
An Ontology-based Representation of the Google+

API

Konstantinos Togias

School of Science and Technology

Hellenic Open University

Patras, Greece

ktogias@eap.gr

Achilles Kameas

School of Science and Technology

Hellenic Open University

Patras, Greece

kameas@eap.gr

Abstract—Social Networking Services (SNS) provide users with

functionalities for developing their on line social networks,

connecting with other users, sharing and consuming content.

While most of popular SNS provide open Web 2.0 APIs, they

remain disconnected from each other thus fragmenting user's

data, social network and content. Semantic social web

technologies such as public vocabularies and ontologies can be

used for bridging the semantic gap between different SNS.

Ontology-based representations of SNS APIs can help

developers share knowledge about SNS APIs and can be used

for linking APIs with public Social Semantic Web ontologies

and vocabularies and for enabling automatic ontology-based

service composition. In this paper, we study the API of

Google+ SNS and create an ontology based representation of

its structural and functional properties. The proposed ontology

describes valuable structural and functional details of the API,

in a machine processable format useful for understanding the

API and appropriate for integrating into ontology based

Mashups.

Keywords—Semantics; Social Networking System; Web

Mashup; Social Semantic Web.

I. INTRODUCTION

Social Networking Services (SNS) are web applications
that allow users create and maintain an online network of
close friends or business associates [1]. Typical examples of
SNS are Facebook, Myspace, Twitter and the most recent
Google+. While SNS have much common functionality they
do not usually interoperate and therefore require the user to
re-enter her profile and redefine her connections when
registering for each service [1]. Also content shared in one
SNS is not available to users of other SNS.

Web 2.0 is a widely-used term characterizing the modern
web made popular by Tim O' Reilly. Web 2.0 is the network
as platform, spanning all connected devices [2]. Web 2.0
applications consume data and services from other
applications and enable the reuse and remixing of their own
data and services through public Application Programming
Interfaces (APIs). Experienced users and programmers use
those APIs for creating new integrated web applications,
popular known as mashups [3] that combine different data
sources and APIs into an integrated end user experience.

Most SNS participate to the Web 2.0 ecosystem by
providing their own open APIs. Those APIs provide a first
step towards bringing down the walls between SNS.
Nevertheless, every SNS use its own terms for defining
concepts and representing resources, while it interconnects
the resources it provides in its own custom way. Thus
common concepts, resources and functionalities are
described and provided in different ways in each SNS API.

The Social Semantic Web is the vision of a Web where
all of the different collaborative systems and SNS, are
connected together through the addition of semantics,
allowing people to traverse across these different types of
systems, reusing and porting their data between systems as
required [1]. Social Semantic Web uses Semantic Web
technologies in order to describe in an interoperable way
users' profiles, social connections and content creation,
sharing and tagging accross different SNS and Sites in the
Web.

Ontologies have become the means of choice for
knowledge representation in recent years as they provide
common format and understanding on domain concepts,
while being machine processable [4]. Hendler [5] supports
that the ontology languages of the Semantic Web can lead
directly to more powerful agent-based approaches.
Furthermore, ontologies are used for representing and
sharing knowledge about structural and behavioral properties
of software [6], for building context-aware and pervasive
applications [7], and for achieving context-aware web
service discovery and automatic service composition in
Service Oriented Software (SOA) [8][9].

Web 2.0 APIs, SOA technologies and Social Semantic
Web approaches provide the basic means for bridging the
gap between today’s SNS and for unifying users' data, social
networks and interactions scattered across various SNS.
However, today’s SNS APIs lack semantic representations,
while existing Semantic Web Ontologies and Vocabularies
do not provide links with the API resources and methods
used for actually accessing and manipulating users, social
networks and content within SNS. Thus, Social Semantic
Web approaches, SOA service discovery and service
composition techniques cannot be directly applied on them.
Moreover, combining multiple SNS APIs for building
Mashups require for developers to search, read and combine

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

information from miscellaneous documentation pages
scattered across the web. Using Ontologies for describing
those APIs can help addressing those shortcomings by
providing common, machine processable representations
suitable for both sharing knowledge between developers and
achieving automatic service discovery and service
composition in SNS Mashups.

In this work, we study the API provided by Google+, one
of the most popular and most recent SNS and we propose an
ontology based representation of its structural and functional
characteristics. Our ontology is compatible with the
technologies of the Semantic Web and aims to be useful for
sharing knowledge about the Google+ API between
developers of Web 2.0 Mashups and as part of future inter-
operable ontology based social networking software.

The paper is organized as follows. Section 2 briefly
reviews related work in the areas of Social Semantic Web,
Web 2.0 Mashups, ontology representation of software
properties, and Service Oriented Architectures (SOA).
Section 3 presents the proposed ontology-based
representation of Google+ API. Section 4 discusses the
representation and visualization of the ontology, while
Section 5 presents test queries run on the proposed ontology.
Section 6 presents conclusions and suggestions for future
work.

II. RELATED WORK

Berslin and Decker [10] and Berslin et al. [1] propose the
use of Semantic Web mechanisms in order to bridge the
isolation and fragmentation of todays SNS. Public
vocabularies and ontologies can be used to give meaning to
Social Networks and interconnect social websites. The
FOAF ontology [11] provides a formal, machine readable
representation of user profiles and friendship networks. The
SIOC Core Ontology provides the main concepts and
properties required to describe information from online
communities (e.g., message boards, wikis, weblogs, etc.) on
the Semantic Web [12]. The SIOC and FOAF ontologies are
used in combination with metadata vocabularies like Dublin
Core [13] and SKOS [14] for describing user-generated
content on the Social Web. Zhou and Wu in [15] propose an
ontology representing SNSs based on FOAF in order to
resolve the problem of social data inconsistency and to
achieve interoperability among multiple social network
services. Their ontology defines some of the basic attributes
of a generic SNS API, such as operations, arguments and
responses, combined with some user profile and contact
attributes borrowed by FOAF ontology, but it does not
provide any structural description of the resources that can
be accessed through it.

While the above approaches describe generic concepts
about people, content and SNS, they do not describe the
functional and structural aspects of specific SNS APIs
necessary for building ontology based Mashups. Specialized
ontology-based representations of the APIs of existing SNS
could be used in combination with the above ontologies and
vocabularies in order to bridge abstract concepts with
specific resources and actions provided by each API.

Hartmann et al. [16], Zang et al. [3], and Wong and Hong
[17] investigate how users with programming skills and
programmers build Mashups that make use of public APIs
provided by popular web 2.0 services. Most of those users
are self-taught and depend on the documentation of the API
they want to use. Some of the most common problems
encountered when creating Mashups is the complexity of
communicating data from one server to another and the lack
of proper tutorials and examples in the documentation [3].

Dietrich and Elgar [6] propose that knowledge about
structural and behavioural properties of software can be
shared across the software engineering community in the
form of design patterns expressed in the web ontology
language (OWL). The inherent advantage of their approach
is that it yields descriptions that are machine processable, but
also suitable for a community to share knowledge taking
advantage of the decentralized infrastructure of the Internet
[6]. Ontology-based representations of SNS APIs can bring
the same advantages for the community of Mashup
developers.

Kurkovsky, Strimple and Nuzzi in [18] discuss the
possibility of convergence of Web 2.0 and SOA, while Xiao
et al [8][9] propose the use of ontologies for context-aware
web service discovery and automatic service composition.
The availability of ontology-based representations of SNS
APIs can also help to build software able to automatically
compose services that integrate data and functionality from
SNS.

Our work takes into consideration the above works by
providing an ontology-based representation of Google+ API,
compatible with Semantic Web mechanisms and ontology
based service discovery and composition approaches that can
be used for knowledge sharing and as part of ontology-based
Mashups that integrate Google+ functionality and data.

III. AN ONTOLOGY BASED REPRESENTATION OF THE

GOOGLE+ API

Google+ is an SNS operated by Google Inc. The service
was launched on June 28, 2011in an invite-only testing phase
and went public on September 20, 2011. Google+ integrates
longer existent Google social services such as Google
Profiles and Google Buz, and introduces new features
identified as Circles for organizing users' connections into
custom groups and Hangouts for group video chat [19].
Google+ became popular form the very first days of its
testing phase and in Octomber 2011 reached 40 million users
[19].

On September 15, 2011 Google released its first open
API for Google+ [20]. Google+ API follows a RESTful API
design, meaning that applications use standard HTTP
methods to retrieve and manipulate Google+ resources. The
API is currently read only, thus it provides only methods for
retrieving and searching resources through the HTTP GET
method. The API can be used free of charge, with
applications being limited to a courtesy usage quota.
Developers can request a higher limit for their applications
for a fee. Many API calls require that the user of the
application is granted permission to access their data. Google
uses the OAuth 2.0 [21] protocol to allow authorized

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

applications to access user data. Resources in the Google+
API are represented using JSON [22] data formats. It also
supports pagination and partial responses for sending only
requested fields instead of the full representation of a
resource. The API currently provides read only access to
three main types of resources named “Persons”, “Activities”
and “Comments”. Person resources represent Google+ API
users, Activities resources stand for content shared by users
and Comments resources are content posted as a replies to
Activities. Google also provides free client libraries for
various programming languages including Python, PHP,
Ruby, Javascript and Java.

In order to describe the structural and be properties of
Google+ API in a way that can be shared among Software
Developers and automatically interpreted by software
components, we have introduced an ontology based
representation of its main characteristics, resources and
actions. For designing our ontology we followed the steps
described by Noy and MacGuinness in [23]:

A. Specification of the domain and the purpose of the

ontology

The domain of the ontology is the Google+ API and
more specifically its structural and functional properties.
That is, the data interchange and auhentication methods it
uses, the types of entities that can be accessed through it and
their attributes, and the actions that can be performed
through it on these entities. The purpose of the ontology is
dual: On the one hand the ontology is playing the role of a
shareable and browsable knowledge base for researchers and
programmers that want to develop applications and Mashups
that integrate Google+ data and functionality, while on the
other hand, because of its machine interpretable format, it
may be used for building inter-operable ontology based
social networking software. Such software will be
programmed in a higher level of abstraction and use
automatic reasoning on ontologies for providing integration
with Google+.

B. Enumeration of important terms in the ontology

For enumerating the important terms in the ontology we
studied the Google+ API documentation available online
[24]. Through the documentation pages we identified
references to key terms such as “Authorization Protocol”,
“Value Type”, and “Parameter”. Other terms like “Action
Type”, “Field” and “Resource Type” where produced
through generalization of the descriptions provided by the
documentation.

C. Considering reusing existing ontologies

The FOAF ontology describes user profiles and
friendship networks, while the SIOC Core Ontology
provides the main concepts and properties required to
describe information from online communities. Both
describe concepts relative to SNS at a high level of
abstraction. For describing Google+ API, we needed lower
level concepts such us urls, resources and methods that are
not provided by those ontologies. The ontology proposed by
Zhou and Wu in [15] defines some of the basic attributes of

a generic SNS API, such as operations, arguments and
responses, without describing them further or defining
relations between them and the resources accessed through
them. Thus, there was no important gain in reusing concepts
from these ontologies for building our ontology. However,
we would like to connect our ontology with ontologies like
those in the future.

D. Specification of the classes of the ontology and class

hierarchy

The classes of an ontology describe the main concepts of
its domain. Since the domain of our ontology is the Google+
API, its classes will represent the concepts that are necessary
for describing its structural and functional properties. Based
on the documentation of the API we defined the following
classes: API (an API), APIType (an API type), DataFormat
(a data interchange format), AuthorizationProtocol (an
authorization protocol used to access the API),
ResourceType (a resource type provided by the API), Field
(a field of a resource; fields represent attributes of a
resource), Action (an action that can be performed to
Resource), ActionType (an action type), Parameter (a
parameter of an action), ValueType (the type of the value
contained in a field or a parameter) and DataStructure (the
type of the data structure contained in a field or a parameter).

The domain of the ontology is found to be flat in terms of
generalization. The concepts we used for describing the API
are considered to belong all at the same level of generality.
Thus the classes of the ontology are disjoint with each other
and no subclasses where defined.

E. Specification of the properties of the classes and

property value types

The properties of a class represent the characteristics of
the corresponding concept. The API is described in terms of
its type, the format in which it exchanges data, the
authorization protocol it supports and the resource types it
provides. It has a name property, a base url used to build http
request urls, and a documentation url where developers can
access the official documentation of the API. The API
provides some types of Resources. A Resource type has a
name and may have a specific documentation url. A
Resource type consists of Fields and can provide Actions. A
Field is characterized by the type of its value (e.g. String,
Integer, or Resource) and the type of its data structure (a
single value or a structure like a list). An Action can have
required or optional parameters and be performed by an
HTTP/1.1 GET, PUT, POST or DELETE method. The
Action also has a url mask used to build the http request url,
and may require authentication using a token that has been
granted to the caller application. Finally, a Parameter has a
name, and it (the parameter) may be required or not.

Figure 1 depicts the classes and object properties of the
Google+ API ontology. While analyzing the Google+ API
we found that in some cases the Field of a Resource Type
provides a reference to another Resource Type. This type of
connection between resource types through their fields is not
clearly presented in the API documentation, and a developer
has to study the detailed documentation of the responses of

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

various actions in order to detect it. We describe this type of
connection in our ontology with the connectsWith object
property of Field Class. There are also some common
optional parameters that can be applied to any action. We
used the hasCommonParameter object property connecting
API and Parameter classes to describe this relation.

Figure 1. The classes and object properties of the ontology. An oval

represents a class and an arrow stands for an object property.

F. Specification of the value types and restrictions of the

properties

We defined the value types and restrictions of the
properties of the ontology by analyzing the classes specified
at the previous step. For example, the type property of the
API class takes exactly one value that has to be instance of
the APIType class, while the connectsWith property of the
Field class can have at most one value of the type
ResourceType. Figure 2 lists the properties and their value
types for the API and ResourceType classes.

Figure 2. Properties and value types of API and ResourceType classes.

G. Creation of instances

We defined the Instances of the Ontology based on the
documentation of the API. We firstly created an instance of
the API class representing the Google+ API. Since Google+
API is a Restful API, we created the RestfullAPI instance of
the APIType class. The API uses the JSON data structure, so
we created a DataFormat instance for it. The API also uses
the OAuth authentication protocol for granting access to
applications, so OAuth is an instance of the
AuthorizationProtocol Class. Google+ API is currently read
only, so all its actions are of ActionType GET, corresponding
to the GET HTTP/1.1 method.

Based on our study of the parameters and return values of
the Actions provided by the API, we identified 5 instances of
the ValueType class: String, UnsignedInteger, Boolean,
DateTime and ResourceType.

Two instances of the DataStructure class where also
created: SingleValue and List.

The API explicitly specifies three main resource types
(People, Activities and Communities), but with a more
thorough study we identified a much larger number of
resource types. The API does not currently provide actions
for directly accessing all those resource types, but they can
be indirectly accessed through the actions provided by the
main three resource types. In our ontology we defined all the
identified resource types as instances of ResourceType Class.
Thus we created 25 instances of the ResourceType class:
Access (identifies who has access to see an activity),
AccessItem (an Access entry), Activity (a note that a user
posts to her stream), ActivityFeed (list all of the activities in
the specified collection for a particular user), Actor (the
person who performes an activity), Attachment (the media
objects attached to this activity), CommentObject (the object
of a comment), Circle (a Google+ Circle), Comment (a
comment is a reply to an activity), CommentFeed (list of all
comments for an activity), Email (an email adderess for a
person), Embed (if an attachment is a video, the embeddable
link), Name (an object representation of the individual
components of a person's name), Object (the object of an
activity), Organization (an organization with which a person
is associated), PeopleFeed (a list of all public profiles),
Person (a person as represented in the Google+ API), Place
(a place where a person has lived), Plusoners (people who
+1'd an activity), PreviewImage (the preview image for
photos or videos), ProfileImage (the representation of the
person's profile photo), Provider (the service provider that
initially published an activity), Replies (comments in reply to
an activity), Resharers (people who reshared an activity) and
Url (a URL for a person).

Finally, we created an instance of Field class for every
property of every ResourceType, an instance of Action class
for every action presented in the documentation of the API,
and an instance of the Parameter class for every action
parameter.

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

IV. REPRESENTATION AND VISUALIZATION OF THE

ONTOLOGY

For the representation of the ontology we used the
RDF/XML exchange syntax for the OWL ontology
language. We used VIM text editor for editing the XML
expressions of the classes and the properties and the
specialized ontology editing software Protégé for checking
the ontology, creating instances, and producing
visualizations. Figure 3 is a visualization depicting the
connections detected between the main resource types in the
ontology. From this visualization we observe for example
that a resource of type Person can be the Actor of an Activity
or a Comment, or a member of a feed of people that
Reshared or “PlusOned” (a term that is used by Google+ for
evaluating other user's activities) the Object of an Activity.

Figure 3. Connections between the main resource types in the ontology.

Figure 4 depicts all the fields of the Object resource type
and their types.

Figure 4. Fields of the Object resource type and their value types.

V. TEST QUERIES

In order to test the proposed ontology we run test queries
regarding the completeness and correctness of the resulting
ontology and validated the results. We queried for all class
instances and their properties and cross-checked the returned
results with the API documentation pages. We also made
sure that all the identified instances were returned. Figure 5
depicts the query for getting the name, description and
documentation url for all instances of ResourceType class.

We also the run two sets of usage test queries and
verified the returned results. For the first set of queries, we
tried to extract information useful for developers that wish to

use the API for building Mashups. Such queries are: (1)
What authentication protocol is supported by Google+ API?
(2) What is the API's documentation url? (3) What actions
and what parameters can be used for directly accessing a
Person resource? (4) What resources can be directly accessed
through the API? (5) What are the resource types that
provide a second rank reference to the Person resource type
(i.e. Have a field that connects to a resource type that has a
field that connects to Person)?

Figure 5. The SPARQL Query for getting the name, description and

documentation URL for all ResourceType instances returns correct info for

all the 25 identified resource types.

For the second set of queries we assumed that the
ontology is used in ontology-based software for
automatically invoking API's methods. Such software needs
to extract low-level information about the actual method
calls needed for performing an action and the structure of the
data needed to be exchanged. Some example queries of this
type are the following: (1) What is the APIs base url? (2)
What is the APIs data format? (3) What is the urlMask of an
Action? (4) What fields are contained in a Person resource
type and what value type and data structure is each of them?

Moreover if such software is programmed in a higher
level of abstraction, it may execute complex queries on the
ontology in order to combine data form multiple API
resources or to translate generic actions into sequences of
API calls. For example: (1) What resource types that can be
directly accessed through a GET Action provide a reference
to an Email resource type? (2) What sequence of Actions can
be called in order to get the image (PersonImage) of the
Actor of an Activity?

We expressed the above queries in the SPARQL
ontology querying language and executed using Protege.
Figure 6 depicts a usage test query and the returned results.

Figure 6. SPARQL query for getting all the resource types that provide

second rank access to Person resource type.

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

VI. CONCLUSIONS AND FUTURE WORK

Ontology-based representations of SNS APIs can help
developers comprehend the structure and functionalities of
SNS and their APIs and share this knowledge. Moreover
they can be used to link those APIs with public Social
Semantic Web ontologies and vocabularies and for enabling
automatic ontology-based service composition.

We studied the API provided by Google for its popular
Google+ SNS and created an ontology based representation
of its structural and functional properties. For designing the
ontology we followed the methodology proposed by Noy
and MacGuinness in [23]: First we specified the domain and
the purpose of the ontology, then specified the classes of the
ontology, the hierarchy, the properties and finally we created
the instances. We tested the ontology with SPARQL queries.
The proposed ontology reveals the existence of important
resources and connections between them that are not clearly
presented in the official documentation. We identified a total
of 25 resource types in Google+ API connecting with each
other in various ways. We have made the ontology publicly
accessible in OWL format at http://goo.gl/Oefl2.

In this work, we focused on representation of the basic
structural and functional features of Google+ API such as the
resources it provides, the way they connect with each other
and the actions they provide. We would like to extend the
ontology with descriptions of the authentication process, the
manipulation of paging and partial queries and bindings of
the actions to client libraries method calls, in order to support
automatic invocation of the API calls from ontology driven
applications. In the near future we would also like to connect
the ontology with ontologies and vocabularies like FOAF
and SIOC that describe more abstract concepts about users,
social networks and content. Finally, we would like to create
ontology based representations for the APIs provided by
other popular SNS such as Facebook and Twitter and to use
them for building ontology-based mashups that
automatically combine data and functionalities from multiple
SNS.

REFERENCES

[1] J.G. Breslin, A. Passant, and S. Decker , “The Social
Semantic Web”, Springer-Verlang Berlin Heidelberg, 2009

[2] Tim O'Reilly, “What Is Web 2.0: Design Patterns and
Business Models for the Next Generation of Software”,
Published in: International Journal of Digital Economics No.
65, March 2007, pp. 17-37.

[3] N. Zang, M.B. Rosson, and V. Nasser, “Mashups: who?
What? Why?”, In: CHI 2008: CHI 2008 extended abstracts on
Human factors in computing systems, ACM, New York,
2008, pp. 3171-3176.

[4] T. R. Gruber, “Toward Principles for the Design of
Ontologies Used for Knowledge Sharing”, In International
Journal of Human-Computer Studies, Vol 43 Issue 5-6,
Nov./Dec. 1995, pp. 907-928.

[5] J. Hendler, “Agents and the Semantic Web”, In IEEE
Intelligent Systems, Vol. 16 No 2, 2001, pp. 30-37.

[6] J. Dietrich and C. Elgar, “Towards a web of patterns”, In:
Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 5, num. 2, Elsevier, 2011.

[7] B. Guo, D. Zhang, and M. Imai, “Toward a cooperative
programming framework for context-aware applications”, In
Personal and Ubiquitous Computing, Vol 15, Issue 3, March
2011, pp. 221-233.

[8] H. Xiao et al, “An automatic approach for ontology-driven
service composition”, Proc. IEEE International Conference on
Service-Oriented Computing and Applications (SOCA) 2009,
Taipei, Taiwan, 14-15 December 2009, pp 1-8.

[9] H. Xiao et al, “An Approach for Context-Aware Service
Discovery and Recommendation”, Proc., IEEE International
Conference on Web Services (ICWS), 5-10 July 2010, Miami,
FL, 2010, pp. 163 – 170.

[10] J. Berslin and S. Decker, “The Future of Social Networks on
the Internet: The Need for Semantics”, IEEE Internet
Computing, vol. 11, November 2007, pp. 86-90.

[11] The Friend of a Friend (FOAF) project, online at
http://goo.gl/Rdpja, retrieved December 2011.

[12] U. Bojārs and J.G. Breslin (editors), “SIOC Core Ontology
Specification”, W3C Member Submission 12 June 2007,
online at http://goo.gl/8OQV1, 2007, retrieved December
2011.

[13] Dublin Core Metadata Initiative, “Dublin Core Metadata
Element Set”, Version 1.1, online at http://goo.gl/MHLlw,
2010, retrieved December 2011.

[14] A. Miles and S. Bechhofer (editors), “SKOS Simple
Knowledge Organization System Reference”, W3C
Recommendation 18 August 2009, online at
http://goo.gl/ypDOU, 2009, retrieved December 2011.

[15] B. Zhou and C. Wu, “Social networking interoperability
through extended FOAF vocabulary and service”, Proc. 3rd
International Conference on Information Sciences and
Interaction Sciences (ICIS), 23-25 June 2010, Chengdu,
China, 2010, pp. 50 – 55.

[16] B. Hartman, S. Doorley, and S.R. Klemmer, “Hacking,
Mashing, Gluing: Understanding Opportunistic Design”, in
IEEE Pervasive Computing, vol. 7 issue 3, July 2008.

[17] J. Wong, J. and J. Hong, “What do we "mashup" when we
make mashups?”, Proc. WEUSE '08: Proceedings of the 4th
international workshop on End-user software engineering,
2008.

[18] S. Kurkovsky, D. Strimple, and E. Nuzzi, “Convergence of
Web 2.0 and SOA: Taking Advantage of Web Services to
Implement a Multimodal Social Networking System”, proc.
11th IEEE International Conference on Computational
Science and Engineering - Workshops, 2008, pp. 227-232.

[19] Wikipedia, Google+, online at http://goo.gl/N5rou, retrieved
December 2011.

[20] C. Chabot, “Getting Started on the Google+ API”, The
Google+ Platform Blog, online at http://goo.gl/EPfiM,
September 15, 2011, retrieved December 2011.

[21] E. Hammer-Lahav (editor), “The OAuth 1.0 Protocol, Internet
Engineering Task Force (IETF)”, online at
http://goo.gl/eN6VT, April 2010, retrieved December 2011.

[22] D. Crockford, “The Media Type for JavaScript Object
Notation (JSON)”, online at http://goo.gl/7oDGo, July 2006,
retrieved December 2011.

[23] N. F. Noy and D. L. McGuinness, “Ontology development
101: a guide to creating your first ontology”. Technical
Report KSL-01-05 and Stanford Medical Informatics
Technical Report SMI-2001-0880. Stanford Knowledge
Systems Laboratory. Available at http://goo.gl/kr6n4, 2001,
retrieved December 2011.

[24] Google, Inc., “Google+ API”, online at http://goo.gl/q2jai,
retrieved December 2011.

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-196-0

MOPAS 2012 : The Third International Conference on Models and Ontology-based Design of Protocols, Architectures and Services

