– the eLink eL represents the context in which the
correspondence has been created;

– ϕ is an expression used to writeat in terms ofasi
(1 ≤ i ≤ k).

– αa represents the confidence degree of the corre-
spondence.

Through this paper, we will use the termaLink, formally
defined as element ofLa, to refer to a correspondence
between attributes.

Unlike other work performed on mappings [3], [4], [12],
our approach does not presuppose the existence of a finite
set of mapping constructors but it aims at providing a formal
support to dynamically create new mapping constructors
or evolving existing one. Indeed, all mapping constructors
presented above use a numeric confidence degreeα. This is
the most used approach for handling fuzzy mappings. How-
ever, what will happen if a user (who is not the framework
designer) want to create another fuzzy property for mapping
by annotating each mapping with a quality value (“Weak”,
“Average”, “Good”, “Very”, “Good”, “Excellent”, etc. for
example)? Thus, our approach propose to model mapping
constructors so that mapping constructors likemLink, eLink,
aLink, etc., could be managed in a generic way and easily
extended at runtime. As our work is conducted in a database
context, we discuss in the following sections, modeling
possibilities of a database repository to store such a graph-
based representation of mapping.

IV. M ODEL REPOSITORIES

In the recent years, several works [6], [17] investigated the
problem of representing ontologies and their instances within
a database. We reuse this approach for models in general and
the resulting database (that we simply call Model Based-
Database (MBDB)) can be represented according in three
main approaches. In this section, we present a taxonomy of
these approaches. Our goal here is to discuss how the graph
of mappings presented in Section III can be stored in each
of these database types.

A. MBDB of type 1

In MBDB of type 1, information is represented using
a single schema composed of a single table of triples
(subject, predicate, object). This table, referred as vertical
table [5] is used both for model level data and instance
level data. For model level data, the three columns of this
table respectively represent the Identifier of an element ofthe
model, a predicate and the value taken by the predicate (Cf.
Figure 4). Furthermore, in order to implement our mapping
representation proposal with MBDB of type 1, we apply the
following rules:

• use RDF Schema as the meta-model for representing
domain models. For instance, the triplet (e1, Type,
Entity) means that the concepte1 is an RDF Class
(called Entity in the E-A meta-model);

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

• extend RDF Schema with new concepts representing
mapping constructors (mLink, eLink, aLink);

• extend RDF Schema with new properties representing
parameters ofLm, Le, La. For instance, “rdf : ms” is
used to represent the source model of amLink while
“rdf : eL” is used to identify amLink representing the
context in which a giveneLink is created.

Putting all these previous rules together results in a database
as illustrated in Figure 4. Unfortunately, it clearly appears
that, this approach is not enough scalable because of the
number of auto-join operations required on the underlying
vertical table.

Figure 4. MBDB of type 1.

B. MBDB of type 2

MBDB of type 2 store separately model level data and the
instance level data in two distinct schemes [6]. In classical
databases, the system catalog part plays the role of the
model level where models are stored as meta-data. The main
problem with this representation comes from the fact that the
meta-model provided by the DataBase Management System
(DBMS) cannot be manipulated. Indeed, this meta-model
is frozen and therefore, it cannot be evolved according to
some particular requirements. For example, how do we rep-
resent mapping concepts likemLink, eLink, aLink, etc.(not
available in this meta-model) using this type of database?
However, as illustrated in Figure 5, one can use the semantic
part of the database to represent mappings. Even if this
approach provides a solution independent of a particular
DBMS, the meta-model of the semantic part is also frozen
and cannot be extended at runtime in order to provide new
mapping constructors.

C. MBDB of type 3

MBDB of type 3 [17] propose to add another schema to
MBDB of type 2. This schema stores the E-A meta-model in
a reflexive meta-meta-model. Thus, for the meta-model, the

Figure 5. MBDB of type 2.

meta-meta-model plays the same role as the one played by
the system catalog. Compared to MBDB of type 2, adding a
meta-meta-model in MBDB of type 3 provides possibility to
extend the meta-model. So, thanks to that meta-meta-model,
MBDB of type 3 could be reused to reach our goal related to
the representation of mapping concepts in database. Figure
6 illustrates the OntoBD [17] architecture as an example of
a MBDB of type 3. OntoDB is based on 4 main parts:

• the meta-base part: it corresponds to the catalog
system of databases. It contains system tables used to
manage all the data contained in the database;

• the data part: it represents domain objects also called
data;

• the semantic part: it contains models defining the
semantics of data. More precisely, domain models of
information system stored in the semantic part;

• the meta-schema part:the meta-schema part records
the E-A meta-model.

Figure 6. OntoDB: a MBDB of type 3.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

The next Section presents how the approach led by MBDB
of type 3 has been used to persist the graph of mappings.

V. HANDLING MAPPINGS IN A DATABASE

In this section, we give some details about the imple-
mentation of our proposal. Thanks to its extension facility,
MBDB of type 3 are therefore better suited to implement the
mapping approach presented in this paper. Indeed, a type 3
MBDB provides enough flexibility for the extension of both
the E-A meta-model and the mapping model. It is therefore
possible, for example, to create new mapping constructors.
The resulting database repository is illustrated in Figure
7 where labels purposes (instead of object identifier) are
used only for more readability. Compared to Figure 6, we
have extended the semantic part with mapping constructors.
All these mapping constructors are created as instances of
the meta-schema. That provides for creating dynamically
new mapping constructors. The resulting infrastructure is
obtained in 3 steps.

Figure 7. MBDB with mappings.

1) Setup of the mapping management infrastructure.
This infrastructure consists in building a repository
for mapping constructors. After creating tables in the
meta-schema part, we populate them. For example,
the statements of Table I insert new rows in tables
MetaEntityand MetaAttributetables of Figure 7. As
a consequence, a physical repository for each con-
structor is automatically built in the semantic part. A
table is created for each meta-entity with its attribute
found in the meta-attribute table. At this level, we use
classical SQL queries and the designer needs to know
the meta-schema tables structure. The MQL language
[21] provides the user with high level operators that
hide implementation details available in such SQL
queries. We do not give details of this language to
keep this paper in reasonable size. Notice that, for
readability purposes all statement examples provided

Table I
CREATION OF THEE-A META-MODEL

INSERT INTO MetaEntity (label) VALUES(“mLink”)
INSERT INTO MetaEntity (label) VALUES(“eLink”)
INSERT INTO MetaEntity (label) VALUES(“aLink”)
INSERT INTO MetaEntity (label) VALUES(“Model”)
...
INSERT INTO MetaAttribute (label, domain, type)
VALUES(“ms”,”mLink”,”Model”)
...
INSERT INTO MetaAttribute (label, domain, type)
VALUES(“mt”,”mLink”,”Model”)
...
INSERT INTO MetaAttribute (label, domain, type)
VALUES(“α”,”mLink”,INT)
...

in this paper use ‘‘label” as foreign key instead of
URI.

2) Model creation. The models creation task consists in
populating theEntity, Attribute and Model tables of
the E-A meta-model (Cf. Figure 7). For each entity of
the E-A meta-model, the physical structure (ei tables)
for storing data is created in the Data part.

3) Mapping creation. Creating a mapping consists in
populating themLink, eLink, aLinktables material-
izing mapping constructors (Cf. Figure 7). This ex-
plicit representation keeps traceability of mappings.
However, it also keeps traceability between instances.
Indeed, instance level mappings results from the in-
stantiation ofeLink. This instance mapping constructor
is handled by creating, for eacheLinka table (e1TOe2
for example) storing those instances of the source
entity that have been used to build the instance of the
target entity.

An example of both of model and mapping creation tasks
is given in Section VI, where the case study of modeling an
ontology building process is detailed.

Notice that we have defined directed links from models
and concepts to others. The reverse links can be easily built,
if needed, using the same process. This capability will offer
full traversals in the database from models to others. As a
consequence, it is possible to trace the source concept used
to produce target ones. The MQL language [21] offers high
level operators for such traversals.

VI. A PPLICATION

This section summarizes the use of the approach de-
veloped above in a particular context: building ontologies
starting from text analysis.

A. Overview

The proposal of this paper has been applied in the DAFOE
platform, a platform led by the ANR DaFOE4App project.
This platform provides a stepwise methodology where the

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

first step is dedicated to linguistic analysis (called Termi-
nology Step) in which users manage linguistic information
(terms and relations between terms) extracted with natural
language processing tools (NLP). After the linguistic anal-
ysis, the step for structuring linguistic information (called
TerminoOntology step), in order to avoid possible ambiguity
of terms, is performed. Finally, a formalization step (called
Ontology Step) allows users to createclassesandproperties
of the ontologies and to populate created classes. Each of
these autonomous steps has been modeled as illustrated in
Figure 8, 9 and 10 respectively. Notice that the main goal
of the DaFOE platform is not to populate classes but to
build ontologies that are intended to be exported into other
systems that provide instance management facilities. Thus,
instance management is out of the scope of the application
domain.

Figure 8. A simplified representation of the Terminology model.

Figure 9. A simplified representation of the TerminoOntology model.

B. Setting up our approach

Applying our approach leads to the persistent infras-
tructure represented in Figure 11. It consists in writing
correspondences between elements of the model of each step
using mapping constructors. The developed approach in the

Figure 10. A simplified representation of the Ontology model.

DaFOE4App project has identified two bridges for switching
between steps: a first one for producing termino-ontology
concepts from texts and a second one for producing ontology
concepts from termino-ontology concepts. According to our
approach, bridge means the creation ofmLink, eLinkand
aLink respectively after setting the models to be mapped.
These two bridges are detailed below.

1) Bridge 1. Terminology to TerminoOntology step.
Considering bothTerminologyand TerminoOntology
steps through their models (Cf. Figure 8 and 9 re-
spectively), a simplified mapping between these steps
consists in:
mLink creation. The statementS1 of Table II creates
a mLink from the Terminologymodel to theTermi-
noOntologymodel. As a result, row 700 is inserted in
tablemLink (Figure 11).
eLink creation. The statementS3 of Table III creates
a eLink from the Term entity to theTerminoConcept
entity to express that instances of theTermentity will
be transformed as instances of theTerminoConcept
entity. As a result of this statement, row 800 is inserted
in the table eLink as illustrated in Figure 11. A
eLink from theTermRelationentity of theTerminology
model and theTerminoConceptRelationentity of the
TerminoOntologymodel is also available.
aLink creation. The statementS5 of table IV shows a
aLink expresing that an instance of theTerminoCon-
cept entity has the samelabel as its corresponding
instance in theTerm entity prefixed by ’tc ’ . An-
other aLink expresses that the rate of an instance
of TerminoConceptentity equals to the frequency of
corresponding instances inTermentity divided by 100.
As a result, rows 200 and 201 are inserted in table
aLink (Figure 11).

2) Bridge 2. TerminoOntology to Ontology step.
For TerminoOntologyandOntologysteps, a simplified
mapping between their respective models consists in:
mLink creation. The statementS2 of Table II creates
a mLink from the TerminoOntologymodel to the
Ontology model. As a result, row 701 is inserted in

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Table II
STATEMENTS FOR ML INKS CREATION

StatementS1−

INSERT INTO mLink (label,ms, mt, αm)
VALUES(“Terminology2TerminoOntology”, “Terminology”,
“TerminoOntology”, 0.8);

StatementS2−

INSERT INTO mLink (label,ms, mt, αm)
VALUES(“TerminoOntology2Ontology”, “TerminoOntology”,
“Ontology”, 0.9);
...

Table III
STATEMENTS FOR EL INKS CREATION

StatementS3−

INSERT INTO eLink (label,es, et, αe, mL)
VALUES(“Term2TerminoConcept”, “Term”, “TerminoConcept”,
0.8, Terminology2TerminoOntology);

StatementS4−

INSERT INTO eLink (label,es, et, αe, mL)
VALUES(“TerminoConcept2Class”, “TerminoConcept”, “Class”,
0.8, “TerminoOntology2Ontology”);
...

tablemLink of Figure 11.
eLink creation. In the context of the previous created
mLink, a eLink is created from theTerminoConcept
entity to the Class entity to express that instances
of the TerminoConceptentity will be transformed as
instances of theClass entity. This eLink is created
using statementS4 represented Table III. AeLink
from TerminoConceptRelationof theTerminoOntology
model and thePropertyentity of the Ontology model
is also available. As a result, row 801 is inserted in
tableeLink (Figure 11).
aLink creation. The statementS7 of Table IV shows
a aLink expressing that an instance of theClassentity
has the samelabel as its corresponding instance in
TerminoConceptentity. As result, rows 202 is inserted
in tableaLink (Figure 11).

Putting these mappings all together results in a stepwise
design methodology for a database recording manipulated
data and produced to build an ontology from texts according
to the process defined in the DaFOE4App project.

VII. C ONCLUSION

In this paper, we presented an approach for persisting
mappings. Focusing on a specific type of databases i.e
persistent meta-modeling systems, we proposed an exten-
sible infrastructure for mapping management. Rather than
freezing all the mapping constructors in a database, we have
proposed to represent them as a model. This model is then
used on the one hand to create new mapping constructors and
on the other hand for the automatic generation of a persistent

Table IV
STATEMENTS FOR AL INKS CREATION

StatementS5−

INSERT INTO aLink (label,As, at, αa, ϕ, eL)
VALUES(“TermLabel2TcLabel”, (“termlabel”), “tc label”,
0.8, “tc label= “tc ” + term label”, “Term2TerminoConcept”);

StatementS6−

INSERT INTO aLink (label,As, at, αa, ϕ, eL)
VALUES(“TermLabel2TcLabel”, (“frequency”), “rate”,
0.8, “rate= “frequency/100”, “Term2TerminoConcept”);

StatementS7−

INSERT INTO aLink (label,As, at, αa, ϕ, eL)
VALUES(“TcLabel2ClassLabel”, (“tclabel”), “tc label”,
0.8, “class label= tc label”, “TerminConcept2Class”);
...

repository for mappings to ensure their traceability. As
an assessment, our approach has been deployed and then
implemented for the modeling process of building ontologies
from texts in the context of the DaFOE4App project.

Furthermore, once models and mappings are created and
models are populated with data, it would be interesting for
example, to exploit these mappings when querying data.
Indeed, because our mapping modeling is applied to models
that represent the same real world domain, the domain
related retrieving process needs to interpret mappings be-
tween models. Unfortunately, the resulting mapping graph
as presented in this paper may be complex to manage with
the classical SQL queries. For instance, as mappings are
transitive thanks to mapping composition, one would want
to use this capability to retrieve data transitively. Writing
such a query could become complex. Thus, in continuity
to this work, we have defined a SQL-like management and
query language, namely MQL [21], that provides high level
operators that makes easier querying data using mappings
between models. This language, that hides implementation
details regarding the database structure will be benchmarked
in the context of engineering data retrieving where response
time may be critical because of the huge amount of the
underlying data. In this particular case, we are planing to
improve performance analysis of the MQL query language.

ACKNOWLEDGMENT

The authors would like to thanks the partners of the ANR
DaFOE4App project for their contribution.

REFERENCES

[1] Michael Genesereth, Arthur Keller and Oliver Duschka. Info-
master: an information integration system. In Proceedings of
the ACM SIGMOD Record, pp. 539–542, 1997

[2] Pepijn Visser, Martin Beer, Trevor Bench-Capon, B. M. Diaz
and Michael Shave. Resolving Ontological Heterogeneity in
the KRAFT Project. In Proceedings of DEXA’99, pp. 668–
677, 1999

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

Figure 11. Mapping management in the DaFOEApp project.

[3] Reńee Miller, Laura Haas and Mauricio Hernández. Schema
Mapping as Query Discovery. In Proceedings of VLDB’00,
pp. 77–88, 2000

[4] Yan Ling, Miller Reńee, Haas Laura and Fagin Ronald. Data-
driven understanding and refinement of schema mappings. In
SIGMOD Record, pp. 485–496, 2001

[5] Rakesh Agrawal, Amit Somani and Yirong Xu. Storage and
Querying of E-Commerce Data. In Proceedings of VLDB’01,
pp. 149–158. Rome, Italy 2001

[6] Jeen Broekstra, Arjohn Kampman and Frank van Harmelen.
Sesame: A Generic Architecture for Storing and Querying RDF
and RDF Schema. In Proceedings of ISWC’02, pp. 54-68, 2002

[7] Yannis Kalfoglou and Marco Schorlemmer. IF-Map: an on-
tology mapping method based on information flow theory. In
JoDS’03, pp. 98–127, 2003

[8] Sergey Melnik, Erhard Rahm and Philip Bernstein. Developing
metadata-intensive applications with Rondo. In Journal of
Semantic Web, pp. 47–74, 2003

[9] Philip Bernstein. Applying Model Management to Classical
Meta Data Problems. In SIGMOD Record, pp. 209-220. 2003

[10] Madhavan Jayant and Halevy Alon. Composing mappings
among data sources. In Proceedings of VLDB’03, pp. 572–
583, 2003

[11] S. Bowers and L. M. L. Delcambre. The Uni-Level Descrip-
tion: A uniform framework for representing information in
multiple data models. In Proceedings of ER’03, pp. 45-58,
2003.

[12] Ian Horrocks, Peter Patel-Schneider, Harold Boley, Said
Tabet, Benjamin Grosof and Mike Dean. SWRL: a semantic
web rule language combining OWL and RuleML, 2004, http://
www.w3.org/Submission/SWRL/,2012-04-09 06:00:05 +0100

[13] Philip Bernstein, Sergey Melnik and Peter Mork. Interactive
schema translation with instance-level mappings, In Proceed-
ings of VLDB’05, pp. 1283–1286, 2005

[14] P. Papotti, R. Torlone. Heterogeneous data translation through
XML conversion. J. Web Eng., pp. 189-204, 2005.

[15] Choi Namyoun, Song Il-Yeol and Han Hyoil. A survey on
ontology mapping. In SIGMOD Record, pp. 34–41. New York,
USA 2006

[16] Paolo Atzeni, Paolo Cappellari and Philip A. Bernstein.
MIDST: model independent schema and data translation, In
SIGMOD Record, pp. 1134-1136, 2007

[17] Hondjack Dehainsala, Guy Pierra and Ladjel Bellatreche. On-
toDB: An ontology-based database for intensive applications.
In Proceedings of DASFAA’07, pp. 497–506, 2007

[18] Jérôme Euzenat, Pavel Shvaiko. Ontology matching. In
Springer-Verlag(eds.), 2007

[19] Alan Nash, Philip Bernstein and Sergey Melnik. Composition
of Mappings Given by Embedded Dependencies. In ACM
TODS’07, Volume 32 Issue 1, pp. 172–183, 2007

[20] Naouel Moha, Sagar Sen, Cyril Faucher, Olivier Barais and
Jean-Marc J́eźequel: Evaluation of Kermeta for solving graph-
based problems. In STTT’10 Journal, pp. 273–285, 2010

[21] Valéry Téguiak, Yamine Ait-Ameur,́Eric Sardet and Ladjel
Bellatreche. MQL: an extension of SQL for mappings
manipulation. Internal report, LIAS/ISAE-ENSMA, 2011,
http://www.lisi.ensma.fr/ftp/pub/documents/papers/2011/
2011-Report-Teguiak1.pdf, 2012-04-09 06:00:05 +0100

[22] Projet DaFOE4App.́Etat de l’art etétude des besoins pour
une plate-forme de construction d’ontologies. Livrable de
projet, 2007, ftp://ftp.irit.fr/IRIT/IC3/Dafoe-livrableA.0.1.pdf,
2012-04-09 06:00:05 +0100

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

