
143

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adjustment of the QoS Parameters on Routers

with Neural Network Implementation

Irina Topalova

Department of Information Technology

University of Telecommunications and Post, Bulgaria

Sofia, Bulgaria

itopalova@abv.bg

Pavlinka Radoyska

College of Energy and Electronics

Technical University - Sofia

Sofia, Bulgaria

pradoiska@abv.bg

Abstract—Applying Quality of Service mechanisms to modern

communications is essential for the efficiency and for the traffic

reliability. The various Quality of Service methods are based on

queues management depending on the individual traffic

parameters. Choosing Quality of Service parameters on the

edge network devices defines the management queue and packet

discard/queued parameters on the intermediate devices. The

proposed research explores the possibility of automatically

adapting to the already selected class based Quality of Service

policy of new users added to the backbone of the network. In

addition, a method for queue adjustment has been suggested

and tested, taking into account the current queue of the added

user. A neural network is trained to automatically adapt new

end users to the quality of service policy, already set by other

end users and accepted by intermediate routers. The obtained

results show that the automated adaptation of the Quality of

Service parameters to the already set ones is possible for the

intermediate routers. A software application, implementing the

method in a network segment, is presented. The positive

consequences of applying the proposed method are discussed.

Keywords - traffic congestion, Quality of Service, early

detection, queue management, neural network.

I. INTRODUCTION

This publication is based on our research reported at the

ICAS 2018 conference [1]. Our research is aimed at creating

a mechanism for automatically adjusting Quality of Service

(QoS) parameters on routers using Neural Networks (NN).

The configuration is based on Differentiated Services Code

Point (DSCP) and Weighted Random Early Detection

(WRED) queue management. The aim of QoS in

communication networks is to guarantee the quality of

message delivered by congestion management and congestion

avoidance. This is achieved by dividing the traffic in queues

and managing the queues individually, based on parameters,

configured in any intermediate network device (router or

switch). The packets are marked in the endpoint devices,

according to the QoS model. Any intermediate device must be

configured to create and manage queues, based on this model.

Synchronized queue management in all devices is important

for quality assurance. The purpose of our work is to find a

mechanism by which any new device chooses its

configuration parameters for queue management, based on the

configuration parameters of the neighboring devices. The

various QoS methods are based on queues management

depending on individual traffic parameters. The chosen QoS

parameters on the edge network devices define the

management queue and packet discard/queued parameters on

the intermediate devices. The proposed research explores the

possibility of automatic adaptation to the already selected

class based QoS policy of new users added to the backbone of

the network. A NN, defined among many other types of neural

networks NNs by Graupe [2] is trained to adapt new end users

to the QoS policy, already set by other end users and accepted

by the intermediate routers. The WRED method, described in

Cisco guide [3], was applied to manage and to define the train

and the test NN parameters. Additionally, a queue adjustment

in a backbone router is proposed, taking into account the

current queue of the added user. The automatic adaptation of

additional networking devices to existing infrastructure with

already-defined QoS policy would lead to the release of

human resources and acceleration of the adaptation of traffic

parameters in communication management. Properly

tracking and setting the backbone queue in accordance to new

added users, would improve the efficiency of the congestion

management. The experimental results are presented,

discussed and a further continuation of the study is proposed.

The rest of this paper is organized as follows. Section II

describes the related to the research works. Section III

describes and compares differentiated services and weighted

random early detection methods. In Section IV the weighted

random early detection with extension of explicit congestion

notification is explained. Section V describes the proposed

method for parameter adjustment and neural network

implementation. Section VI gives the experimental results.

Section VII introduces a software application for managing

the QoS configuration process with using the NN. The

conclusion with discussions close the article.

II. RELATED WORKS

Differentiated Services Code Point in IPv4 and
Differentiated Services (DiffServ) in IPv6 are advanced
instruments for traffic marking and queue management.

144

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Khater and Hashemi [4] propose to use Differentiated
Services Queues at the output port and move the flows
between queues to prevent increasing delays of the flows. In
another work [5] the authors use TSK fuzzy model to generate
Differentiated Services Code Point values dynamically and
update them in real time to improve QoS. The authors Sahu
and Sar [6] have created an intelligent method to recognize
incoming congestion problems earlier. They train a
feedforward neural network with parameters equivalent to the
total drop, average per packet drop, cumulative per packet
drop, maximum packets drop and minimum packets drop, for
send and receive features. The final solution is not
automatically obtained as a result of the proposed method. It
is left to the administrator. The results are not clearly
represented and discussed, moreover the authors claim that
their developed system missed some points of congestion.
Within the model proposed in [7], the transmitted
packets/traffic were predicted through a neural network,
achieving prediction by alternating the input variables
(Bandwidth, Congestion Algorithms, QoS, etc.). In this case,
in TCP predictions, where one of the most important factors
is related to the limitations of this protocol in both the sender
and receiver, congestion improvements or methods for QoS
were not considered. The different predictions have validity
with respect to the real data, obtaining an average error of 4%.
The authors in [8] apply a neural network to predict the actual
time needed for transmitting the packet to the destination,
depending on the number of hops. As neural network input
train parameters, the authors use CWND (Congestion
Window) as TCP state variable; Round-Trip Time (RTT) as
the length of time it takes for a signal to be sent plus the length
of time it takes for an acknowledgement of that signal to be
received and the time elapsed from the last loss of a packet.
However, this study does not use a method of prioritizing the
traffic according to different types of priorities and they do not
group traffic into classes according to the priority, given by
the end routers/ users.

All mentioned researches do not apply more productive/
efficient methods, such as WRED in conjunction with Class-
Based Weighted Fair Queueing (CBWFQ), proposed in Cisco
guide [3]. They do not interpret the task we offer - to
automatically adapt new end users to the quality of service
policy, already set by other end-users and accepted by the
intermediate routers.

III. DIFFERENTIATED SERVICES AND WEIGHTED RANDOM

EARLY DETECTION

Network congestion occurs when the volume of incoming
traffic exceeds the bandwidth of the outgoing channel.
Congestion avoidance mechanisms are trying to provoke TCP
slow-start algorithm (RFC 2001), implemented in end
devices. WRED and differentiated services, implemented in
routers, become the most effective approach to prevent the
congestions.

A. Active Queue Management congestion avoidance

mechanisms

Congestion avoidance in routers is implemented by Active
Queue Management (AQM) congestion avoidance

mechanisms. Extra packets coming on the inbound interfaces
are queued in buffers. The length of the queue is maintained
within defined limits by dropping the packets. One of the first
effective AQM mechanism is RED (Random Early
Detection), proposed by Floyd and Jacobson [9] in the early
1990s. Two critical thresholds for the queue are defined:
minimum queue length (𝒎𝒊𝒏q) and maximum queue length
(𝒎𝒂𝒙q) and three queue management phases: no drop,
random drop, and full drop, shown in Fig. 1. No drop phase is
executed only for queue length from 0 to 𝒎𝒊𝒏q. All packets
are buffered. Random drop phase is for queue length from
𝒎𝒊𝒏q to 𝒎𝒂𝒙q. Some packets are dropt. Full drop phase is
for queue length above 𝒎𝒂𝒙q. All packets are dropped. The
packet drop probability (random drop phase) is calculated
based on the average queue length and the MPD (Mark
Probability Denominator), Floyd and Jacobson [9]. MPD is
the number of dropped packets when the queue size is equal
to 𝒎𝒂𝒙q. RED algorithm gives a decision for congestion
avoidance problem but has some disadvantages. First, this
mechanism does not affect non-TCP protocols. There are risks
by insensitive protocols to embezzle the queue. Second, the
packets from different TCP sessions are not dropped equally
and there is a risk of global synchronization problem. Third,
the number of dropped packets sharply jump to 100% when
the queue size achieves 𝒎𝒂𝒙q size. Different algorithms for
the improvement of active queue management are proposed in
[10]. WRED is a kind of class based queue management
algorithms. It uses the same parameters as RED, but it has the
ability to perform RED on traffic classes individually. Several
traffic classes can be defined within a single queue. Each class
has a specific level for the 𝒎𝒊𝒏q, 𝒎𝒂𝒙q and MPD. Packets
are classified and joined to a specific class. Drop probability
for each packet is calculated according to its class parameters.
The packets with lowest 𝒎𝒊𝒏q and/or the highest MPD are
dropped preferentially. Every class has the same three phases
as the RED algorithm. WRED management queue with three
classes: AF1, AF2 and AF3 is presented in Fig. 2. AF1 and
AF2 have the same 𝒎𝒂𝒙q and MPD parameters. The AF1
𝒎𝒊𝒏q parameter has a lower value then the AF2 𝒎𝒊𝒏q
parameter. Obviously the most packages are dropped from
AF1 class, then from AF2 class and finally from AF3 class.
The network traffic is divided in several queues to improve
fairness in packet dropping. Each queue is managed by the
RED, WRED or а similar algorithm. Weighted Fair Queue
(WFQ), discussed by

Figure 1. Random Early Detection phases.

145

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. WRED phases.

Vukadinović and Trajković [11] is a data packet scheduling
algorithm. All the queues share outbound bandwidth equally
or by predefined ratios. The queues are visited one by one in
the cycle period. Every queue sends the amount of packets,
according to its share part of the outgoing capacity. The simple
WFQ example is presented in Fig. 3. Q1 gets 50% of the
outgoing capacity, Q2 – 25% and Q3 – 25%. The Scheduler
visits Q1 and passes over 2 packets to the output. After that it
visits Q2 and passes over 1 packet to the output; visits Q3 and
passes over 1 packet to the output, and the cycle is rotated
again.

B. Differentiated Services Quality of Service model

There are three main models for providing QoS in a
network: Best Effort; Integrated Services (IntServ);
Differentiated Services (DiffServ). DiffServ is called soft QoS
model and uses WFQ and WRED algorithms. This model is
based on user defined service classes and Per-Hop-Behavior
(PHB). The flows are aggregated in traffic classes. The
network service policies are defined for each class on any
single node. Priorities are marked in each packet using DSCP
for traffic classification.

The fields Type of Service (ToS) in IPv4 header (RFC

791) and Traffic Class (TC) in IPv6 header (RFC 2460) are

predefined as Differentiated Services Field (DS Field) in

RFC 2474. The first six bits of the DS field are used as a code

point (DSCP) to select the PHB packet experiences at each

node. DSCP values are described in RFC 2475. They

determine the PHB of a packet. Four conventional PHBs are

available: two border marks; Class-Selector PHB and

Assured Forwarding (AF). DSCP = 000000 marks best effort

behavior. All packets with this mark will be dropped when

congestion occurs. This is the default PHB. DSCP = 101110

(46 in decimal) marks Expedited Forwarding (EF). EF PHB

provides a virtual leased line and is used for critical traffic

class as voice traffic. EF PHB provides low-loss, low-latency,

low-jitter and assured bandwidth service. DSCP values of

“xxx000” (“xxx” are the class selector bits) mark Class-

Selector PHB and are used to assure backward compatibility

with IP ToS model. DSCP values of “xxxyy0” mark Assured

Forwarding (AF) PHB. “xxx” is for user defined AF class and

“yy” is for drop precedence of a packet. “01” denotes low

drop precedence, “10” – middle and “11” - high drop

precedence. AF PHB classes are the subject of this paper.

B.
Figure 3. Weighted Fair Queue

C. DiffServ model configuration steps

1) Network traffic classification

Performs predominantly on the edge for QoS domain

router - Cisco Guide [12]. The traffic type is defined by

Access Control Lists (ACL) and joined to the specific AF

class. Every class is associated with specific DSCP value.

Inbound packets are marked with corresponding DSCP value

on the edge routers of QoS domain and it is not recommended

to change it in the intermediate routers.

2) Queue building

One or more AF classes can be aggregated in one queue,

based on PHB parameters. The Queues can be three types:

Strict priority queue (LLQ – Low latency queue); Class based

queues (managed by WRED algorithm) end best effort queue.

3) Defining queue parameters

The WRED parameters are defined for every queue. For

the Strict priority queue, the defined outbound bandwidth is

guaranteed. The rest of outbound bandwidth is distributed

between all other queues. For every class based queue, the

following parameters are defined:

a) The portion of the bandwidth in percentage;

b) For each AF class (DSCP value) in the queue: min-

threshold; max-threshold; MD (Mark-denominator).
Successful congestion avoidance depends on the proper

execution of the above three steps. Especially on proper queue
management definitions, described in 3) b).

IV. WRED FUNCTIONALITY EXTENDED WITH ECN

WRED drops packets, based on the average queue length

exceeding a specific threshold value, to indicate congestion.

Explicit Congestion Notification (ECN) (RFC 3168) provide

end-to-end lossless communication between two endpoints

over an IP routed network as given in [13] [14]. The ECN is

an extension to WRED in that ECN marks packets instead of

dropping them when the average queue length exceeds the

min-threshold value. If there is a risk of congestion in a

device (min-threshold < queue < max-threshold), instead of

dropping the packages, they are marked and forwarded.

When a marked packet arrives to the recipient, it sends a

confirmation to the sender informing it of the available traffic

congestion. As a result, the sender reduces his TCP window

and the congestion decreases. This increases the bandwidth

of the network because no unnecessary packets are ejected.

This mechanism can be built into both - intermediate and end

devices. There are also adaptations of ECN to UDP protocol

explained in [15] - [17]. Two protocols which support ECN

width UDP are defined: Datagram Congestion Control

146

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Protocol (DCCP) (RFC5681) and Stream Control

Transmission Protocol (SCTP) (RFC4960). The receiver

sends a small special message to the sender, recommending

to slow down the sending speed, because of congestion on the

route. The next effective congestion avoidance is eXplicit

Congestion Control Protocol (XCP), given in [18]. It works

on the end and intermediate network devices (switches and

routers) width TCP and UDP traffic. In addition, they use

end-to-end bandwidth evaluation, to get high congestion

estimation. Some of the open problems in Internet congestion

control. Are discussed in RFC 6077.

ECN uses two bits - the ECN-capable Transport (ECT) bit

and the CE (Congestion Experienced), which are the two least

significant bits in the ToS field in the IP header. The four

combinations of these bits have the following meaning: “0 0”

indicates that a packet is not using ECN, “0 1” and “1 0” are

set by the data sender to indicate that the endpoints of the

transport protocol are ECN-capable and “1 1” indicates

congestion to the endpoints i.e. packets reached a max-

threshold of a router will be dropped. When ECN is enabled,

the packets are treated as given in by Cisco Systems,

Congestion Avoidance Configuration Guide, [19] and

summarized by us, as follows:

1) If the number of packets in the queue is below the min-

threshold, they are forwarded, whether or not ECN is

enabled, and this is identical to the treatment a packet

receives when WRED is only used on the network.

2) If the number of packets in the queue is between the min-
threshold and the max-threshold, one of the following four
cases is possible:

a) ECN field is “0 1” or “1 0” on the packet indicates

that the endpoints are ECN-capable and the WRED algorithm

determines that the packet should have been dropped based on

the drop probability. In this case, the ECT and CE bits for the

packet are changed to 1 and the packet is transmitted. So that,

the packet gets marked instead of dropped.

b) If the ECN field on the packet indicates that neither

endpoint is ECN-capable (that is, the ECT bit is set to 0 and

the CE bit is set to 0), the packet may be dropped based on the

WRED drop probability. This is the identical packet treatment

when WRED is applied without ECN enabled.

c) If the ECN field on the packet indicates that the

network is experiencing congestion (that is, both the ECT bit

and the CE bit are set to 1), the packet is transmitted. No

further marking is required.

3) If the number of packets in the queue is above the max-
threshold, packets are dropped based on the drop probability.
Such a treatment of a package is the same as when the router
works only with WRED, without the ECN being set. The
properly selected value of min-threshold is essential for the
proper functioning of the network and congestion avoidance
mechanism.

V. PROPOSED METHOD FOR WRED PARAMETER

ADJUSTMENT EXTENDED WITH ECN

In this study, we apply the WRED method for QoS in а

network having end routers, a central/backbone router and an

ad-hoc “New” router. The first task is to force the new added

router to comply with the QoS requirements, which were pre-

set in the central router. For this we propose а NN, intended

to work in the central router, aiming to adjust the parameters

of the “New” to the existing ones. The second task is to

propose a method for appropriately determining the average

queue and the min-threshold in the central router, when

applying ECN, taking into account the current average queue

of the added “New” router.

A. Investigated topology

We apply the WRED method for QoS, because it gives

relation between AF classes and the most important queue

traffic parameters. The topology shown in Fig. 4 is

considered. It consists of two edge routers (Remotes 1 and 2),

an intermediate router(Central) and an edge router "New",

which is added later after the QoS parameters are set in the

edge routers. WRED is implemented at the central/core

routers of a network. Edge routers assign IP precedence to

packets as the packets enter the network. With WRED, core

routers then use these precedencies to determine how to treat

different types of traffic [18]. The idea is to train a neural

network (NN), implemented in the Central router with

WRED parameters: AF class, min-threshold; max-threshold

and MD, according to the IOS command random-detect.

When an ad-hoc edge router "New" is added with its

configured WRED (DSCP) requirements of its network, the

already trained NN will approximate/adjust its MD to that

already learned by the NN. This adjustment will be

performed automatically without the need for any operator

intervention. The new added router will have to comply with

the pre-set QoS requirements.

B. Neural Network strategy

To conduct the experiment, we chose a neural network of

Multi-Layer-Perceptron (MLP) type, training it with a BP

(Backpropagation) algorithm. It was trained with the DSCP

Figure 4. Investigated topology with edge routers (Remote site 1 and 2),

intermediate (Central) router and the ‘New’ added router

147

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

values, corresponding to AF Classes 1,2,3 and 4, where Class

1 represents the ‘worst queue’, for low priority traffic and

Class 4 – the ‘best queue’, for high priority traffic as first

parameter. The second and third parameters in the input

training set are min-threshold and max-threshold, defined by

the command random-detect in the Central router. If the min-

threshold is reached, Central router randomly drops some

packets with the specified IP precedence. If the max-

threshold is reached, Central router drops all packets with the

specified IP precedence. The MLP has one output neuron and

it represents the desired MD, where MD represents the

fraction of packets dropped when the average queue depth is

at the max-threshold. It means that one out of every MD

packets will be dropped. Table I represents the

correspondence between AF classes, DSCP values and drop

precedence. After the NN was trained, a combination of

different DSCP values with proposed bandwidth percent for

each AF class was provided at its input layer, in order to

simulate these parameters, send by the ‘New’ router.

According to the “New” requirements/parameters, the

Central router generates new min-threshold and max-

threshold and forwards the new information to the NN inputs.

TABLE I. AF CLASSES AND CORRESPONDING DSCP VALUES

As a result, the trained NN gives an output with approximated

MD value, which is near the value defined initially by the

Central. In this way, the ‘New’ router will be forced to

"comply" with the chosen QoS policy.

C. Queue adjustment

The average queue size is based on the previous average

and current size of the queue, as given in equation (1) [19]:

𝑄𝑎𝑣𝑟 = (𝑜𝑙𝑑𝑎𝑣𝑟 ∗ (1 −
1

2𝑛)) + (𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 ∗
1

2𝑛), (1)

where Qavr is the calculated value of the average queue size,

oldavr is the previous value of the queue, curr_queue_size is

the current queue and n is the exponential weight factor, a

user-configurable value. The analysis of this equation shows

that for high values of n the previous average queue size

becomes more important. At the same time for low values of

n the average queue size Qavr will closely track the current

queue size.

In our case we propose a change in the given equation (1)

in order to accommodate C:Qavr of Central router, taking into

account also the current queue size 𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 of

Figure 5. NN train data with initial QoS parameters. Тhe ordinate

represents the number of packets in the queue and DM

the New router. We choose the critical moment when the

previous value of oldavr reaches the min-threshold in the

Central router, i.e.

𝐶: 𝑄𝑎𝑣𝑟 = (𝐶: 𝑚𝑖𝑛 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ (1 −
1

2𝑛)) +

((𝐶: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 + 𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒)/2)) ∗
1

2𝑛

We denote here the parameter 𝑵𝑒𝑤 𝑨𝑣𝑒𝑟𝑎𝑔𝑒 𝑸𝑢𝑒𝑢𝑒(NAQ) as:

𝑵𝑨𝑸 = (𝐶: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 + 𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒)/2. (2)

As the right choice of n is the exponential weight factor

and is user-configurable value, we will run the experiment

with different n values to determine the better option.

VI. EXPERIMENTAL RESULTS

The initially selected MLP network structure is 6-4-1 and
is trained to MSE (Mean-Square-Error) = 0.1. The train data
are given in Fig. 5. They have 12 input samples as
combinations between DSCPs, min-threshold and max-

threshold, defined in Remote 1 and 2. After conducting the
test phase with the ‘New’ data, the obtained MD
approximation is shown in Fig. 6. The approximation error
EAPPROX is calculated according to (3), where MDRSi is the
initial real system value for the Central router, for i-th input

𝐸𝐴𝑃𝑃𝑅𝑂𝑋 = √∑
(𝑀𝐷𝑅𝑆𝑖

−𝑀𝐷𝑁𝑁𝑖
)2

𝑛

𝑛
𝑖=1 (3)

combination, MDNNi is the NN response, and n is the number

of input combinations. The obtained results using this NN

topology are given in Fig. 7. In this case, EAPROX is 2.56.

Obviously, it is necessary to improve the MLP parameters by

training a network with an improved structure of 6-6-4-1 and

with more iterations, aiming to reach a smaller MSE. In this

case, we apply MSE of 0.01. Better obtained results are given

in Fig. 8. In this case, EAPROX is 0.91. Thus, based on the

training of the optimized neural network with the defined AF

classes and their initial matching random-detection

parameters, we obtain a relatively good MD approximation.

Further work is foreseen to test the NN with more

combinations of input parameters. For testing the WRED

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

D
M

Number of samples

NN Train Data

DSCP-Class4-Higher priority DSCP-Class3

DSCP-Class2 DSCP-Class1-Lower priority

Min-threshold Max-threshold

Mark-denominator

Assured

Forwarding

Low Drop

(DSCP)

Medium

Drop

(DSCP)

High Drop

(DSCP)

Class 4 AF41 (34) AF42 (36) AF43 (38)

Class 3 AF31 (26) AF32 (28) AF33 (30)

Class 2 AF21 (18) AF22 (20) AF23 (22)

Class 1 AF11 (10) AF12 (12) AF13 (14)

148

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. NN ‘New’ test data with MD approximation. Тhe ordinate

represents the number of packets in the queue and DM

Figure 7. MD approximation with MLP – 6-4-1. Тhe ordinate represents

the number of packets in the queuе and DM

Figure 8. MD approximation with MLP – 6-6-4-1 Тhe ordinate represents.

the number of packets in the queue and DM

functionality, extended with ECN, corresponding to cases 2)/

a) and 2)/ c), we choose the critical moment when the previous

value of oldavr reaches the min-threshold in the Central router.

The goal is to determine the value of C: Qavr, taking into

account also the current queue size N: curr_queue_size of the

New router. We tested how C: Qvar tracks NAQ, depending

on its different peak changes, according to (2), and how the

exponential weight factor n influences the adaptation. Fig. 9,

10, 11 and 12 show the adaptation of C: Qvar when n=4,3,2,1

correspondingly. The obtained results show that a large factor

of n=3 represented in Fig. 10, smooths out the peaks and

lowers the queue length. The average queue size will not

Figure 9. Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=4. Тhe ordinate represents the
number of packets in the queues and DM

Figure 10. Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=3. Тhe ordinate represents the

number of packets in the queues and DM

Figure 11. Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=2. Тhe ordinate represents the
number of packets in the queues and DM

probably change very quickly, avoiding dramatic fluctuations

in size. The WRED process will be slow to start dropping

packets and the slow-changing average C: Qvar will

accommodate temporary peaks in traffic. But if the value of n

gets too high (n=4, Fig. 9), WRED will not react to

congestion. Packets will be transmitted or dropped as if

WRED does not work. For low values of n (n=2, Fig. 11), the

C: Qvar tracks closely the current queue size. The resulting

average value may fluctuate adequately with the changes in

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12

D
M

Number of samples

NN Data of the 'New' router and MD

DSCP-Class4-Higher priority DSCP-Class3

DSCP-Class2 DSCP-Class1-Lower priority

Min-threshold Max-threshold

Mark-denominator

-10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

M
D

Number of samples

Mark-denominator - MD

Value for the "Central" router

Approximated value for the "New" router

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

M
D

Number of samples

Mark-denominator - MD

Value for the "Central" router

Approximated value for the "New" router

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Q
u

eu
e

si
ze

Number of samples

Queues - n=4

C: min_threshold NAQ C:Q_avr

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Q
u
eu

e
si

ze

Number of samples

Queues - n=3

C: min_threshold NAQ C:Q_avr

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Q
u
eu

e
si

ze

Number of samples

Queues - n=2

C: min_threshold NAQ C:Q_avr

149

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=1. Тhe ordinate represents the
number of packets in the queues

the traffic levels of both Central and New routers (i.e. of

NAQ). Once the resulting queue falls below the minimum

threshold, the process will stop dropping packets. If the value

of n gets too low (n=1, Fig. 12), WRED will overreact to

temporary resulting traffic bursts and will drop traffic

unnecessarily. Thus, the proposition of n = 2 seems to be the

most appropriate in terms of queue efficiency.

VII. REALTIME REMOTE ROUTERS RECONFIGURATION

The purpose of our research is to get better QoS

management by synchronizing the queue management

parameters on the routers in one network segment without the

manual reconfiguration of any new router. Moreover, we try

to synchronize the queue management parameters on all

routers in network segment after the reconfiguration of only

the Central router.

A. Processes and management

A data-flow diagram is shown on Fig. 13. The NN block

and The Manager are software blocks that work on an

external machine (PC or a laptop). The Manager is

responsible for the process navigation. Each router can

perform the role of a master (Central) or a subordinate.

Router1, Router2 and New on Fig. 13 are subordinate routers.

Figure 13. Real-time configuration process

There are two types of processes: training and

reconfiguring. The training process includes: reading QoS

parameters from the Central router, preparing and sending the

training matrix to the NN. The reconfiguring includes:

reading the QoS configuration from the subordinate router,

preparing and sending a query to the NN and, based on the

NN response, prepares the synchronized configuration

parameters and sends them to the subordinate router.

There are two possible situations: (1) inclusion of a new

router; (2) reconfiguring. In the first situation, the NN is

already trained and all routers’ configurations are

synchronized. A new router with autonomous QoS

configuration is included in the network segment. The

Manager makes connection to the new router, extracts proper

denominator from the NN and reconfigures the new router.

The new router starts work in synchronization with all routers

in the segment.

In the second situation, all routers’ configurations are

synchronized but the QoS configuration on the Central router

is changed. The Manager makes connection to the Central

router, extracts the new queue management parameters and

trains the NN. Then it makes connections to all other routers

consequently: reads their current QoS parameters, sets them

to the NN, gets the new proper denominator and reconfigures

the routers. All routers QoS configurations are synchronized

again.

The communication between the Manager and the NN

block performs in off-line mode being based on computer

operating system mechanisms. The communication between

the Manager and the routers is accomplished via SSH

protocol. Therefore, any router in the management network

segment must be registered in the Manager.

B. Manager block implementation

This Manager is written as multithreading Windows

application by C# programming language. As hardware

devices are used Cisco routers, platforms 2800/2900 with

IOS 15.0. The Manager interface has two tabs: Registration

and Processes given in Fig. 14 and Fig. 15 respectively. The

Central router and the subordinated routers are separated in

different blocks for their different roles. The IP address,

username and password for SSH connection are saved for

each registered router, shown in Fig. 16. The IP address is

used as a router identificator.

The training process starts after the button “Train (off-

line)” is selected. The result of the training process is

displayed in the textbox on the right as shown in Fig. 15.

There are two buttons for reconfiguration, according to the

two situations mentioned above. Only the selected router is

reconfigured after the selection of the button “Reconfigure”.

All routers, included in the list “Subordinated routers” are

reconfigured after the selection of the button “Reconfigure

All”. The result of this process is displayed in the textbox

“Reconfiguration Results” as shown in Fig. 17. The

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12

Q
u

eu
e

si
ze

Number of samples

Queues - n=1

C: min_threshold NAQ C:Q_avr

150

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

administrator must troubleshoot the problem in case of

appearance of router reconfiguration problems.

All communications in the dataflow diagram, shown in

Fig. 13, are of a machine-machine type. The training and the

reconfiguration are made automatically but all processes

must be started by a person. This approach is appropriate for

the first situation, described above – inclusion of a new

router. The router registration has to be made manually and

the manual start of the reconfiguration should not lead to a

significant processing delay. The second situation would be

more flexible if the Central router sends a signal to the

Manager for the configuration change automatically, thus

forcing the training and reconfiguration processes. Solving

this problem is a matter of our future research. We need to

find a mechanism to alert the Manager about the changes of

the Central router configuration. The Manager also must

work as a server to listen permanently to that signal.

Figure 14. Manager software – Registration tab

Figure 15. Manager software – Processes tab

Figure 16. Managing the parameters for SSH connection

Figure 17. Manager software – Registration tab width reconfiguration

results

VIII. CONCLUSION

In this research, a MLP neural network was trained,

aiming to automatically adapt new end users to the quality of

service policy, already set by other end-users and accepted by

the intermediate routers. The WRED method was applied to

manage and to define the train and test NN parameters. The

proposed method shows good MD approximation results for

the tested input set. The main benefit of the automatic

adaptation of additional networking devices to existing

infrastructure with an already-defined QoS policy would lead

to the release of human qualified resources, needed for

manual QoS parameter pre-settings. It also would accelerate

the traffic parameters adaptation in communication

management and in real-time communication. The proposed

accommodation of C:Qavr in the Central router, taking into

account also the current queue size 𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 of

the New router, choosing the critical moment when the

previous value of oldavr reaches the min-threshold in the

Central router, shows good tracking especially when n=2. If

the value of n gets too low (n=1, Fig. 12), WRED will

overreact to temporary resulting traffic bursts and will drop

traffic unnecessarily. Thus, the proposition of n = 2 seems to

be the most appropriate in terms of queue efficiency.

A software application was developed to verify the

proposed method. It is installed on the external computer

system and works as a manager for all processes: reading the

initial configuration, preparing the training matrix, starting

151

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the NN training, getting the new proper denominator from

already trained NN, reconfiguring the subordinated routers.

The verification indicates that the method is applicable.

As further work, the input training and test sets may be

increased to generalize the method. The idea is to train the

NN with the same standard AF classes but with much more

possible/ reasonable combinations of min-max thresholds,

together with a proper proposal for the required link

bandwidth at the outputs of the NN. The investigated

topology given in Fig. 4, may be tested with more Remote

routers and many “New” routers, to test the behavior of the

Central router. In this case, different NNs could be trained

with QoS parameters defined in the different Remotes, and

the NN outputs may be combined in input train data for a

generalized neural network, to give the final MD proposal.

Also, software modules will be developed to integrate the

neural network into a module of the Central router operating

system, for direct data exchange between the routers. Aiming

to achieve/solve this task, we envisage the use of Python

programming language, suitable for implementation in

networking operating systems.

REFERENCES

[1] I. Topalova, P. Radoyska, “Control of Traffic Congestion with
Weighted Random Early Detection and Neural Network
Implementation”, ICAS 2018, The Fourteenth International
Conference on Autonomic and Autonomous Systems, pp. 8-12,
Nice, France, 20-24 May 2018

 [2] D. Graupe, ‘Deep Learning Neural Networks: Design and Case
Studies’, World Scientific Publishing Co Inc. pp. 57–
110, ISBN 978-981-314-647-1, July, 2016.

[3] Cisco IOS Quality of Service Solutions Configuration Guide,
Release 12.2, Chapter: Congestion Avoidance Overview
https://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configura
tion/guide/fqos_c/qcfconav.html#wpxref11086, last accessed
16.11.2018.

[4] A. Khater and M. R. Hashemi, "Dynamic Flow Management
Based on DiffServ in SDN Networks," Electrical Engineering
(ICEE), Iranian Conference on, Mashhad, 2018, pp. 1505-
1510.
doi: 10.1109/ICEE.2018.8472638

[5] J. Li, L. Yang, X. Fu, F. Chao and Y. Qu, "Dynamic QoS
solution for enterprise networks using TSK fuzzy
interpolation," 2017 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), Naples, 2017, pp. 1-6.
doi: 10.1109/FUZZ-IEEE.2017.8015711

[6] Y. Sahu and S. K. Sar, ‘Congestion analysis in wireless
network using predictive techniques’, Research Journal of
Computer and Information Technology Sciences, ISSN 2320 –
6527 vol. 5(7), pp. 1-4, September, 2017.

[7] A. F. Luque Calderón, E. J. Vela Porras and O. J. Salcedo Parra,
‘Predicting Traffic through Artificial Neural Networks’,
Contemporary Engineering Sciences, vol. 10, no. 24, pp. 1195

- 1209 HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ces. 2017.710146, 2017.

[8] S. S. Kumar, K. Dhaneshwar, K. Garima, G. Neha and S.
Ayush, ‘Congestion Control in Wired Network for
Heterogeneous resources using Neural Network’, International
Journal of Advanced Research in Computer Science and
Software Engineering, Volume 3, Issue 5, May 2013, ISSN:
2277 128X, pp.533-537, 2013.

[9] S. Floyd and V. Jacobson, ‘Random Early Detection Gateways
for Congestion Avoidance’, IEEE/ACM Transactions on
Networking, Networking, vol. 1 No. 4, pp. 397-413, August,
1993,Available:http://www.icir.org/floyd/papers/early.twocol
umn.pdf: accessed August, 2018.

[10] G. Abbas, Z. Halim and Z. H. Abbas, ‘Fairness-Driven Queue
Management: A Survey and Taxonomy’, IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 324-
367, First quarter 2016.
doi: 10.1109/COMST.2015.2463121, 2016.

[11] V. Vukadinović and L. Trajković, ‘RED with Dynamic
Thresholds for improved fairness’, Proceedings of the 2004
ACM symposium on Applied computing (SAC '04). ACM,
New York, NY, USA, 371-372. DOI:
https://doi.org/10.1145/967900.967980, 2004.

[12] QoS: DiffServ for Quality of Service Overview Configuration
Guide, Cisco IOS Release 15M&T, January 16, 2013
Available:https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/qos_dfsrv/configuration/15-mt/qos-dfsrv-15-mt-
book.html: accessed August, 2018.

[13] B. Trammell, M. Kühlewind, D. Boppart, I. Learmonth, G.
Fairhurst, and R. Scheffenegger, “Enabling Internet-Wide
Deployment of Explicit Congestion Notification”, Passive and
Active Measurement. PAM 2015, pp 193-205, March, 2015.
DOI: https://doi.org/10.1007/978-3-319-15509-8_15

[14] M. Kühlewind, S. Neuner and B. Trammell, “On the state of
ECN and TCP options in the internet”, Proceedings of the
Passive and Active Measurement, 2013, Hong Kong SAR,
China, 2013.
DOI: https://doi.org/10.1007/978-3-642-36516-4_14

[15] S. McQuistin and C. Perkins, ”Is Explicit Congestion
Notification usable with UDP?”, IMC '15 Proceedings of the
2015 Internet Measurement Conference, Pages 63-69, Tokyo,
Japan — October 28 - 30, 2015
doi: 10.1145/2815675.2815716

[16] E. Stergiou, D. Liarokapis, C. Angelis and F. Vartziotis,
“Vigorous Distance Learning Applications Using the Stream
Control Transmission Protocol”, Science Journal of Education.
Vol. 5, No. 6, pp. 262-267, 2017.

[17] S. Saini and A. Fehnker, “Evaluating the Stream Control
Transmission Protocol Using Uppaal”, EPTCS 244, 2017, pp.
1-13, 2017.
DOI: 10.4204/EPTCS.244.1

[18] J. Wang, J. Chen, S. Zhang and W. Wang, "An Explicit
Congestion Control Protocol Based on Bandwidth Estimation",
IEEE Global Telecommunications Conference - GLOBECOM
2011, Kathmandu, 2011, pp. 1-5.
.,doi:10.1109/GLOCOM.2011.6134086, 2011.

[19] QoS: Congestion Avoidance Configuration Guide, Cisco IOS
XE Release 3S, Cisco Systems, Inc. 170 West Tasman Drive
San Jose, CA 95134-1706 USA

