
103

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Virtual Network Function Use Cases Implemented on SONATA Framework

Cosmin Conțu, Andra Țapu, Eugen Borcoci

University POLITEHNICA of Bucharest – UPB

Bucharest, Romania

Emails: cosmin.contu@elcom.pub.ro, andratapu@elcom.pub.ro, eugen.borcoci@elcom.pub.ro

Abstract—Network Function Virtualization (NFV) is a recent

and powerful technology capable to support the development

of flexible and customizable virtual networks and services,

including sliced networks, in multi-tenant, multi-operator and

multi-domain environment. Open research issues still exist for

architectural, interoperability, design and also related to

implementation and experimental aspects. Among several

NFV-oriented projects, Service Programming and

Orchestration for Virtualized Software Networks (SONATA)

is a representative framework. This paper is an extended

version of a previous work and develops several Virtual

Network Functions (VNF) on SONATA framework. The

examples of VNFs include virtual hosts, HTTP server, firewall

and a graph of virtual routers. They have been integrated in

separate topologies and then chained together into a more

complex topology and have been tested using SONATA basis.

Keywords-Network Function Virtualization; Software

Defined Networking; Cloud computing; SONATA; Containernet;

Docker.

I. INTRODUCTION

This paper is an extended version of the work [1] [2] and

is dedicated to further develop several use cases

implementations of Network Virtual Functions (VNF) in

NFV architecture, illustrating the capability of chaining

different functions.
After 2014, Network Functions Virtualization (NFV)

started to be investigated and developed; today it is
recognized as a powerful concept, as well as architecture and
technology. It aims to solve some of the current
telecommunication world limitations, problems and
challenges, like large number of proprietary hardware
appliances dedicated to specific services, lack of flexibility
and dynamicity, low interoperability, high capital and
operational expenditures: capital expenditure (CAPEX),
operational expenditure (OPEX), energy consumption and
installation space issues [3][4]. Currently, NFV is also seen
as a supporting technology in cloud/edge computing
domains. NFV decouples the hardware appliances from the
network functions that are running over them, by using
generic hardware (servers, storage and switches) and running
the network functions over virtual machines installed on this
generic equipment.

Based on virtualization technologies, NFV allows faster
development and deployment (compared to traditional
approach) of services composed of network functions that
can be implemented in virtualized way. Different virtualized
network functions can be defined, instantiated, deployed or

moved, while sharing the same infrastructure. They can be
created, modified and deleted without needing to physically
visit a site to change the hardware supporting those network
functions.

The operators’ CAPEX and OPEX can be reduced, due
to software development (taking advantage of the growing
IT industry). Energy consumption reduction is also possible,
if a clever power management and migration plan for the
virtual machines (VM) is designed.

Software Defined Networking (SDN) [5] is a
complementary technology to NFV. The main SDN concept
of separating the control plane from the data/user plane
creates high flexibility, programmability and network
technology abstraction. This approach offers powerful
capabilities for the management and control functions. While
independent of each other, SDN and NFV can cooperate in
order to construct powerful and flexible systems in cloud
computing and networking areas. In a general view, NFV
and SDN can be seen as “orthogonal”: while SDN separates
the control and data plane, NFV approach can be used both
in the control or data plane to implement different control or
forwarding functions as virtual ones.

According to ETSI [6][7], the NFV architecture (see
Figure 1) is divided in two main parts: operational and
management. The operational part is composed of the
functional blocks: Network Function Virtualization
Infrastructure (NFVI) which contains the physical resources
and their abstraction (virtual resources constructed by a
virtualization layer); Virtual Network Functions (VNF)
which defines different functions that can be composed in
services; Operations and Business Support Systems
(OSS/BSS). The management part is represented by the
Management and Orchestration (MANO) which provides the
orchestration and the Life Cycle Management (LCM) of the
network functions and infrastructure. Each of the three
subsystems in the operational part has a corresponding
manager in MANO.

Numerous studies, realizations, projects, proofs of
concepts and demos are currently developed in NFV, SDN
areas [8][9]. However, many still open research issues exist
for such technologies related to different aspects:
architectural but also related to use cases, service creation
and composition, manageability and resource allocation,
virtualization methods, performance obtained in dynamic
and mobile environment, scalability, implementation aspects
and selection of the software technologies applicable, multi-
tenant and multi-domain capabilities and security.

104

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. ETSI NFV reference architectural framework [6]

In terms of Development and Operations (DevOps),

several problems are recognized to exist [10], like:
SDN/NFV infrastructures are not yet stable; Virtual Network
Functions (VNFs) are not sufficiently interoperable with
orchestrators; multi-vendor environments are not certified;
the number of services for which the SDN/NFV framework
brings very strong benefits in marketplaces is not yet so
large; SDN/NFV combination is difficult and does not offer
easy E2E multi-site support; frequently, there is a need for
some additional development; key features like network
slicing are not yet completely clarified; auto VNF scalability,
SP recursiveness, VNF intelligent placements, security, etc.,
are other open research issues.

Therefore, more extensive experiments with SDN/NFV
frameworks are necessary to further clarify different
development aspects.

 The EU H2020 project Service Programming and
Orchestration for Virtualized Software Networks (SONATA)
[11] is a relevant example and offers a framework allowing
DevOps oriented to SDN/NFV area.

The main purpose of this paper is to further develop
experiments started in [1][2], based on SONATA framework
in order to more deeply understand the capabilities of the
framework, to test its scalability for using it to develop and
test some custom VNFs. This work is an additional step to
achieve the goal of creating a network service package
which will be uploaded and deployed on SONATA platform.

The paper is organized as follows. Section II is an
overview of related work. Section III shortly presents the
architecture of SONATA framework. Section IV contains
the results of the experiments done with SONATA
framework and all the steps taken. Section V presents
conclusions and future work.

II. RELATED WORK

This section shortly presents a selective view on some
related work dedicated to service development and
orchestration in virtualized networks and its relation to
SONATA architecture, when applicable. It is split in brief

overview firstly on EU-funded collaborative projects, open-
source solutions and commercial solution provided.

UNIFY [12] (EU-funded Collaborative Projects)
proposes an architecture which is similar to those of ETSI-
MANO and Open Networking Foundation (ONF)-SDN. Its
objective is to reduce operational costs by removing the
need for costly onsite hardware upgrades, taking advantage
of SDN and NFV. Across the infrastructure one can develop
networking, storage and computing components, through a
service abstraction model. The UNIFY global orchestrator
consists of algorithms used for optimization of elementary
service components across the infrastructure. The project
exposes the fact that all resource orchestration related
functionalities existing in a distributed way in the MANO
SONATA framework, can be logically centralized, when
there is an abstraction combination of compute, network and
storage resources.

Even if the main idea of a recursive service platform is
applicable both for UNIFY and SONATA, the
implementation is different. First, the recursiveness in
UNIFY is obtained as a repeatable orchestration layer for
each infrastructure design, while within SONATA is
implemented as a repeated deployment of a complete
SONATA platform. Another difference is related to the
service specific functionality: in UNIFY it is added by
developer inside a Control Network Function (NF), as a
dedicated part of the Service Graph, running in the
infrastructure; in SONATA the service functionality is
obtained using plugins in the service platform which means
that it is not mandatory to be on the same infrastructure
where the Virtual Network Function (VNF) is running.

OpenStack [13][26] is an open source project, mainly
written in Python, that provides an Infrastructure as-a-
Service solution through a variety of loosely coupled
services. Each service offers an API that facilitates the
integration. Due to its variety of components, the current
version of the OpenStack not only provides a pure Virtual
Infrastructure Manager (VIM) implementation, but spans
various parts of the ETSI-NFV architecture. OpenStack is
made up of many different moving parts. Because of its
open nature, additional components can be joined to
OpenStack in order to meet specific needs. OpenStack
Keystone [14], for instance, offers authentication and
authorization not only to the VIM part, but it can be
integrated to other services as well. OpenStack Ceilometer
[15] provides a pluggable monitoring infrastructure that
consolidates various monitoring information from various
sources and makes the available to OpenStack users and
other services. OpenStack Tacker [16] aims at the
management and orchestration functionality described by
ETSI-NFV.

The overall architecture relies on message buses to
interconnect the various OpenStack components. To this
end, OpenStack uses the Advanced Message Queuing
Protocol (AMQP) [17] as messaging technology and an
AMQP broker, namely either RabbitMQ [18] or Qpid [19],
which sits between any two components and allows them to
communicate in a loosely coupled fashion. More precisely,
OpenStack components use Remote Procedure Calls

105

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(RPCs) to communicate to one another. The OpenStack
architecture has been proven to be scalable and flexible.
Therefore, it could act as a blueprint for the SONATA
architecture.

From SONATA’s perspective, OpenStack is used as
being supportive and complementary. For the SONATA
developers there is the need to have access to a running
OpenStack installation to use the capabilities of a VIM for
running services from the Service Platform.

Another option for service developers when it comes to
SONATA is the SONATA’s emulation platform to locally
prototype and test complete network service chains in
realistic end-to-end scenarios. The emulator of SONATA
supports OpenStack-like API endpoints to allow carrier-
grade MANO stacks (SONATA, Open Source MANO) to
control the emulated VIMs.

To raise their NFV holding, commercial vendors have
started to market solutions for the orchestration layer. Even
if they created their own NFV context, the first generation
of NFV Orchestrators (NFVO) is based off ETSI MANO
specifications. But there are also several orchestration
solutions developed by established network vendors to
further expand a larger NFV ecosystem [20].

From SONATA’s perspective, the NFV orchestration
concept meets the commercial solutions from the following
points: to the complete VNF and network service lifecycles,
including onboarding, test and validation, scaling, assurance
and maintenance. Vendor marketing material and white
papers present their upcoming products as holistic solutions
for both service and network orchestration, compatible with
current ETSI MANO specifications.

These orchestration solutions are commonly part of a
fully integrated NFV management platform, including
NFVO, VNFM and extended services such as enhanced
monitoring and analytics. For example, IBM’s SmartCloud
Orchestrator can be integrated with its counterpart solutions,
SmartCloud Monitoring and IBM Netcool Network
Management System, providing an end-to-end offering.

 For this paper, SONATA framework was chosen due to
its platform which follows the DevOps approach as well as
for its Software Development Tools which help the
developers to design, create, debug and analyze network
services.

III. SONATA FRAMEWORK

In order to make this paper enough self-contained, this
section very shortly presents the SONATA framework
architecture [25] along with its objectives, use cases and
features along with its correspondence with ETSI NFV
framework.

SONATA main goal is to develop a NFV framework

that provides to third party developers a programming
model and a suite of tool for virtualized services integrated
with an orchestration system. SONATA allows the
developers to achieve a lower time-to-market of networked
services, to optimize and reduce the costs of network
services (NS) deployment and to speed-up the integration of
software networks in telecommunication industry.

Figure 2 presents the general architecture of SONATA
framework which complies with and builds upon the ETSI
reference architecture for NFV MANO, contains the
following components [27]:

o Service Platform (SP)
o Software Development Kit (SDK)
o Catalogues containing different system artefacts.

The Service Platform (SP) is responsible for

management and control of network functions and services
and it has the same role as MANO block from ETSI model.
It is a modular and customizable environment in which the
platform operators can create specific platforms appropriate
for their business model, by replacing components of
MANO plugins. SP has the following core components:
gatekeeper, catalogues and repository, MANO Framework
(NFVO and VNFM) and infrastructure abstraction.

Figure 2. SONATA Framework [21]

106

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 MANO framework is the core of SP and provides the
management for complex NSs for their entire lifecycle.
Same way as developed in ETSI, MANO consists of NFVO
and VNFM blocks.

The operations from SONATA involved into lifecycle
management are split in two types: service-level and
function-level operations, which together represent
functionalities of NFVO and VNFM from ETSI’s reference
architecture. The NFVO in SONATA, as in ETSI model,
orchestrates the NFVI resources and manages the lifecycles
of network services. The VNFM manages the lifecycle of
one or multiple VNF instances of same or different types.

Both in SONATA and ETSI, the VIM controls and
manages the virtualized resources (network, storage and
compute) in an operator’s infrastructure domain. (NFVI-
PoP). A VIM can handle a specific or multiple type of NFVI
resources. Generally the VIM contains the following
functional blocks:

A specialized VIM, called WAN infrastructure Manager
(WIM) is used to provide connectivity between endpoints in
different NFVI-PoPs.

The catalogues and repositories of SONATA consist of
network function and services information like code,
executables, configuration data and other requirements.
These catalogues are divided into:

1) private (located in SDK and used to store locally
developed network services per developer or per project).

2) service platform (holds the data which operates and
run network services that can be instantiated using SP.
Actually in SP there are same types of catalogues and
repositories as defined in ETSI (NS and VNF catalogues;
NFV instances and NFVI resources repositories) but also
two extra: Service specific managers (SSMs) / Function
Specific Managers (FSMs) / catalogue and SSF/FSM
repository which offers flexibility for service developers to
customize their own services.

3) public (representing the third-party network
services which are ready to be used by the service
developers and SP operators).

In addition, to MANO block of the ETSI model, in
SONATA there can be found the gatekeeper component
which is responsible of validating the network services
posted into SP in a form of packages by mediating between
development and operational tasks [30].

Therefore, the service platform follows the ETSI NFV
reference design (see Figure 3) but in the same time adds its
own extensions which facilitates multi tenancy support by
allowing resource slicing which can be mapped to tenants
exclusively.

Comparing to ETSI model, SONATA adds SDK as a
new important architectural component. The SDK helps the
third-party developers to create complex services composed
of multiple VNFs, with a set of software tools and also
supports service providers to deploy and manage their
created NSs on multiple SONATA SPs.

SDK contains different tools to: generate network
functions; emulates trail of services; debug and monitoring;
support for DevOps operations of network services [28].

Figure 3. Comparative view: ETSI and SONATA [21]

IV. EXPERIMENTS WITH SONATA

This section presents NFV experiments whose purpose
is to test the functionality of different VNFs in various
topologies using SONATA framework.

These topologies are represented as custom emulated
networks which use Docker [22] containers as compute
instances to run VNFs. Moreover, these experiments are
developed around SONATA framework and using some
specific tools as:

a) Virtual Machine (VM): the experiments are
running on a VM of 80GB storage on a 64 -bit Ubuntu
distribution ready to use which has been downloaded from
SONATA repository [20]

b) Containernet [23]: it is a ramification of Mininet
network emulator which allows the developer to create
network topologies using Docker containers.

c) Open-source utilities: to create and test the VNFs
needed in the proposed topologies, the following collection
of utilities has been used: “iptables”[24], “iproute”,
“bridge-utils”, “traceroute”, “inetutils-ping”; “curl”;
“squid”; “apache”.

d) SONATA emulator (son-emu): this is a part of
SONATA SDK and it is based on MeDICINE emulation
platform. MeDICINE is intended for service developers
who can create network service chains and then test them in
realistic emulated environments.

A. (UC1) Simple Virtual Hosts Experiment

a) Main objectives: create two virtual hosts and test

their inter-communication.

b) Topology: the topology depicted in Figure 4

contains data centers (DC) in terms of point of presence

(PoP) which can be defined as specific emulated hardware

by installing docker images which contain the VNFs. In this

simple experiment two DCs have been defined, created and

used as following:

107

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Two hosts (dc1 and dc2)

Figure 4. vHosts Experiment Topology

c) Configuration, tests and results: first step was to

deploy the topology and then instantiate and start the VNFs

on each DC (see Figure 5).

Figure 5. vHosts Experiment compute list

First, using ifconfig command on both dc1 and dc2, it can
be seen that the IP addresses are in the same network. The IP
addresses were set for each data center during the
instantiation (see Figures 6 and 7). Afterwards, the “son-
emu-cli network add” command is invoked, in order to
establish the connection between the two datacenters.

Figure 6. vHosts Experiment ifconfig command on vnf1

Figure 7. vHosts Experiment ifconfig command on vnf2

To check the connectivity between the two data centers,
the “ping” command is used from both datacenters (see
Figures 8 and 9).

Figure 8. vHosts Experiment ping command from vnf1 to vnf2

Figure 9. vHosts Experiment ping command from vnf2 to vnf1

B. (UC2) Virtual HTTP Server Experiment

a) Main objectives: create a virtual HTTP server

which can be accessed from a different host from the same

network.

b) Topology: in this topology two DCs have been

used (see Figure 10) as following:

 One host (dc1)

 HTTP server (dc2)

Figure 10. vHTTP_Server Experiment Topology

The two datacenter are in the same network (10.0.0.0/8),

dc1 has the IP address 10.0.0.1/8 and dc2 has 10.0.0.2/8.
Using apache, a HTTP Server VNF was installed on dc2.
Dc1 was used as a virtual host.

c) Configuration, tests and results: first step was to

deploy the topology and then instantiate and start the VNFs

on each DC as can be seen in Figure 11.

Figure 11. vHTTP_Server Experiment compute list

After the instantiation, the ping command is called

between vnf1 and vnf2 in order to verify the connectivity

between the two datacenters (see Figure 12).

Figure 12. vHTTP_Server Experiment ping command from vnf1 to vnf2

108

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the HTTP Server a resource (html file) will be

created in order to be accessed by the virtual host using http

protocol. Using “more” command on HTTP Server, it can

be seen the content of the html file (see Figure 13).

Figure 13. vHTTP_Server Experiment checking the local file from vnf2

With the “curl” command called from vnf1, the

resource is fetched from vnf2 (see Figure 14) and it can be

seen that it the same html file that was previously created on

vnf2, as expected.

Figure 14. vHTTP_Server Experiment curl command from vnf1 to
vnf2 (http server)

C. (UC3) Virtual Firewall Experiment

a) Main objectives: create a virtual firewall which has

the purpose to block –if requested - some particular traffic

flows between two hosts.

b) Topology (Figure 15): it consists of three DCs have

been used as following:

 Two hosts (dc1 and dc2)

 Firewall (dc3)

Figure 15. vFw Experiment Topology

The subnet 10.0.0.0/8 has been used together with the
“bridge-utils” utility on dc3 to make the communication
between dc1 and dc2 possible. Utility “iptables” has been
used to create the “DROP” rule for the traffic which is
forwarded by dc3.

c) Configuration, tests and results: first step was to

deploy the topology and then instantiate and start the VNFs

on each DC as can be seen in Figure 16.

Figure 16. vFw Experiment compute list

Further, the “DROP” rule has been added for vnf3 and

the connectivity between the two hosts (vnf1 with 10.0.0.7

on interface vnf1-eth0 and vnf2 with 10.0.0.5 on interface

eth2) has been tested.

If the “DROP” rule is removed, it can be seen in Figure

17 that the two hosts can communicate with each other:

Figure 17. vFw Experiment ping without “DROP” rule

When “DROP” rule is added then the whole traffic

between the 2 hosts does not exist anymore. This rule is

exposed in Figure 18.

Figure 18. vFw Experiment ping with “DROP” rule

D. (UC4) Virtual Routers Graph Experiment

a) Main objectives: create a small network of virtual

routers which will forward traffic through a network graph

between three hosts from three different subnets.

b) Topology (Figure 19): it consists of six DCs using

two different docker images, one for the virtual routers and

another for virtual hosts.

 Three hosts (dc1, dc2 and dc3)

 Three routers (dc4, dc5 and dc6)

Routing tables (containing static routes) have been made

for the entire topology using “iproute” utility. The hosts are

assigned within the subnets 11.0.0.0/8, 12.0.0.0/8,

13.0.0.0/8 and the subnets between routers are 10.0.0.0/8

(dc4-dc5), 20.0.0.0/8 (dc5-dc6) and 30.0.0.0/8 (dc4-dc6).

109

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 19. vRouters Graph Experiment Topology

c) Configuration, tests and results: after deploying the

topology, the VNFs were instantiated and started on each

DC and the links between them were also added as

illustrated in Figure 20.

Figure 20. vRouters Graph Experiment compute list

Another way to visualize, as in Figure 21, and monitor

the state of the topology and output of son-emu-cli is

through web-based emulator dashboard.

In this example, the dc4 vRouter has two routes to dc6,

with different generic metrics:

- via interface vnf4-eth5, with metric 20;

Figure 21. vRouter Graph Experiment emulator dashboard (partial view)

- via vnf4-eth6 with metric 10 (same settings were

made respectively on dc6 since static routing is in

place).

A shortest path route selection is supposed.

To verify the functionality of the experiment, a

traceroute between dc1 and dc2 hosts has been made and it

can be seen in Figure 22 that the traffic has been forwarded

through the route with the lowest metric (10).

Figure 22. vRouters Graph Experiment traceroute metric 10

If the interface vnf6-eth4 is down and the link between

dc4 and dc6 is stopped, it can be observed in Figure 23 that

traffic will be forwarded through the route with metric 20

(the only one now remained) when a traceroute between dc1

and dc2 is made again.

Figure 23. vRouters Graph Experiment traceroute metric 20

Although the above experiments are rather simple, they

illustrate a complete implementation successful sequence of

steps, i.e., to define, instantiate and then run VNF-based

110

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

topologies on the complex SONATA framework.

Modification of the operational parameters is also

demonstrated.

E. Multiple Chained VNFs Experiment

1) Main objectives: create a network topology whose

purpose is to instantiate a chain of VNFs with SONATA

platform. These VNFs roles are : hosts, routers, firewall,

proxy, http server, all virtual.

2) Topology: the topology contains data centers (DC) in

terms of point of presence (PoP) which can be defined as

specific emulated hardware by installing docker images

which contain the VNFs. In this experiment (Figure 24)

there have been used six DCs as following:

a) Two hosts (vnf2_h1 and vnf3_h2).

b) One router (vnf1_r1).

c) One firewall (vnf5_fw).

d) One proxy server (vnf6_proxy).

e) One http server (vnf4_http).

Routing tables (containing static routes) have been made

for the entire topology using “iproute” utility. The hosts are
assigned within the subnets 11.0.0.0/8, 12.0.0.0/8; the subnet
between router and firewall is 30.0.0.0/8; between firewall
and proxy is 31.0.0.0/8 and between proxy and http server is
32.0.0.0/8.

3) Configuration, tests and results.

a) First step was to deploy the topology and then

instantiate and start the VNFs on each DC as can be seen on

Figure 25.

Figure 25. Topology compute list

b) Second step is meant to prove that the routing is

working, and it has been tested with “traceroute” utility

between vnf2_h1 and vnf6_proxy (Figure 26).

Figure 26. Traceroute command between vnf2_h1 and vnf6_proxy

c) Third step represents the functionality of the VNF

proxy squid which acts as an intermediary passing the

clients (vnf2_h1 and vnf3_h2) requests to the http server

(vnf4_http). In the presence of the proxy server, there is no

direct communication between the clients h1 and h2 and the

http server (Figure 27).

Figure 27. Ping command between vnf2_h1 and vnf4_http

Instead, the client connects to the proxy server and sends

requests for a resource file that resides on http server

(Figure 28).

Figure 28. Ping command between vnf2_h1 and vnf6_proxy

The proxy server handles this request by fetching (with

the “curl” command) the required resource (proxy_test.html

file) from the http server and forwarding the same to the

client (Figure 29).

Figure 29. Curl command from vnf3_h2 to vnf6_proxy

Figure 24. SONATA Framework [21]

111

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

d) Last step is meant to show the functionality of

firewall VNF as it blocks the TCP traffic between h2

(12.0.0.1) and http server through proxy but it allows the

rest of traffic, for example ICMP (Figures 30, 31 and 32).

Figure 30. Drop rule added on vnf5_fw

Figure 31. Curl command from vnf3_h2 to vnf6_proxy after adding the

Drop rule

Figure 32. Ping command from vnf3_h2 to vnf6_proxy after adding the

Drop rule

The above experiment proves the capability of SONATA

to emulate a multiple chained VNFs complex topology. All

VNFs successfully communicated with each other, creating a

functional, complex network topology.

V. CONCLUSIONS

This paper presented the results of multiple experiments
with different VNFs treated separately and a more complex
topology containing a multiple chained VNFs using the
emulator (part of the SDK) from the SONATA framework.

The single-VNF experiments: virtual hosts which
demonstrates the connectivity between two datacenters,
virtual http server from which a html file was fetched, virtual
firewall to filter the traffic between two hosts and virtual
routers that are able to route traffic between several
networks, were successfully completed.

Using all the above VNFs, together with a proxy VNF, a
more complex topology was created, having as a goal to
prove that the functionality of all the VNFs from the VNF
chain are preserved and can work together.

The tests have successfully proved that the access to http
server through proxy server worked without a known route
and also that firewall filtered the inbound traffic to proxy by
blocking a certain network.

This paper accomplished the proposed objective to
successfully test various single-VNF and multiple chained
VNF topologies using the emulator from SONATA SDK.

As future work, new experiments will be done by
creating “network service packages” containing multiple
chained VNFs and having a lifecycle management,
coordinated by the MANO framework. The network service
packages will be uploaded and tested with the Service
Platform, part of SONATA framework.

Further work should be developed in attempt to solve still
existing, specific open issues of the complex SONATA
framework, like those mentioned in [29]: NFV
Orchestration development- including LCMs for virtual
functions and Service Specific Managers (SSM); interfacing
the SDK to the Service Platform; scalability and flexibility of
the monitoring framework; network slicing capabilities of
SONATA (concept still not clear); cooperation of the service
platform with recursive architectures, service function
chaining via Docker- based VIM (not yet mature);
continuous integration and delivery (CI/CD) methodology
and others.

REFERENCES

[1] A. Țapu, C. Conțu, E. Borcoci, “Network Function
Virtualization Experiments using SONATA Framework”, The
International Symposium on Advances in Software Defined
Networking and Network Functions Virtualization
SOFTNETWORKING 2018.

[2] A. Țapu, C. Conțu, E. Borcoci, “Multiple Chained Virtual
Network Functions Experiments with SONATA Emulator”,
The Twelfth International Conference on Communications
COMM 2018.

[3] NFV White paper: “Network Functions Virtualisation, An
Introduction, Benefits, Enablers, Challenges & Call for
Action. Issue 1”. Available from:
https://portal.etsi.org/NFV/NFV_White_Paper.pdf [retrieved:
February, 2018].

[4] R. Mijumbi et al., "Network function virtualization: State-of-
the-art and research challenges", IEEE Commun. Surveys
Tuts., vol. 18, no. 1, pp. 236-262, 1st Quart. 2016.

[5] B. N. Astuto, M. Mendonca, X. N. Nguyen, K. Obraczka, and
T. Turletti, “A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks”,
Communications Surveys and Tutorials, IEEE
Communications Society, (IEEE), 2014, 16 (3), pp. 1617 –
1634.

[6] NFV White paper: “Network Functions Virtualisation (NFV)
,Network Operator Perspectives on Industry Progress. Issue
1”.Available from:
https://portal.etsi.org/NFV/NFV_White_Paper2.pdf
[retrieved: February, 2018].

[7] ETSI GS NFV 002: “Network Functions Virtualisation
(NFV); Architectural Framework”. Available from:
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.02.0
1_60/gs_NFV002v010201p.pdf [retrieved: February, 2018].

[8] S. Van Rossem et al, "Deploying elastic routing capability in
an sdn/nfv-enabled environment", 2015 IEEE Conference on
Network Function Virtualization and Software Defined
Network, pp. 22-24, 2015.

[9] ETSI Plugtests Report: “1st ETSI NFV Plugtests, Madrid,
Spain, 23rd January–3rd February”. Available from:
https://portal.etsi.org/Portals/0/TBpages/CTI/Docs/1st_ETSI_
NFV_Plugtests_Report_v1.0.0.pdf [retrieved: February,
2018].

[10] J.Martrat, “SONATA approach towards DevOps in 5G
Networks”, SDN World Congress, 2017, Hague. Available

112

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from: http://sonata-nfv.eu/content/sonata-approach-towards-
devops-5g-networks-0 [retrieved: February, 2018].

[11] S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M.
Bredel, J. Lessmann, T. Soenen, W. Tavernier, S. Mendel-
Brin, and G. Xilouris, “Sonata: Service programming and
orchestration for virtualized software networks,” in 2017
IEEE International Conference on Communications
Workshops (ICC Workshops), May 2017, pp. 973–978

[12] Mario Kind et al. “Deliverable 2.2: Final Architecture”.
Available from: https://www.fp7-unify.eu/files/fp7-unify-eu-
docs/Results/Deliverables/UNIFY%20Deliverable%202.2%2
0Final%20Architecture.pdf [retrieved: February, 2018].

[13] The OpenStack Project. OpenStack: The Open Source Cloud
Operating System. Available from: http://www.openstack.org/
[retrieved: February, 2018].

[14] The OpenStack Project. Openstack keystone developer.
Available from:
http://www.openstack.org/developer/keystone [retrieved:
February, 2018].

[15] The OpenStack Project. Openstack ceilometer developer.
Available from:
http://docs.openstack.org/developer/ceilometer [retrieved:
February, 2018].

[16] The OpenStack Project. Openstack tacker: An open nfv
orchestrator on top of openstack. Available from:
https://wiki.openstack.org/wiki/Tacker [retrieved: February,
2018].

[17] OASIS. Advanced messaging queuing protocol. Available
from: https://www.amqp.org/ [retrieved: February, 2018].

[18] Pivotal Software. RabbitMq - Messaging. Available from:
https://www.rabbitmq.com [retrieved: February, 2018].

[19] Apache Software Foundation. Qpid.Available from:
https://qpid.apache.org/ [retrieved: February, 2018].

[20] Containernet and SONATA Emulator Demo. Available from:
https://github.com/sonata-nfv/son-tutorials/tree/master/upb-
containernet-emulator-summerschool-demo [retrieved:
February, 2018].

[21] SONATA. D2.2 Architecture Design.Available from:
http://sonata-nfv.eu/sites/default/files/sonata/public/content-
files/pages/SONATA_D2.2_Architecture_and_Design.pdf
[retrieved: February, 2018].

[22] Docker - Build, Ship, and Run Any App, Anywhere.
Available from: https://www.docker.com/ [retrieved:
February, 2018].

[23] Containernet. Available from: https://containernet.github.io/
[retrieved: February, 2018].

[24] The netfilter.org "iptables" project.Available from:
http://netfilter.org/projects/iptables/ [retrieved: February,
2018].

[25] M. Peuster, H. Karl, and S. v. Rossem: “MeDICINE: Rapid
Prototyping of Production-Ready Network Services in Multi-
PoP Environments”. IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN),
Palo Alto, CA, USA, pp. 148-153. doi: 10.1109/NFV-
SDN.2016.7919490. (2016)

[26] Daniel Grzonka, “The Analysis of OpenStack Cloud
Computing Platform: Features and Performance” in Journal of
Telecommunicationation Technology, 3/2015, pp. 52-57.

[27] Sevil Draxle et al., “SONATA: Service Programming and
Orchestration for Virtualized Software Networks”, 2017 IEEE
International Conference on Communications Workshops
(ICC Workshops).

[28] Steven van Rossem et al., “A Network Service Development
Kit Supporting the End-to-End Lifecycle of NFV-based
Telecom Services”, 2017 IEEE Conference on Network
Function Virtualization and Software Defined Networks
(NFV-SDN).

[29] T. Soenen, S.Van Rossem, W.Tavernier, F.Vicensy,
D.Valocchiz, et al., “Insights from SONATA: Implementing
and Integrating a Microservice-based NFV Service Platform
with a DevOps Methodology”,
https://biblio.ugent.be/publication/8562744

[30] The SONATA Gatekeeper, Available from: http://sonata-
nfv.eu/sites/default/files/sonata/public/content-
files/article/SONATA_Gatekeeper_SDNWorld_3.pdf
[retrieved: August, 2018].

