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Abstract - This paper describes the development and 
implementation of the SAFESENS (Sensor Technologies for 
Enhanced Safety and Security of Buildings and its Occupants) 
location tracking and first responder monitoring demonstrator. 
An international research collaboration has developed a state-
of-the-art wireless indoor location tracking system for first 
responders, focused initially on fire fighter monitoring. 
Integrating multiple gas sensors and presence detection 
technologies with building safety sensors and personal monitors 
has resulted in more accurate and reliable fire and occupancy 
detection information. This is invaluable to firefighters in 
carrying out their duties in hostile environments. This 
demonstration system is capable of tracking occupancy levels in 
an indoor environment as well as the specific location of fire 
fighters within those buildings, using a multi-sensor hybrid 
tracking system. This ultra-wideband indoor tracking system is 
one of the first of its’ kind to provide indoor localization 
capability to sub meter accuracies with combined Bluetooth low 
energy capability for low power communications and additional 
inertial, temperature and pressure sensors. This facilitates 
increased precision in accuracy detection through data fusion, 
as well as the capability to communicate directly with 
smartphones and the cloud, without the need for additional 
gateway support. Glove based, wearable technology has been 
developed to monitor the vital signs of the first responder and 
provide this data in real time. The helmet mounted, wearable 
technology will also incorporate novel electrochemical sensors 
which have been developed to be able to monitor the presence of 
dangerous gases in the vicinity of the firefighter and again to 
provide this information in real time to the fire fighter 
controller. A SAFESENS demonstrator is currently deployed in 
Tyndall and is providing real time occupancy levels of the 
different areas in the building, as well as the capability to track 
the location of the first responders, their health and the presence 
of explosive gases in their vicinity. This paper describes the 
system building blocks and results obtained from the first 
responder tracking system demonstrator depicted. 
 

Keywords - Gas Sensors; Body Area Networks; Activity 
Tracking; Vital Signs Monitoring; Occupancy Detection. 

I.  INTRODUCTION 
The SAFESENS indoor first responder localization and 

activity monitoring system [1], is designed based on the latest 
available sensor technologies. It incorporates several solutions 
to an emergency situation including people counting for an 
efficient rescue operation and first responder location tracking 
[2]. To meet the most demanding application needs, we have 
designed a sensor board along with the wireless network 
infrastructure which is capable of delivering the next 
generation of safety devices. The objectives of the Tyndall 
National Institute (TNI) in this project, is to develop a 
wearable [3] indoor localization and activity monitoring 
system for first responders during emergency situations. In 
parallel, novel explosive or flammable gas sensor 
technologies and physiological health monitoring systems are 
being integrated into the fire fighters’ apparel to monitor their 
health and well-being as they are tracked through the system 
as in Figure 1.  

This publication describes the indoor localization platform 
of the SAFESENS project, the vital signs monitoring and 
flammable gas sensing and presents results from the 
SAFESENS deployment. Section II of this publication 
discusses the state of the art in first responder systems, Section 
III presents the system architecture for the SAFESENS 
system, Section IV presents the location tracking system, 
Section V presents the Vital Signs monitoring system, Section 
VI describes the explosive/flammable gas sensing system, 
Section VII describes the occupancy monitoring system, and 
Section VIII describes the test results obtained from each of 
these building blocks. Section IX concludes the work. 

 

 
Figure 1.  Deployment Area – Tyndall National Institute UCC. 
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II. STATE OF THE ART IN FIRST RESPONDER SYSTEMS 
At present, several projects have been reported on personal 

safety monitors for first responders. These are mainly directed 
towards vital signs monitoring and indoor localization. Even 
though there are not many systems available on the market 
yet, several research projects have resulted in demonstrators 
in the form of wearable systems. 

An example of a vital signs monitoring system is the 
Equivital EQ02, a body worn system that can track the vital 
signs via ECG (electrocardiography), respiratory rate, skin 
temperature, accelerometer and body position [4]. Also, other 
projects are focused on vital sign monitoring. For example, the 
Phaser project (Phaser: Physiological Health Assessment 
System for Emergency Responders). In this project, the pulse, 
body temperature and blood pressure are measured [5]. 

An example of a truly wearable system that was developed 
is the WASP (Wearable Advanced Sensor Platform). This 
platform was developed at Worcester Polytechnic Institute 
and industrialized by Globe Manufacturing Company. It has 
the form of a T-shirt, in which vital sign sensors are positioned 
around the chest. The system integrates a Zephyr BioHarness 
and a Pebble Smart Watch for physiological monitoring, 
tracking and communications [7]. 

Another aspect that is important for personal safety 
monitors are gas concentrations of the environment. There are 
already several portable (hand-held) systems available on the 
market that can fulfil this task. These devices are, in general, 
small devices with a display at which the measured 
concentrations can be read. Mostly, these devices do not 
incorporate wireless communication. Examples of portable 
gas sensors are the devices manufactured by Dräger [8], Scott 
Safety [9], ION Science [10], RKI instruments [11] and RAE 
systems [12]. In general, devices are available containing 
sensors for one up to four gases integrated in a single housing. 
These sensors make use of various sensing methods, for 
example: electrochemical cells, photo-ionization detection, 
metal oxides et cetera. These types of sensors are available for 
many different gases, including CO, O2, H2S, NH3, Cl2, PH3, 
SO2, and volatile organic compounds. 

Tracking rescue personnel within buildings in emergency 
situations and providing reliable communications among 
them, is a problem which has attracted considerable attention 
in recent years. A number of solutions (products/prototypes) 
have already been proposed in literature or on the market. 
Examples of such systems are: 

Precision Personnel Locator (PPL) of the Worcester 
Polytechnic Institute (Locator and Health Status Display), 
based on inertial sensors and OFDM. Position/Location 
Tracking and Communications Software Defined Radio 
(POSCOMM) [13] from NAVSYS, based on GPS and TOA 
pseudolite observations implemented with SDR technology. 
NAViSEER [14] from SEER Technology, based on inertial 
sensors, GPS and cellular/RF communication. Harris GR-100 
[15] from Harris Corporation, based on inertial sensors, GPS 
and on-scene tactical radio networks for communication. 
Personnel Navigation, Locating and Tracking [16] from 
ENSCO, based on inertial sensors, GPS, compass, and 2.4 
GHz RF Ranging. TRX Sentrix Systems [17], based on 

inertial sensors, GPS, compass, TOA RF Ranging, barometer, 
and light sensor. GLANSER [18] from Honeywell, TRX 
Systems, and Argon ST, based on inertial sensors, GPS, 
compass, 900 MHz Ranging, barometer, Doppler Radar + 
Map correction. FLARE [19] from Q-Track, based on 
customized active RFID technology. Q-Track’s FLARE 
succeeded in a realistic trial held at the 5th Workshop on 
Precision Indoor Personnel Location and Tracking for 
Emergency Responders at Worcester Polytechnic Institute, 
but has not been released as an ongoing product The 
EUROPCOM [20] project involving Thales UK, Delft 
University of Technology, Graz University of Technology, 
IMST GmbH, based on UWB and GPS.  

III. SYSTEM ARCHITECTURE 
In order to ensure that real world problems were being 

addressed within the project, engagement with end users was 
undertaken from an early stage of the SAFESENS project. So 
as to collect feedback from the stakeholder and end-user 
community, an “End-user” workshop was organized in 
conjunction with the Security Essen Fair in Essen, September 
2014. A “First responder workshop” was organized with the 
fire brigade of Murcia and its regions in February 2015, and 
an additional End-user questionnaire was launched on 
SurveyMonkey and feedback collected from various 
stakeholders. Based on the feedback from these stakeholders, 
an appropriate system architecture and demonstrator was 
defined incorporating the requirements around sensors to be 
developed and integrated in the first responder body area 
network. This also captured issues such as the preferred 
location of the sensors – (on the strap of the air tank, as 
requested by fire fighters), as well as the appropriate 
communications and localization mechanisms and 
infrastructure definition.  

As part of the user need exploration, it was identified that 
presence data and occupancy levels could be very valuable to 
first responders so they can plan their rescue team and 
evacuation plans. This could result in reduced loss of lives (in 
both rescuer and rescued). The Murcia firefighters are 
currently using a variety of communications systems: A 
microphone is integrated into a mask and is connected through 
a wire to the mask with a push to talk system - TETRA [21].  

 
Figure 2.  SAFESENS Demonstrator System Architecture. 
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The SAFESENS system architecture developed to meet 
the user requirements demonstrator is shown in Figure 2. 
There are 8 separate system building blocks comprising the 
SAFESENS system: the server, mobile gateway (fire fighter’s 
smartphone), Ultra-wide band (UWB) localization [22] 
Access Points, Raspberry Pi, occupancy detection camera, 
firefighter tracking node, the Vital Signs monitoring system 
and the explosive gas detector. With the implemented sensor 
platform, we are able to collect real time data for research and 
analysis.  

The smartphone carried by the firefighter acts as the 
integration system, harvesting the sensory data sets from the 
firefighters’ apparel and sending it to the server for 
processing, running python based analytic/localization 
engines and to facilitate visualisation of the data streams. 

IV. LOCATION AND ACTIVITY TRACKING  
A significant number of firefighters are injured every year 

in the line of duty [23]. Tracking firefighters while deployed 
in dangerous environments is critical to mitigate risk to the 
personnel. 

A. Introduction to First Responder Activity Monitoring 
In large buildings, there is often a requirement to enter and 

deal with fires from multiple directions in order to prevent the 
fire from spreading. Line of sight is often obscured with 
smoke and debris [24] and there is also the possibility that 
parts of the structure may be unstable and subject to collapse. 
Information relating to the position and activity status of the 
firefighter is therefore critical in helping the subject to 
navigate the environment, and to enable safe extraction in the 
Non Line of Sight (NLOS) case [25]. This information is also 
valuable in search and rescue situations, to enable more 
optimal and efficient use of personnel on the ground. 

B. SAFESENS Localization Technologies  
The SAFESENS project has developed a Personnel Safety 

Monitor, the purpose of which is to become a tool for first 
responders and their commanders to help with indoor 
navigation in obscured conditions in a fire situation, and to 
give an assessment of the safety of the first responder. For 
indoor localization, a system is required that is independent of 
the existing building infrastructure, since this infrastructure 
may become unreliable or damaged in a fire situation. 
SAFESENS has integrated into the platform a hybrid inertial, 
positional and navigation module illustrated in Figure 3. 

 

 
Figure 3.  Hybrid Inertial, Positional and Navigation Module 

The modules’ onboard sensors are capable of providing 
information to enable activity to be classified and position to 
be determined in deployment scenarios where there is little 
supporting existing wireless infrastructure in place. 

The hybrid inertial, positional and navigation module is 
designed to be worn by each first responder attached to the 
straps of their SCBA (Self-Contained Breathing Apparatus). 
The hardware comprises of inertial and magnetic sensors 
(accelerometer, gyro, and magnetometer), a barometer, a 
temperature and humidity sensor, an UWB ranging 
transceiver and a Bluetooth Low-Energy (BLE ) transceiver. 
The module communicates sensor data to a smartphone 
carried by the firefighter employing BLE, which in turn 
transmits data to a central server for processing. Ranging data 
is given by the UWB transceiver, which measures the range 
between the worn module and the nearby anchors to track the 
firefighter [26]. Anchors can be stationary units deployed as 
part of the exercise or alternatively, other modules worn by 
accompanying firefighters. The firefighter’s position and 
current activity is calculated on the central server as illustrated 
in the system architecture diagram in Figure 2. 

V. VITAL SIGNS MONITORING 
The integration of vital physiological measurements could 

help commanders to better predict the firefighter’s or other 
first responder’s health condition while performing critical 
tasks or in harsh environments. 

A. SAFESENS Vital Signs Monitoring 
An important vital parameter is the heart rate which can be 

calculated and monitored from either Electrocardiography 
(ECG) or Photo Plethysmography (PPG) signals. Fabric-
based, dry electrodes have been intensively investigated for 
wearable ECG measurements but still need complex 
algorithms to eliminate motion [27]. In the SAFESENS 
project, we are focusing on reflective PPG measurements 
based on optical sensors which are more precise in mobile 
conditions when the sensor is attached to the skin in an 
appropriate way [28]. The skin volume changes due to blood 
pressure variations and thus correlates to the heart rate. An 
algorithm first removes the impact of ambient light leakage 
and motion artefacts, and determines the pulse period. By 
measuring the PPG at multiple wavelengths, it is possible to 
detect changes in blood composition. For instance, the change 
from hæmoglobin (Hb) to oxygenated hæmoglobin (HbO2) 
can be detected by a relative change in red and infrared 
absorption [29]. 

B. Integrating Electronics into a Firefighter Glove 
The SAFESENS firefighter glove demonstrator consists of 

a selected multi-chip package featuring 3 emitters (green, red, 
infrared) and one detector in a small package (4.7mm x 
2.5mm x 0.9mm), enabling the measurement of the heart rate 
and pulse oximetry. The chip is integrated into an EN 
659:2003 + A1:2008 certified, professional leather glove for 
the fire brigade and features the highest industrial cut 
resistance and fire blocking levels. Developed in the form 
factor of a sensorised ring, the sensor position is designed to 
be placed in an unobtrusive body area: the base of the left 
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hands’ index finger (assuming right-handed fireman), 
allowing the user to touch objects without feeling the 
electronics. In order to contact the sensor and skin, a small 
hole was pierced into the glove. The controller unit is placed 
in a little pocket at the edge of the cuff at a distance of 250mm 
to the sensor.  

Electronic systems, when integrated into clothing, 
experience dynamic tensile loads in three directions. 
Conventional rigid substrates like FR4 cannot meet this 
requirement. Even flexible substrates made of PI, PET or PEN 
are not suitable because they are designed for bending and 
folding conductor tracks around only a single axis. Therefore, 
the development of new materials and technologies for the 
realization of stretchable electronic systems are of high 
interest and research is increasing for about a decade. It is 
expected that those polymer- or textile-based technologies 
will primarily find use in medical electronics, robotics and 
wearables in future. 

For the integration of the optical chip into the glove, we 
are using a stretchable substrate made of thermoplastic 
polyurethane (TPU). The used elastomer film with a thickness 
of 100µm can be stretched up to 500% and has a melting 
temperature of 165°C. On the TPU carrier material, a 17µm 
copper (Cu) foil is laminated. It has been suggested by M. 
Gonzales et al. to achieve stretchability into Cu material 
simply by an undulating design of the Cu tracks. In the FEM 
simulation, the best mechanical performance was predicted 
for a horseshoe like meandering structure [30]. Such boards 
can be stretched (once) up to 300% before fracture of the Cu 
lines occurs. For repeated stretch cycles, elongations with a 
few percent can be conducted several ten thousands of times, 
before fatigue fractures occur in the copper. Electronic 
components are assembled after local application of a solder 
mask and surface finish for solderability. The electronic 
interconnection is established using a low temperature solder 
alloy (SnBi, Tm=142 °C). For protection and enhanced 
system robustness, all components are subsequently 
encapsulated within a polyurethane capping [31].  

Because the electronic components and copper tracks are 
embedded into the thermoplastic matrix, the system can be 
easily integrated onto textiles by a simple lamination process 
[32]. For the integration of the SAFESENS heart rate monitor, 
the system was laminated onto a fire-retardant nonwoven and 
finally sewn into the inner layer of the firefighter glove.  

 

 
Figure 4.  SAFESENS Firefighter Glove Demonstrator: X-ray images of 

the Textile-integrated Stretchable Electronic System 

C. Signal Acquisition and Processing 
The sensor front-end is a single integrated circuit 

containing all necessary analog circuits to drive the LEDs and 
to determine the photocurrent from the photodiode, and a full-
featured ARM M0+ microcontroller core to run the algorithms 
for the heart rate and the blood oxygenation calculations. A 
second IC contains the wireless transceiver to connect the 
sensor to a Personal Area Network. In the demonstrator, the 
sensor communicates over a BLE link, with a protocol fully 
compatible with the indoor localization module. The PPG 
sensor can either transmit continuous measurements or act on 
user-selectable alarm thresholds. 

VI. FLAMMABLE GAS SENSING 
In the process of a burning building, a flashover is a much 

feared stage. A flashover occurs at the moment when 
temperatures are so high that any flammable materials and 
gases present will spontaneously combust. 

A. Introduction to Flammable Gas Detection 
. Flammable gases pose a particular risk during flashovers. 

Before a flashover, the high temperature results in partial 
decomposition and release of flammable gases. When 
sufficient oxygen is present, or is introduced due to opening 
or breaking of doors and windows, spontaneous combustion 
will occur that will accelerate the propagation of fire and pose 
a severe safety threat to the fire fighters. To be aware of the 
flashover risks, it is advantageous to be able to detect the 
presence of flammable gases. 

B. SAFESENS Technology Developed for Gas Detection 
In the SAFESENS project, it is envisioned that the first 

responders bring gas sensors to the scene that are integrated in 
their current equipment. The helmet was chosen as the most 
suitable location for the gas sensor, since it is a rigid structure 
that is in close contact with the surrounding atmosphere. 

Hydrogen (H2) may be detected using a Pd-Ni alloy as a 
thin film deposited onto a silicon wafer substrate, which 
changes its electrical resistance in the presence of H2, which 
can be electrically transduced. 

Methane may be detected using an amperometric 
electrochemical sensor. In this type of electrochemical sensor, 
a chemical reaction takes place that involves electron transfer 
in the chemical reaction pathway. By leading these electrons 
through an external circuit, an accurate current measurement 
can be performed, that is directly related to the amount of gas 
that is reacting. The amount of reacting gas is in its turn 
linearly related to the amount of gas in the surrounding 
atmosphere. In the SAFESENS project, a thin film methane 
sensor was developed that uses an ionic liquid as the 
electrolyte. Previously, it was reported that such sensors may 
be applied to detect ethylene [33], and ammonia [34]. 

The H2 sensor is based on an alloy system described in 
[35]. Instead of using a van der Pauw structure, a Wheatstone 
half-bridge was realized, which gives first order temperature 
compensation. The Pd-Ni film was deposited using a co-
sputter process from pure Pd and Ni sputter targets. Film 
thickness was in the range of 100nm. 
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The methane sensor is based on the ammonia sensor that 
was previously described [34]. In brief, a system of 
interdigitated platinum micro electrodes is made on a silicon 
substrate. The third electrode is a gold electrode that meanders 
between these interdigitated electrode, and serves as a pseudo 
reference electrode. On top of these electrodes, a thin film of 
an ionic liquid is deposited, to obtain an electrochemical cell 
sensitive to methane. The chosen ionic liquid is 
[C4mpy][NTf2], of which it is known that this system results 
in an electrochemical cell that is sensitive to methane [36]. 

VII. OCCUPANCY MONITORING 
Occupancy estimation uses the readings from a sensor 

network to extract more contextual information of the 
building usage. 

A. Introduction to Occupancy Monitoring Systems  
Occupancy sensors can enable the idea of smart buildings 

in different ways by: i) improving the comfort of the 
occupants by controlling lights, temperature, and humidity 
based on occupancy; ii) reducing energy costs by controlling 
lights and HVAC equipment based on occupancy; iii) 
improving the convenience; iv) providing real-time 
occupancy in fire events. It can also offer technical advantages 
in a two-fold way: i) cost-benefit trade-off analysis for the 
selection of sensors and their placement; ii) complementary 
sensor measurements based on models of building usage. 

B. SAFESENS Technologies for Occupancy Detection 
The challenge of real-time occupancy estimation is to 

determine the number of people in different areas of a building 
over time. Under such operational settings, an estimation 
variance, along with a confidence level, should be provided 
within a short delay and fast update rate. 

Due to the high deployment cost and large errors that 
people counting sensors suffer from, measuring occupancy 
throughout a building from sensors alone is not sufficiently 
accurate. Indeed, data collection from sensors is not perfect, 
and it is assumed that each sensor is subject to noise and 
environment clutter. Also, if sparsely deployed, the ability of 
sensors to detect occupancy change is limited by their 
coverage. In this way, occupancy estimation largely depends 
on the existing sensor technologies. 

Occupancy estimation aims to adaptively correct noise 
and lack of observability errors by subdividing the approach 
into two sub-problems [37]: 

i) modelling, investigates how to build a model to utilize 
prior knowledge and to simulate the occupants' movement 
behaviors in the building; 

ii) estimation, defined as the process to obtain the state of 
a system given a model and incomplete observational data. 

In SAFESENS, the modelling follows the spatial topology 
of the floor, as in [38], where each graph node is considered a 
state. It can assume either an occupancy state, related to any 
zone of the building, or a flow state, which reflects the 
uncertainty in how people move from zone to zone. This 
modelling permits to divide the building into non-overlapping 
zones, defined by a hierarchy of different spatial scales, 
namely floor-level, zone-level and room-level.  

However, in our approach, we defined two new graph-
based models, thus having the following ones: i) G-node, 
which only includes the occupancy nodes and consider the 
exits as flow nodes; ii) G-flow, as the previous ones but also 
incorporates a flow node between occupancy nodes that are 
connected, in order to represent their transitions; iii) G-biflow, 
which adds one more flow node for each transition, in this 
way, explicitly representing the probability of flow on both 
directions. G-flow represents the baseline proposed in [38]. 

For the estimation, a Kalman filter (KF) framework is 
adopted. Due to the non-linearity of the underlying data 
(pedestrian behavior) and the adopted linear modelling 
approach, we study the performance of linear and non-linear 
Kalman estimators, such as Ensemble KF (EnKF), bank-of-
filters-based (IMM, MMAE), among others [39]. 

VIII. RESULTS 
The SAFESENS component systems and subsystems 

were evaluated through a series of experiments to evaluate 
their capabilities and validate the data sets being generated. 

A. Data Visualisation on the Smart App 
To validate our system and to do more real life 

experiments, we have installed a demo of the SAFESENS 
localization platform at TNI near the canteen area. Under 
heavy NLOS and with limited available anchor nodes, the 
system can achieve 0.5m accuracy. Figure 5 shows the 
visualization front end for the SAFESENS system. In 
operation, it is envisaged that this user interface would be 
utilized by the control unit manager who would be in a 
position to communicate occupancy estimations dynamically 
to the rescue team.  
 

 
Figure 5.  Occupancy and Firefighter Data Visualisation. 

 

B. Location Tracking and Activity Monitoring 
The positioning and tracking performance of the module 

has been evaluated. An additional calibration step was added 
to account for antenna delay and to improve ranging 
performance. The experiments and results for the calibration 
are discussed below. The experiments comprise of an 
evaluation of the mobile performance employing a Least 
Square Estimation (LSE) algorithm, discussed in the next 
section along with the performance evaluation. 
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i. Ranging Characterisation and Calibration: 
We performed ranging tests with each SAFESENS board 

under the same conditions. These tests were performed on all 
the boards before and after the antenna calibration. 

For the tests, we have used one static tag and one anchor 
(AN) at the time. The distance between the tag/anchor was set 
to 238.5 cm (±0.5 cm). Each AN was connected to a 
Raspberry Pi (RPi), which was itself connected to a server. 
The RPi is used to report the ranging data, which is stored in 
the database on the Tyndall server for processing and analysis. 
The ranging results have been recorded for each board 
individually. 

Table I reports statistical analysis for the same number of 
samples (265 samples) based on the average results between 
ranging data recorded for four boards, before and after the 
antenna calibration. Note that the boards that were not used in 
the two experiments and the faulty boards were discarded for 
the consistency of the experiment and the results comparison. 
The team embarked on a calibration exercise to eliminate 
thermal noise from the antenna interfaces circuitry and to 
calibrate each antenna individually. The experiment was 
carried out again following the same procedure using these 
calibrated systems.  

From these results, we noticed the improvement that was 
brought by the antenna calibration. The ranging errors have 
dropped by 55.81 cm on average, which is quite significant for 
our application. 

 
TABLE I. STATISTICAL RESULTS FOR RANGING CHARACTERISATION 

 AVG Results 
Before the 
Calibration 

AVG Results 
After the 

Calibration 
MAX Ranging 
Distance (cm) 

347.75 259.25 

MIN Ranging 
Distance (cm) 

299 249.75 

AVG Ranging 
Distance (cm) 

311.76 255.95 

STD Ranging 
(cm) 

60.5 2.2185 

MAX Ranging 
Error (cm) 

109.25 16.64 

MIN Ranging 
Error (cm) 

60.5 1.86 

AVG Ranging 
Error (cm) 

73.260 17.45 

 

ii. Localization Algorithm: 
For our localization algorithm, we have considered a real-

case scenario in a 2D plane with 8 calibrated anchors (ANs) 
set at known positions(푥 ,푦 ), with 푖 = 1,2, … ,8 and used one 
mobile node (MN) for the tracking with coordinates	(푥 ,푦 ). 
Using the Time of Arrival (TOA) information, we can 
calculate the estimated distances 푟  at each AN: 

풓풊 = 풄 ∙ 흉풊 = 풅풊 + 풃풊 + 풏풊,                                  

where, 푐  is the speed of light, 	휏̅ 	 is the measured TOA 
information at 푖th AN, 푏  is the Non-line-of-sight (NLOS) bias 
for the 푖th measured distance, 푛  is the noise at the 푖th measured 
distance, and 푑  is the real distance between the 푖th AN and the 
MN This distance is defined as follows:  

풅풊 = (풙풊 − 풙풆)ퟐ + (풚풊−풚풆)ퟐ,                                

The system described by the equations above can be 
solved to find the unknown (푥 ,푦 ) coordinates of the MN, 
based on the LSE method. The LSE is known to be the most 
popular algorithm for positioning computation due to its’ low 
complexity computation [6].   

The LSE is based on the following estimation function: 

 (풙풆,풚풆) = 풂풓품퐦퐢퐧
풙풆,풚풆

{푹(풙풆,풚풆)}  

															= 풂풓품퐦퐢퐧
풙풆,풚풆

∑ (풓풊 − ‖(풙풆,풚풆) − (풙풊,풚풊)‖)ퟐ푵
풊 ퟏ ,                  

where	푅(푥 ,푦 ) is the residual error of 	풓풊	푎푛푑	‖(푥 ,푦 )−
(푥 , 푦 )‖ . This equation has been implemented in our 
localization engine in the server and used for the computation 
of the localization of the MN. 

The formulation for location estimation is given by: 
 

x
y = (푃 푃) 푃 퐵 

where:  
 

x y
x y
⋮ ⋮

x y
= 푃 and    

⎣
⎢
⎢
⎡(푥 + 푦 ) − 푟 + 푟
(푥 + 푦 ) − 푟 + 푟

⋮
(푥 + 푦 ) − 푟 + 푟 ⎦

⎥
⎥
⎤

= 퐵 

 

iii. Performance Evaluation and Discussion: 
To evaluate the performance of our tracking platform, 

practical tests were carried out at the TNI. Results before and 
after calibration are illustrated in Figures 6 and 7, respectively. 
For each experiment, a reference path (shown in the figures 
below in blue) was determined for the mobile subject and 
communicated via markers on the floor. The tag was 
instrumented on the arm of the subject, who subsequently 
simulated the emergency responder walking along the 
reference path. The green path illustrates the calculated 
trajectory of the subject employing the module. The results 
indicate that the tolerances are acceptable for the prescribed 
application. Results for the activity classification machine 
learning algorithms are presented in [40]. 

From the two presented Figures 6 and 7 below, we can say 
that the calibration has also significantly enhanced the ranging 
and thus the positioning/tracking accuracies. 
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Figure 6.  SAFESENS hybrid inertial, positional and navigation module 

mobile tracking performance prior to calibration 

 
Figure 7.  SAFESENS hybrid inertial, positional and navigation module 

mobile tracking performance following calibration 

C. Vital Signs 
The vital signs monitor is implemented as a finger ring 

embedded in the firefighter glove. It can operate in two 
different modes; high-resolution heart-rate, or combined 
heart-rate and blood oxygenation. 

 

 
Figure 8.  Evolution of heart rate over a period of 10 minutes. 

The heart rate does not require multiple wavelengths, and 
thus a more optimal LED firing pattern can be selected to 
either lower the total power consumption or increase the 
sampling rate. Figure 8. shows an example of the heart rate 
captured over a period of ten minutes. 
 

 
Figure 9.  Captured infrared and red PPG signals. 

Estimation of the blood oxygenation requires alternate 
firing of red and IR LEDs, and a more complex algorithm. An 
example of the captured data is shown in Figure 9.  

The PEFAC algorithm [41] was selected for the heart rate 
detection. This method estimates the heart rate from the 
frequency spectrum. By expressing the frequency in the log-
domain, the distance between the fundamental frequency and 
its harmonics doesn't depend on the absolute value of the 
fundamental frequency. By convolving the spectrum with a 
matched filter, the spectra of the harmonics are accumulated 
and noise is rejected. The oxygen saturation (SpO2) is then 
derived from the ratio of ratios R, which is defined by:  

 

푅 =
(퐴퐶/퐷퐶)
(퐴퐶/퐷퐶)  

 
where AC and DC are the peak-to-peak amplitude and the 
baseline of the PPG pulse, respectively. These values are 
found by applying a min/max envelope tracker on the cleaned 
PPG signal. The following relationship between the ratio R 
and the SpO2 is then used: 

 

푆푝푂 =
휀 − 푅(퐼 /퐼 )휀

푅 퐼
퐼 (휀 − 휀 ) + (휀 − 휀 )

 

 
where εo and εd are the extinction coefficients for HbO2 
(oxyhemoglobin) and Hb (hemoglobin). The constants l1 and 
l2 are the path-lengths for the two wavelengths and depend 
strongly on the scattering coefficient. For the two wavelengths 
in the red and infrared regions, which are used in the glove 
ring sensor (IR 950nm and red 660nm), l1 and l2 are expected 
to differ and they are unknown. SpO2 can be derived from R 
through the calibration process by assuming that l2/l1 is a 
constant that is independent of inter-subject variability in the 
circulatory system. In this case, the coefficients are constants 
and can be determined through calibration. If the parameter 
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l2/l1 changes between different subjects, in particular between 
the healthy subjects on whose fingers the calibration was 
performed and the fireman wearing the glove, inaccuracy in 
the SpO2 measurement is to be expected. Relative changes for 
a single subject are accurate. 

i. Flammable Gas Sensing 
The hydrogen sensor was evaluated using humidified 

synthetic air with different amounts of H2 added, in the range 
from 0.02% to 2% volume concentration. The gas was fed to 
the sensor with a nozzle with a flow of 1slm (standard liter per 
minute). The sensor chip was externally heated to 
temperatures of up to 140°C. It was found that 0.02% 
concentration already results in a detectable sensor signal. For 
concentrations above 0.5%, saturation of the signal began to 
be observed. Response time t90 was found to be in the range of 
100s. Further reduction of response time is to be achieved by 
using PLD (Pulsed Laser Deposition) in order to generate a 
porous Pd-Ni layer, facilitating the H2 transport into the layer. 

The methane sensor was evaluated in a gas mixing 
chamber, where gas flows of methane were mixed with 
compressed dry air. Initial experiments consisted of cyclic 
voltammetry, where the voltage of the sensor is scanned to 
observe at which voltage the largest effect of methane 
exposure is observed.  

 

 
Figure 10.  Cyclic voltammetry to determine most suitable voltage level 
for methane detection. The difference between the current levels is plotted 

with the dotted line, and should be evaluated on the right Y-axis. 

In Figure 10, the cyclic voltammogram of the sensor with 
and without 5% methane exposure is plotted. The difference 
between the observed currents is small compared to the 
background current. To make the difference more visible, the 
currents with and without methane exposure were subtracted, 
and plotted. From these plots it becomes clear that the largest 
current difference is observed between -0.5 and -1.5 V. The 
extreme voltages near -2 and +2 V are excluded, because 
water electrolysis will occur at these voltages when 
measurements are performed in humid air, which will 
interfere with the detection of methane. 

To determine the response of the sensor, the voltage was 
fixed, and the current was used as an indicator of the methane 
exposure. In Figure 11, the current that is resulting of 5% 
methane is given. This figure shows that the sensor has a fast 
response time, and that the gas level can already be detected 
within a few seconds, which is crucial for first responders. 

.  

 
Figure 11.  Current response to an exposure of 5% methane 

First responders often need to work in extreme conditions 
where temperatures may reach high levels. For the hydrogen 
sensor, this may only have a limited influence, since this 
sensor is heated using an internal heat source. The methane 
sensor is, however, operating at ambient temperature and may 
be influenced by temperature changes due to these 
environments in which first responders operate, as shown in 
Figure 12. 

 
Figure 12.  Temperature influence on the sensor background current. In red, 
the temperature profile setting is displayed, while the green line shows the 

measured sensor response. 

To test the temperature influence, the sensor was placed in 
a climate chamber, and the changes in the background current 
related to temperature increases was evaluated. The 
temperature was increased stepwise, starting at 25 °C, and 
held stable for 1.5 h at 40, 50 and 60 °C.  Results for this 
measurement are plotted in Figure 12. In this figure, it can be 
clearly observed that there is an influence of the temperature 
on the background current. The characteristic step profile of 
the temperature comes back in the measured current. It can, 
however, also be seen that the temperature influence is 
transient, and that the initial current response to temperature 
changes is stronger than the equilibrium response.  

Most important, however, is the observation that, when the 
current response to temperature changes up to 60 degrees is 
compared to the current response to methane, that the current 
is only increased by less than 10 nA, while the response to 
relevant concentrations of methane is much stronger. From 
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this observation it can therefore be concluded that the 
developed methane sensor can be used in these high 
temperature conditions. It’s accuracy will benefit from 
temperature compensation, which will require input from a 
separate temperature sensor, but this is not crucial. 

D. Occupancy Detection 
The deployment scenario is very particular since it 

depends on the physical venue, the sensor network 
characteristics and the application domain. Therefore, the 
solutions will perform very differently from scenario to 
scenario. For these reasons, the conducted experiments 
consider the combination of three characteristics: i) physical 
layout; ii) sensor topology; iii) data modelling (e.g., synthetic-
random, synthetic- pedestrian; real sensors), as in Table II.  

TABLE II. EVALUATION METRICS FOR EACH ESTIMATOR, CONSIDERING 
THE G-FLOW MODELLING APPROACH, FOR T = 90000 SAMPLES 

Estimator Topology MSE Precision Recall F-
measure 

KF TA 1.445 99.81 53.85 69.96 

TB 0.665 99.88 68.42 81.21 
EnKF TA 1.734 93.74 51.51 66.49 

TB 1.003 97.42 56.47 71.50 

HF TA 1.553 99.88 49.67 66.61 
TB 1.554 99.88 49.94 66.59 

IF TA 2.826 99.56 49.36 66.01 
TB 1.482 99.60 50.95 67.41 

UKF TA 1.373 99.37 54.76 70.61 
TB 0.657 99.88 68.44 81.22 

IMM TA 1.384 99.86 53.76 69.90 

TB 0.781 97.60 63.81 77.17 
MMAE TA 1.423 99.81 53.92 70.01 

TB 0.664 99.88 68.42 81.22 

 
Due to space constraints, we here only present the results 

for selected estimators and for one tested scenario, which 

consists of 6 rooms, with two different sensor topologies: TA) 
two camera sensors with oblique view towards ground-floor, 
situated in two rooms, and a camera sensor with top-down 
view, positioned between two rooms; TB) camera sensor in 
each room and the same top-down view camera between two 
rooms. 

The data was simulated using the Helbing social force 
model [42], rules for interactions between occupants and 
obstacle avoidance awareness. The simulation considers a 
total occupancy up to 6 people during 9000 samples 
(approximately lasting 7.5 minutes). As expected, having a 
sensor in every zone dramatically improves the overall 
estimation. Considering all the experiments, we verified that 
the linear estimators are preferred for local measurements but 
they show degradation of performance through time as well as 
for global estimation. 

An interesting conclusion is that a bank of linear filters 
solutions show competitive results, which might open further 
investigation issues regarding their extension to the 
combination of linear and non-linear estimators to balance 
local with global estimation. 

Many experiments were also conducted in the Tyndall 
scenario, with real information captured from the sensor-
network, in order to fully validate the occupancy detection 
system. Table III shows the results from all the states of the 
graphs, considering the average taken from the months of 
August and September 2017. 

The most important conclusions that can be taken from the 
analysis of the estimators’ performance in both the simulated 
and real scenarios shown in Table III are: i) G-node presents 
the best performance in most of the estimators. Its’ recall is 
always the higher one, which shows its’ relevance to estimate 
the real number of occupants in the entire floor; ii) the bank of 
filters approaches is revealed to be the most accurate for 
global estimation; iii) G-flow presents lower MSE than the 
sensors-only readings, proving their superior local 
performance in the zones with sensors; iv) G-biflow performs 
better when the sensors are located within the zones, while G-
node behaves better when the sensors are placed in regions of 
transition between zones. 

TABLE III. EVALUATION METRICS FOR EACH ESTIMATOR CONSIDERING THE AVERAGE TAKEN FROM THE MONTHS OF AUGUST AND SEPTEMBER 2017, AND THE 
THREE GRAPH-BASED MODELS, {G-NODE, G-FLOW, G-BIFLOW} 
 

Period 

Aug./Sept. 

2017 

MSE Precision Recall F-measure 

G-node G-flow 
G-

biflow 
G-node G-flow 

G-

biflow 
G-node G-flow 

G-

biflow 
G-node G-flow 

G-

biflow 

KF 25.78 27.01 45.16 80.04 84.99 86.39 52.47 62.90 49.87 63.09 72.00 62.98 

EKF 25.78 24.90 31.31 79.94 84.84 87.50 52.50 64.02 60.50 63.08 72.71 71.36 

UKF 25.90 27.05 45.16 80.27 85.03 86.38 52.40 62.86 49.87 63.11 72.00 62.97 

EnKF 27.16 41.02 55.29 80.43 77.44 82.46 52.00 56.66 50.00 62.82 65.16 62.12 

CKF 25.90 27.05 45.16 80.27 85.02 86.38 52.40 62.86 49.87 63.11 71.99 62.97 

HF 30.11 100.1 85.97 81.71 84.76 81.58 51.15 52.77 51.54 62.56 64.74 62.95 

IMM 22.76 25.26 48.52 79.48 84.73 87.09 53.46 63.69 47.43 63.66 72.39 61.04 

MMAE 18.92 47.46 67.04 80.65 82.48 87.68 57.46 60.88 52.85 66.63 69.63 65.64 
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IX. CONCLUSIONS AND FUTURE WORK 
The SAFESENS system is currently deployed in the 

Tyndall National Institute in Cork, Ireland where the 
integration activity focuses on the occupancy detection and 
firefighter activity tracking [1]. The deployment activity 
continues to progress so as to integrate datasets from the other 
sensors integrated in the system, to improve accuracy of the 
sensor readings and develop robust communications to 
augment the infrastructure based communications currently 
used in the demonstration activity, which is Wi-Fi based. This 
will focus on UWB based Media Access Control (MAC), 
routing and scheduling protocols to maximize energy 
efficiency and minimize system latencies. The smartphone 
application is being developed to integrate data sets from all 
sensors for upload to the server for analytics and visualisation.  

For first responder tracking, by using the LSE algorithm 
and performing the calibration, we have significantly 
enhanced the ranging and improved the positioning/tracking 
accuracy for real time positional information acquisition. 
However, there is still room for improvement in the accuracy 
of the algorithm, in terms of precision. Although the LSE 
algorithm has shown good results in LOS environment, it 
remains very sensitive to heavy NLOS conditions. Error 
mitigation techniques, before the computation of the 
localization, will have a good impact on achieving a better 
tracking accuracy. The requirement for a number of anchor 
nodes for the localization will need to be addressed, and the 
ability for the localization tags to use each other as mobile 
anchor nodes referenced to a known coordinate is envisaged. 
This work is the subject of our future research in this area. 

A glove with an optical sensor to measure the wearer’s 
heart rate has been accomplished by using a soft and 
stretchable circuit board based on thermoplastic elastomers. 
First measurements are indicating the good data quality and 
mechanical robustness of the textile-integrated electronic 
system. Future investigations will be conducted in order to 
explore the limit of possible bending and folding loads and to 
determine the long term reliability of the stretchable 
electronics. A SAFESENS heart rate monitor has been 
integrated into this fire-retardant glove to give real time 
physiological information over Bluetooth. 

Electrochemical explosive/flammable gas detectors have 
been developed, which are sensitive to methane at a range of 
operational temperatures – such as those experienced by first 
responders, with a fast response time in the order of seconds. 
Future work will address further the speed of response of the 
explosive gas sensors. 

For the most precise measurement of occupancy levels 
within the built environment, we can make the following 
observations: G-biflow performs better when the sensors are 
located within the zones whereas G-node performs better 
when the sensors are placed in the regions of transition 
between zones. The graph model G-node presents the best 
performance in most of the estimators. Its’ recall is always the 
higher one, which shows its’ relevance to estimate the real 
number of occupants in the entire floor. The bank of filters 
approaches is the most accurate for global estimation and 
better temporal adaptation. The graph model G-flow presents 

lower MSE than the sensors-only readings, proving their 
superior local performance in the zones with sensors. In 
general, for accurate occupancy measurement, the 
observability of the sensors in the whole sensor topology is 
crucial to ensure a reliable global performance of the 
occupancy estimation. 
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