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Abstract—Applying Quality of Service mechanisms to modern 

communications is essential for the efficiency and for the traffic 

reliability. The various Quality of Service methods are based on 

queues management depending on the individual traffic 

parameters. Choosing Quality of Service parameters on the 

edge network devices defines the management queue and packet 

discard/queued parameters on the intermediate devices. The 

proposed research explores the possibility of automatically 

adapting to the already selected class based Quality of Service 

policy of new users added to the backbone of the network. In 

addition, a method for queue adjustment has been suggested 

and tested, taking into account the current queue of the added 

user. A neural network is trained to automatically adapt new 

end users to the quality of service policy, already set by other 

end users and accepted by intermediate routers. The obtained 

results show that the automated adaptation of the Quality of 

Service parameters to the already set ones is possible for the 

intermediate routers. A software application, implementing the 

method in a network segment, is presented. The positive 

consequences of applying the proposed method are discussed.  

Keywords - traffic congestion, Quality of Service, early 

detection, queue management, neural network. 

I.  INTRODUCTION  

This publication is based on our research reported at the 

ICAS 2018 conference [1]. Our research is aimed at creating 

a mechanism for automatically adjusting Quality of Service 

(QoS) parameters on routers using Neural Networks (NN). 

The configuration is based on Differentiated Services Code 

Point (DSCP) and Weighted Random Early Detection 

(WRED) queue management. The aim of QoS in 

communication networks is to guarantee the quality of 

message delivered by congestion management and congestion 

avoidance. This is achieved by dividing the traffic in queues 

and managing the queues individually, based on parameters, 

configured in any intermediate network device (router or 

switch). The packets are marked in the endpoint devices, 

according to the QoS model. Any intermediate device must be 

configured to create and manage queues, based on this model. 

Synchronized queue management in all devices is important 

for quality assurance. The purpose of our work is to find a 

mechanism by which any new device chooses its 

configuration parameters for queue management, based on the 

configuration parameters of the neighboring devices. The 

various QoS methods are based on queues management 

depending on individual traffic parameters. The chosen QoS 

parameters on the edge network devices define the 

management queue and packet discard/queued parameters on 

the intermediate devices. The proposed research explores the 

possibility of automatic adaptation to the already selected 

class based QoS policy of new users added to the backbone of 

the network. A NN, defined among many other types of neural 

networks NNs by Graupe [2] is trained to adapt new end users 

to the QoS policy, already set by other end users and accepted 

by the intermediate routers. The WRED method, described in 

Cisco guide [3], was applied to manage and to define the train 

and the test NN parameters. Additionally, a queue adjustment 

in a backbone router is proposed, taking into account the 

current queue of the added user. The automatic adaptation of 

additional networking devices to existing infrastructure with 

already-defined QoS policy would lead to the release of 

human resources and acceleration of the adaptation of traffic 

parameters in communication management. Properly 

tracking and setting the backbone queue in accordance to new 

added users, would improve the efficiency of the congestion 

management. The experimental results are presented, 

discussed and a further continuation of the study is proposed.     

The rest of this paper is organized as follows. Section II 

describes the related to the research works. Section III 

describes and compares differentiated services and weighted 

random early detection methods. In Section IV the weighted 

random early detection with extension of explicit congestion 

notification is explained. Section V describes the proposed 

method for parameter adjustment and neural network 

implementation. Section VI gives the experimental results. 

Section VII introduces a software application for managing 

the QoS configuration process with using the NN. The 

conclusion with discussions close the article. 

II. RELATED WORKS 

Differentiated Services Code Point in IPv4 and 
Differentiated Services (DiffServ) in IPv6 are advanced 
instruments for traffic marking and queue management. 
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Khater and Hashemi [4] propose to use Differentiated 
Services Queues at the output port and move the flows 
between queues to prevent increasing delays of the flows. In 
another work [5] the authors use TSK fuzzy model to generate 
Differentiated Services Code Point values dynamically and 
update them in real time to improve QoS. The authors Sahu 
and Sar [6] have created an intelligent method to recognize 
incoming congestion problems earlier. They train a 
feedforward neural network with parameters equivalent to the 
total drop, average per packet drop, cumulative per packet 
drop, maximum packets drop and minimum packets drop, for 
send and receive features. The final solution is not 
automatically obtained as a result of the proposed method. It 
is left to the administrator. The results are not clearly 
represented and discussed, moreover the authors claim that 
their developed system missed some points of congestion. 
Within the model proposed in [7], the transmitted 
packets/traffic were predicted through a neural network, 
achieving prediction by alternating the input variables 
(Bandwidth, Congestion Algorithms, QoS, etc.). In this case, 
in TCP predictions, where one of the most important factors 
is related to the limitations of this protocol in both the sender 
and receiver, congestion improvements or methods for QoS 
were not considered. The different predictions have validity 
with respect to the real data, obtaining an average error of 4%. 
The authors in [8] apply a neural network to predict the actual 
time needed for transmitting the packet to the destination, 
depending on the number of hops. As neural network input 
train parameters, the authors use CWND (Congestion 
Window) as TCP state variable; Round-Trip Time (RTT) as 
the length of time it takes for a signal to be sent plus the length 
of time it takes for an acknowledgement of that signal to be 
received and the time elapsed from the last loss of a packet. 
However, this study does not use a method of prioritizing the 
traffic according to different types of priorities and they do not 
group traffic into classes according to the priority, given by 
the end routers/ users. 

All mentioned researches do not apply more productive/ 
efficient methods, such as WRED in conjunction with Class-
Based Weighted Fair Queueing (CBWFQ), proposed in Cisco 
guide [3]. They do not interpret the task we offer - to 
automatically adapt new end users to the quality of service 
policy, already set by other end-users and accepted by the 
intermediate routers.  

III. DIFFERENTIATED SERVICES AND WEIGHTED RANDOM 

EARLY DETECTION  

Network congestion occurs when the volume of incoming 
traffic exceeds the bandwidth of the outgoing channel. 
Congestion avoidance mechanisms are trying to provoke TCP 
slow-start algorithm (RFC 2001), implemented in end 
devices. WRED and differentiated services, implemented in 
routers, become the most effective approach to prevent the 
congestions.   

A.  Active Queue Management congestion avoidance 

mechanisms  

Congestion avoidance in routers is implemented by Active 
Queue Management (AQM) congestion avoidance 

mechanisms. Extra packets coming on the inbound interfaces 
are queued in buffers. The length of the queue is maintained 
within defined limits by dropping the packets.  One of the first 
effective AQM mechanism is RED (Random Early 
Detection), proposed by Floyd and Jacobson [9] in the early 
1990s. Two critical thresholds for the queue are defined: 
minimum queue length (𝒎𝒊𝒏q) and maximum queue length 
(𝒎𝒂𝒙q) and three queue management phases: no drop, 
random drop, and full drop, shown in Fig. 1. No drop phase is 
executed only for queue length from 0 to 𝒎𝒊𝒏q. All packets 
are buffered. Random drop phase is for queue length from 
𝒎𝒊𝒏q to 𝒎𝒂𝒙q. Some packets are dropt. Full drop phase is 
for queue length above 𝒎𝒂𝒙q. All packets are dropped. The 
packet drop probability (random drop phase) is calculated 
based on the average queue length and the MPD (Mark 
Probability Denominator), Floyd and Jacobson [9]. MPD is 
the number of dropped packets when the queue size is equal 
to 𝒎𝒂𝒙q. RED algorithm gives a decision for congestion 
avoidance problem but has some disadvantages. First, this 
mechanism does not affect non-TCP protocols. There are risks 
by insensitive protocols to embezzle the queue. Second, the 
packets from different TCP sessions are not dropped equally 
and there is a risk of global synchronization problem. Third, 
the number of dropped packets sharply jump to 100% when 
the queue size achieves 𝒎𝒂𝒙q size. Different algorithms for 
the improvement of active queue management are proposed in 
[10]. WRED is a kind of class based queue management 
algorithms. It uses the same parameters as RED, but it has the 
ability to perform RED on traffic classes individually. Several 
traffic classes can be defined within a single queue. Each class 
has a specific level for the 𝒎𝒊𝒏q, 𝒎𝒂𝒙q and MPD. Packets 
are classified and joined to a specific class. Drop probability 
for each packet is calculated according to its class parameters. 
The packets with lowest 𝒎𝒊𝒏q and/or the highest MPD are 
dropped preferentially. Every class has the same three phases 
as the RED algorithm. WRED management queue with three 
classes: AF1, AF2 and AF3 is presented in Fig. 2. AF1 and 
AF2 have the same 𝒎𝒂𝒙q and MPD parameters. The AF1 
𝒎𝒊𝒏q parameter has a lower value then the AF2 𝒎𝒊𝒏q 
parameter. Obviously the most packages are dropped from 
AF1 class, then from AF2 class and finally from AF3 class. 
The network traffic is divided in several queues to improve 
fairness in packet dropping. Each queue is managed by the 
RED, WRED or а similar algorithm. Weighted Fair Queue 
(WFQ), discussed by  

 

 

Figure 1.  Random Early Detection phases. 
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Figure 2.  WRED phases. 

Vukadinović and Trajković [11] is a data packet scheduling 
algorithm. All the queues share outbound bandwidth equally 
or by predefined ratios. The queues are visited one by one in 
the cycle period. Every queue sends the amount of packets, 
according to its share part of the outgoing capacity. The simple 
WFQ example is presented in Fig. 3. Q1 gets 50% of the 
outgoing capacity, Q2 – 25% and Q3 – 25%. The Scheduler 
visits Q1 and passes over 2 packets to the output. After that it 
visits Q2 and passes over 1 packet to the output; visits Q3 and 
passes over 1 packet to the output, and the cycle is rotated 
again. 

B. Differentiated Services Quality of Service model 

There are three main models for providing QoS in a 
network: Best Effort; Integrated Services (IntServ); 
Differentiated Services (DiffServ). DiffServ is called soft QoS 
model and uses WFQ and WRED algorithms. This model is 
based on user defined service classes and Per-Hop-Behavior 
(PHB). The flows are aggregated in traffic classes. The 
network service policies are defined for each class on any 
single node. Priorities are marked in each packet using DSCP 
for traffic classification. 

The fields Type of Service (ToS) in IPv4 header (RFC 

791) and Traffic Class (TC) in IPv6 header (RFC 2460) are 

predefined as Differentiated Services Field (DS Field) in 

RFC 2474. The first six bits of the DS field are used as a code 

point (DSCP) to select the PHB packet experiences at each 

node. DSCP values are described in RFC 2475. They 

determine the PHB of a packet. Four conventional PHBs are 

available: two border marks; Class-Selector PHB and 

Assured Forwarding (AF). DSCP = 000000 marks best effort 

behavior. All packets with this mark will be dropped when 

congestion occurs. This is the default PHB. DSCP = 101110 

(46 in decimal) marks Expedited Forwarding (EF). EF PHB 

provides a virtual leased line and is used for critical traffic 

class as voice traffic. EF PHB provides low-loss, low-latency, 

low-jitter and assured bandwidth service. DSCP values of 

“xxx000” (“xxx” are the class selector bits) mark Class-

Selector PHB and are used to assure backward compatibility 

with IP ToS model. DSCP values of “xxxyy0” mark Assured 

Forwarding (AF) PHB. “xxx” is for user defined AF class and 

“yy” is for drop precedence of a packet. “01” denotes low 

drop precedence, “10” – middle and “11” - high drop 

precedence. AF PHB classes are the subject of this paper. 

B.  
Figure 3.  Weighted Fair Queue 

C. DiffServ model configuration steps 

1) Network traffic classification  

Performs predominantly on the edge for QoS domain 

router - Cisco Guide [12]. The traffic type is defined by 

Access Control Lists (ACL) and joined to the specific AF 

class. Every class is associated with specific DSCP value. 

Inbound packets are marked with corresponding DSCP value 

on the edge routers of QoS domain and it is not recommended 

to change it in the intermediate routers. 

2) Queue building  

One or more AF classes can be aggregated in one queue, 

based on PHB parameters. The Queues can be three types: 

Strict priority queue (LLQ – Low latency queue); Class based 

queues (managed by WRED algorithm) end best effort queue.   

3) Defining queue parameters 

The WRED parameters are defined for every queue. For 

the Strict priority queue, the defined outbound bandwidth is 

guaranteed. The rest of outbound bandwidth is distributed 

between all other queues. For every class based queue, the 

following parameters are defined: 

a) The portion of the bandwidth in percentage; 

b) For each AF class (DSCP value) in the queue: min-

threshold; max-threshold; MD (Mark-denominator).  
Successful congestion avoidance depends on the proper 

execution of the above three steps. Especially on proper queue 
management definitions, described in 3) b). 

IV. WRED FUNCTIONALITY EXTENDED WITH ECN 

WRED drops packets, based on the average queue length 

exceeding a specific threshold value, to indicate congestion. 

Explicit Congestion Notification (ECN) (RFC 3168) provide 

end-to-end lossless communication between two endpoints 

over an IP routed network as given in [13] [14]. The ECN is 

an extension to WRED in that ECN marks packets instead of 

dropping them when the average queue length exceeds the 

min-threshold value. If there is a risk of congestion in a 

device (min-threshold < queue < max-threshold), instead of 

dropping the packages, they are marked and forwarded. 

When a marked packet arrives to the recipient, it sends a 

confirmation to the sender informing it of the available traffic 

congestion. As a result, the sender reduces his TCP window 

and the congestion decreases. This increases the bandwidth 

of the network because no unnecessary packets are ejected. 

This mechanism can be built into both - intermediate and end 

devices. There are also adaptations of ECN to UDP protocol 

explained in [15] - [17]. Two protocols which support ECN 

width UDP are defined: Datagram Congestion Control 



146

International Journal on Advances in Networks and Services, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/networks_and_services/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Protocol (DCCP) (RFC5681) and Stream Control 

Transmission Protocol (SCTP) (RFC4960). The receiver 

sends a small special message to the sender, recommending 

to slow down the sending speed, because of congestion on the 

route. The next effective congestion avoidance is eXplicit 

Congestion Control Protocol (XCP), given in [18]. It works 

on the end and intermediate network devices (switches and 

routers) width TCP and UDP traffic. In addition, they use 

end-to-end bandwidth evaluation, to get high congestion 

estimation. Some of the open problems in Internet congestion 

control. Are discussed in RFC 6077. 

ECN uses two bits - the ECN-capable Transport (ECT) bit 

and the CE (Congestion Experienced), which are the two least 

significant bits in the ToS field in the IP header. The four 

combinations of these bits have the following meaning: “0 0” 

indicates that a packet is not using ECN, “0 1” and “1 0” are 

set by the data sender to indicate that the endpoints of the 

transport protocol are ECN-capable and “1 1” indicates 

congestion to the endpoints i.e. packets reached a max-

threshold of a router will be dropped. When ECN is enabled, 

the packets are treated as given in by Cisco Systems, 

Congestion Avoidance Configuration Guide, [19] and 

summarized by us, as follows: 

1) If the number of packets in the queue is below the min-

threshold, they are forwarded, whether or not ECN is 

enabled, and this is identical to the treatment a packet 

receives when WRED is only used on the network. 

2) If the number of packets in the queue is between the min-
threshold and the max-threshold, one of the following four 
cases is possible: 

a) ECN field is “0 1” or “1 0” on the packet indicates 

that the endpoints are ECN-capable and the WRED algorithm 

determines that the packet should have been dropped based on 

the drop probability. In this case, the ECT and CE bits for the 

packet are changed to 1 and the packet is transmitted.  So that, 

the packet gets marked instead of dropped. 

b) If the ECN field on the packet indicates that neither 

endpoint is ECN-capable (that is, the ECT bit is set to 0 and 

the CE bit is set to 0), the packet may be dropped based on the 

WRED drop probability. This is the identical packet treatment 

when WRED is applied without ECN enabled. 

c) If the ECN field on the packet indicates that the 

network is experiencing congestion (that is, both the ECT bit 

and the CE bit are set to 1), the packet is transmitted. No 

further marking is required. 

3) If the number of packets in the queue is above the max-
threshold, packets are dropped based on the drop probability. 
Such a treatment of a package is the same as when the router 
works only with WRED, without the ECN being set. The 
properly selected value of min-threshold is essential for the 
proper functioning of the network and congestion avoidance 
mechanism. 

 

V. PROPOSED METHOD FOR WRED PARAMETER 

ADJUSTMENT EXTENDED WITH ECN 

In this study, we apply the WRED method for QoS in а 

network having end routers, a central/backbone router and an 

ad-hoc “New” router. The first task is to force the new added 

router to comply with the QoS requirements, which were pre-

set in the central router. For this we propose а NN, intended 

to work in the central router, aiming to adjust the parameters 

of the “New” to the existing ones. The second task is to 

propose a method for appropriately determining the average 

queue and the min-threshold in the central router, when 

applying ECN, taking into account the current average queue 

of the added “New” router. 

A. Investigated topology 

We apply the WRED method for QoS, because it gives 

relation between AF classes and the most important queue 

traffic parameters. The topology shown in Fig. 4 is 

considered. It consists of two edge routers (Remotes 1 and 2), 

an intermediate router(Central) and an edge router "New", 

which is added later after the QoS parameters are set in the 

edge routers. WRED is implemented at the central/core 

routers of a network. Edge routers assign IP precedence to 

packets as the packets enter the network. With WRED, core 

routers then use these precedencies to determine how to treat 

different types of traffic [18]. The idea is to train a neural 

network (NN), implemented in the Central router with 

WRED parameters: AF class, min-threshold; max-threshold 

and MD, according to the IOS command random-detect. 

When an ad-hoc edge router "New" is added with its 

configured WRED (DSCP) requirements of its network, the 

already trained NN will approximate/adjust its MD to that 

already learned by the NN. This adjustment will be 

performed automatically without the need for any operator 

intervention. The new added router will have to comply with 

the pre-set QoS requirements. 

B. Neural Network strategy 

To conduct the experiment, we chose a neural network of 

Multi-Layer-Perceptron (MLP) type, training it with a BP 

(Backpropagation) algorithm. It was trained with the DSCP  

 

 
Figure 4.  Investigated topology with edge routers (Remote site 1 and 2), 

intermediate (Central) router and the ‘New’ added router 
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values, corresponding to AF Classes 1,2,3 and 4, where Class 

1 represents the ‘worst queue’, for low priority traffic and 

Class 4 – the ‘best queue’, for high priority traffic as first 

parameter. The second and third parameters in the input 

training set are min-threshold and max-threshold, defined by 

the command random-detect in the Central router. If the min-

threshold is reached, Central router randomly drops some 

packets with the specified IP precedence. If the max-

threshold is reached, Central router drops all packets with the 

specified IP precedence. The MLP has one output neuron and 

it represents the desired MD, where MD represents the 

fraction of packets dropped when the average queue depth is 

at the max-threshold. It means that one out of every MD 

packets will be dropped. Table I represents the 

correspondence between AF classes, DSCP values and drop 

precedence. After the NN was trained, a combination of 

different DSCP values with proposed bandwidth percent for 

each AF class was provided at its input layer, in order to 

simulate these parameters, send by the ‘New’ router. 

According to the “New” requirements/parameters, the 

Central router generates new min-threshold and max-

threshold and forwards the new information to the NN inputs.  

 
TABLE I.  AF CLASSES AND CORRESPONDING DSCP VALUES  

 
 

As a result, the trained NN gives an output with approximated 

MD value, which is near the value defined initially by the 

Central. In this way, the ‘New’ router will be forced to 

"comply" with the chosen QoS policy. 

C. Queue adjustment 

The average queue size is based on the previous average 

and current size of the queue, as given in equation (1) [19]: 

 

𝑄𝑎𝑣𝑟 =  (𝑜𝑙𝑑𝑎𝑣𝑟 ∗ (1 −
1

2𝑛)) + (𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 ∗
1

2𝑛), (1) 

 

where Qavr is the calculated value of the average queue size, 

oldavr is the previous value of the queue, curr_queue_size is 

the current queue and n is the exponential weight factor, a 

user-configurable value. The analysis of this equation shows 

that for high values of n the previous average queue size 

becomes more important. At the same time for low values of 

n the average queue size Qavr will closely track the current 

queue size. 

In our case we propose a change in the given equation (1) 

in order to accommodate C:Qavr of Central router, taking into 

account also the current queue size 𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 of  

 

Figure 5.  NN train data with initial QoS parameters. Тhe ordinate 

represents the number of packets in the queue and DM 

the New router. We choose the critical moment when the 

previous value of oldavr reaches the min-threshold in the 

Central router, i.e. 

𝐶: 𝑄𝑎𝑣𝑟 =  (𝐶: 𝑚𝑖𝑛 _𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ (1 −
1

2𝑛)) +

((𝐶: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 +  𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒)/2)) ∗
1

2𝑛  

We denote here the parameter 𝑵𝑒𝑤 𝑨𝑣𝑒𝑟𝑎𝑔𝑒 𝑸𝑢𝑒𝑢𝑒(NAQ) as: 
 

𝑵𝑨𝑸 = (𝐶: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 +  𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒)/2.        (2) 

 

As the right choice of n is the exponential weight factor 

and is user-configurable value, we will run the experiment 

with different n values to determine the better option. 

VI. EXPERIMENTAL RESULTS 

The initially selected MLP network structure is 6-4-1 and 
is trained to MSE (Mean-Square-Error) = 0.1. The train data 
are given in Fig. 5. They have 12 input samples as 
combinations between DSCPs, min-threshold and max- 

threshold, defined in Remote 1 and 2. After conducting the 
test phase with the ‘New’ data, the obtained MD 
approximation is shown in Fig. 6. The approximation error 
EAPPROX is calculated according to (3), where MDRSi is the 
initial real system value for the Central router, for i-th input 

 

𝐸𝐴𝑃𝑃𝑅𝑂𝑋 = √∑
(𝑀𝐷𝑅𝑆𝑖

−𝑀𝐷𝑁𝑁𝑖
)2

𝑛

𝑛
𝑖=1                    (3) 

combination, MDNNi is the NN response, and n is the number 

of input combinations. The obtained results using this NN 

topology are given in Fig. 7. In this case, EAPROX is 2.56. 

Obviously, it is necessary to improve the MLP parameters by 

training a network with an improved structure of 6-6-4-1 and 

with more iterations, aiming to reach a smaller MSE. In this 

case, we apply MSE of 0.01. Better obtained results are given 

in Fig. 8. In this case, EAPROX is 0.91. Thus, based on the 

training of the optimized neural network with the defined AF 

classes and their initial matching random-detection 

parameters, we obtain a relatively good MD approximation. 

Further work is foreseen to test the NN with more 

combinations of input parameters. For testing the WRED  
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Figure 6.  NN ‘New’ test data with MD approximation. Тhe ordinate 

represents the number of packets in the queue and DM 

 

Figure 7.  MD approximation with MLP – 6-4-1. Тhe ordinate represents 

the number of packets in the queuе and DM 

 

Figure 8.  MD approximation with MLP – 6-6-4-1 Тhe ordinate represents. 

the number of packets in the queue and DM 

functionality, extended with ECN, corresponding to cases 2)/ 

a) and 2)/ c), we choose the critical moment when the previous 

value of oldavr reaches the min-threshold in the Central router.  

The goal is to determine the value of C: Qavr, taking into 

account also the current queue size N: curr_queue_size of the 

New router. We tested how C: Qvar tracks NAQ, depending 

on its different peak changes, according to (2), and how the 

exponential weight factor n influences the adaptation. Fig. 9, 

10, 11 and 12 show the adaptation of C: Qvar when n=4,3,2,1 

correspondingly. The obtained results show that a large factor 

of n=3 represented in Fig. 10, smooths out the peaks and 

lowers the queue length. The average queue size will not  

 

Figure 9.  Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=4. Тhe ordinate represents the 
number of packets in the queues and DM 

 

Figure 10.  Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=3. Тhe ordinate represents the 

number of packets in the queues and DM 

 

Figure 11.  Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=2. Тhe ordinate represents the 
number of packets in the queues and DM 

probably change very quickly, avoiding dramatic fluctuations 

in size. The WRED process will be slow to start dropping 

packets and the slow-changing average C: Qvar will 

accommodate temporary peaks in traffic. But if the value of n 

gets too high (n=4, Fig. 9), WRED will not react to 

congestion. Packets will be transmitted or dropped as if 

WRED does not work. For low values of n (n=2, Fig. 11), the 

C: Qvar tracks closely the current queue size. The resulting 

average value may fluctuate adequately with the changes in 
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Figure 12.  Adaptation of 𝐶: 𝑄𝑎𝑣𝑟 with n=1. Тhe ordinate represents the 
number of packets in the queues 

the traffic levels of both Central and New routers (i.e. of 

NAQ). Once the resulting queue falls below the minimum 

threshold, the process will stop dropping packets. If the value 

of n gets too low (n=1, Fig. 12), WRED will overreact to 

temporary resulting traffic bursts and will drop traffic 

unnecessarily. Thus, the proposition of n = 2 seems to be the 

most appropriate in terms of queue efficiency. 

 

VII. REALTIME REMOTE ROUTERS RECONFIGURATION 

The purpose of our research is to get better QoS 

management by synchronizing the queue management 

parameters on the routers in one network segment without the 

manual reconfiguration of any new router. Moreover, we try 

to synchronize the queue management parameters on all 

routers in network segment after the reconfiguration of only 

the Central router. 

A. Processes and management   

A data-flow diagram is shown on Fig. 13. The NN block 

and The Manager are software blocks that work on an 

external machine (PC or a laptop). The Manager is 

responsible for the process navigation. Each router can 

perform the role of a master (Central) or a subordinate. 

Router1, Router2 and New on Fig. 13 are subordinate routers.  

 

Figure 13.  Real-time configuration process 

There are two types of processes: training and 

reconfiguring. The training process includes: reading QoS 

parameters from the Central router, preparing and sending the 

training matrix to the NN. The reconfiguring includes: 

reading the QoS configuration from the subordinate router, 

preparing and sending a query to the NN and, based on the 

NN response, prepares the synchronized configuration 

parameters and sends them to the subordinate router. 

There are two possible situations: (1) inclusion of a new 

router; (2) reconfiguring. In the first situation, the NN is 

already trained and all routers’ configurations are 

synchronized. A new router with autonomous QoS 

configuration is included in the network segment. The 

Manager makes connection to the new router, extracts proper 

denominator from the NN and reconfigures the new router. 

The new router starts work in synchronization with all routers 

in the segment.    

In the second situation, all routers’ configurations are 

synchronized but the QoS configuration on the Central router 

is changed. The Manager makes connection to the Central 

router, extracts the new queue management parameters and 

trains the NN. Then it makes connections to all other routers 

consequently: reads their current QoS parameters, sets them 

to the NN, gets the new proper denominator and reconfigures 

the routers. All routers QoS configurations are synchronized 

again.    

The communication between the Manager and the NN 

block performs in off-line mode being based on computer 

operating system mechanisms. The communication between 

the Manager and the routers is accomplished via SSH 

protocol. Therefore, any router in the management network 

segment must be registered in the Manager. 

B. Manager block implementation   

This Manager is written as multithreading Windows 

application by C# programming language. As hardware 

devices are used Cisco routers, platforms 2800/2900 with 

IOS 15.0. The Manager interface has two tabs: Registration 

and Processes given in Fig. 14 and Fig. 15 respectively. The 

Central router and the subordinated routers are separated in 

different blocks for their different roles. The IP address, 

username and password for SSH connection are saved for 

each registered router, shown in Fig. 16. The IP address is 

used as a router identificator.  

The training process starts after the button “Train (off-

line)” is selected. The result of the training process is 

displayed in the textbox on the right as shown in Fig. 15. 

There are two buttons for reconfiguration, according to the 

two situations mentioned above. Only the selected router is 

reconfigured after the selection of the button “Reconfigure”. 

All routers, included in the list “Subordinated routers” are 

reconfigured after the selection of the button “Reconfigure 

All”. The result of this process is displayed in the textbox 

“Reconfiguration Results” as shown in Fig. 17. The 
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administrator must troubleshoot the problem in case of 

appearance of router reconfiguration problems.  

All communications in the dataflow diagram, shown in 

Fig. 13, are of a machine-machine type. The training and the 

reconfiguration are made automatically but all processes 

must be started by a person. This approach is appropriate for 

the first situation, described above – inclusion of a new 

router. The router registration has to be made manually and 

the manual start of the reconfiguration should not lead to a 

significant processing delay. The second situation would be 

more flexible if the Central router sends a signal to the 

Manager for the configuration change automatically, thus 

forcing the training and reconfiguration processes. Solving 

this problem is a matter of our future research. We need to 

find a mechanism to alert the Manager about the changes of 

the Central router configuration.  The Manager also must 

work as a server to listen permanently to that signal.  

 

 

Figure 14.  Manager software – Registration tab 

 

Figure 15.  Manager software – Processes tab 

 

Figure 16.  Managing the parameters for SSH connection 

 
Figure 17.  Manager software – Registration tab width reconfiguration 

results  

VIII. CONCLUSION 

In this research, a MLP neural network was trained, 

aiming to automatically adapt new end users to the quality of 

service policy, already set by other end-users and accepted by 

the intermediate routers. The WRED method was applied to 

manage and to define the train and test NN parameters. The 

proposed method shows good MD approximation results for 

the tested input set. The main benefit of the automatic 

adaptation of additional networking devices to existing 

infrastructure with an already-defined QoS policy would lead 

to the release of human qualified resources, needed for 

manual QoS parameter pre-settings. It also would accelerate 

the traffic parameters adaptation in communication 

management and in real-time communication. The proposed 

accommodation of C:Qavr in the Central router, taking into 

account also the current queue size 𝑁: 𝑐𝑢𝑟𝑟_𝑞𝑢𝑒𝑢𝑒_𝑠𝑖𝑧𝑒 of 

the New router, choosing the critical moment when the 

previous value of oldavr reaches the min-threshold in the 

Central router, shows good tracking especially when n=2. If 

the value of n gets too low (n=1, Fig. 12), WRED will 

overreact to temporary resulting traffic bursts and will drop 

traffic unnecessarily. Thus, the proposition of n = 2 seems to 

be the most appropriate in terms of queue efficiency. 

A software application was developed to verify the 

proposed method. It is installed on the external computer 

system and works as a manager for all processes: reading the 

initial configuration, preparing the training matrix, starting 
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the NN training, getting the new proper denominator from 

already trained NN, reconfiguring the subordinated routers. 

The verification indicates that the method is applicable.  

As further work, the input training and test sets may be 

increased to generalize the method. The idea is to train the 

NN with the same standard AF classes but with much more 

possible/ reasonable combinations of min-max thresholds, 

together with a proper proposal for the required link 

bandwidth at the outputs of the NN. The investigated 

topology given in Fig. 4, may be tested with more Remote 

routers and many “New” routers, to test the behavior of the 

Central router. In this case, different NNs could be trained 

with QoS parameters defined in the different Remotes, and 

the NN outputs may be combined in input train data for a 

generalized neural network, to give the final MD proposal. 

Also, software modules will be developed to integrate the 

neural network into a module of the Central router operating 

system, for direct data exchange between the routers. Aiming 

to achieve/solve this task, we envisage the use of Python 

programming language, suitable for implementation in 

networking operating systems.  
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