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Abstract—Network operators often attempt to analyze traffic in 

the middle of their networks for various purposes.  In such 

traffic analysis, the estimation of Round-Trip Time (RTT) is 

indispensable.  Primarily, the RTT estimation is performed by 

consulting the relationship between a request and its response, 

such as a data segment and the associated ACK segment.  

However, in the middle of Internet, it is common that a network 

operator monitors traffic only in one direction.  In such a case, 

an operator is required to estimate RTT from unidirectional 

packet traces.  So far, several methods have been proposed for 

RTT estimation from unidirectional traces.  Our previous paper 

showed a result that adopts the Lomb periodogram method to 

various TCP traces using different congestion control 

algorithms.  In this paper, we show the RTT estimation using 

the autocorrelation based method and the Lomb periodogram 

method from unidirectional TCP traces, collected through 

Ethernet or wireless LAN, using different congestion control 

algorithms, i.e., TCP Reno, CUBIC TCP, TCP Vegas, and TCP 

Veno.  As a result, the autocorrelation based method could not 

estimate RTT correctly, the Lomb periodogram method 

provided reasonable estimation, and the results by the Lomb 

periodogram method are not accurate enough for subtle 

analysis, such as congestion window estimation.   

Keywords- Unidirectional Packet trace; Round-trip Time; 

Autocorrelation; Lomb Periodogram; Congestion Control. 

I. INTRODUCTION 

This paper is an extension of our previous paper [1], which 
is presented in an IARIA conference.   

Traffic analysis in the middle of Internet is an important 
issue for network operators.  It can be applied the traffic 
classification, the traffic demand forecasting, and the 
malicious traffic detection.   In the previous paper, we 
proposed a method to infer TCP congestion control algorithm 
from passively collected packet traces [2].  It adopts the 
following approaches. 
(1) Focus on a specific TCP flow using source/destination IP 

addresses and ports. 
(2) From the mapping between data segments and 

acknowledgment (ACK) segments, estimating Round-
Trip Time (RTT) of the focused flow.   

(3) Estimate a congestion window size (cwnd) from the data 
size transferred during one RTT. 

(4) Obtain a sequence of cwnd values, and calculate a 
sequence of cwnd difference between adjacent cwnd 

values (we call ∆cwnd).   

(5) From the mapping between cwnd and ∆cwnd, infer a 

congestion control algorithm for the TCP flow.   
This method requires a bidirectional trace to obtain both data 
and ACK segments.   

In actual networks, however, it is often possible that only 
unidirectional traces are collected in the middle of networks.  
In this case, the above method cannot be applied.  So, in 
another previous paper, we tried to modify the above method 
to infer TCP congestion control algorithms from 
unidirectional traces [3].  In the modified method, a fixed time 
duration is used instead of RTT, and data size transferred 
during this duration was handled as cwnd.  As a result, 
congestion control algorithms were estimated in some cases, 
but not in other cases.  This is because our method depends 
largely on RTT value.   

On the other hand, the estimation of RTT from traces has 
been actively studied and there are several proposals [4]-[7].  
The RTT estimation methods proposed so far are classified 
into three categories.  One is a method called Data-to-ACK-
to-Data, which measures time between a data segment and the 
data segment sent just after the first data segment is ACKed 
[4]-[6].   This requires bidirectional packet traces and our first 
paper used it.  Next is a method based on the autocorrelation 
[5][6].  This method counts the number of data segments in a 
short interval, and makes an array of counts indexed by the 
normalized interval.  Then, it calculates the autocorrelation 
over the array and takes the maximum as a RTT.  This method 
can be applied to unidirectional packet traces.  The third one 
is use of spectral analysis [6][7].  A sequence of data segments 
are handled as a pulse function of time, which takes 1 when 
there is a data segment.  Then, the frequency characteristic of 
this function is analyzed and the inverse of first harmonic is 
taken as RTT.  Since the interval of data is irregular, the 
spectral analysis is performed by the Lomb periodogram [8].   

In our previous paper [1], we picked up the third method 
for estimating RTT from unidirectional traces including 
different TCP congestion control algorithms, which we used 
for inferring congestion control algorithms [2][3].  In this 
paper, we add the results of RTT estimation by use of the 
second method, the autocorrelation based method, and discuss 
the results in more detail.   

The rest of this paper is organized as follows.  Section II 
explains the problems we suffered from in our previous work 
on estimating congestion window sizes from unidirectional 
packet traces [3].  Section III explains the conventional RTT 
estimation methods in detail.  Section IV gives the results of 
RTT estimation for different TCP congestion control 
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algorithms, using the autocorrelation based method and the 
Lomb periodogram method, and compare the results.  In the 
end, Section V concludes this paper.   

II. RELATED WORK PROBLEMS ON CONGESTION WINDOW 

SIZE ESTIMATION FROM UNIDIRECTIONAL TRACES 

A. Problems on congestion window size estimation from 

unidirectional traces 

In our previous papers [2][3], we collected packet traces 
in the configuration shown in Figure 1.  A TCP data sender is 
connected with a bridge through 100 Mbps Ethernet.  The 
bridge inserts 100 msec RTT (50 msec delay for each 
direction) and 0.01% packet losses.  The bridge is connected 
with a TCP data receiver through IEEE 11g wireless LAN 
(WLAN) or 100 Mbps Ethernet.  The packet trace is collected 
at the TCP sender side.  The collected traces include 
bidirectional ones, and in the unidirectional analysis, we 
picked up only data segments from the TCP sender to the TCP 
receiver.   

Figures 2 and 3 show the results for CUBIC TCP [9] and 
TCP Vegas [10].  In the analysis a from bidirectional trace, 

cwnd and ∆cwnd (both in bytes) are estimated in the way 

described in Section I, and their relationship is given in the 
figures (by blue dots).  In the analysis from a unidirectional 
trace, we assumed that RTT is 100 msec. The data size 
transferred during 100 msec and its difference are called 

sentData and ∆sentData (both in bytes), respectively, and 

shown in the figures by orange dots.  In the case of CUBIC 
TCP, both results show the similar graph, which is a function 

in the form of ( √𝑐𝑛𝑤𝑑
3

)
2

 with decreasing and increasing 

parts [2].  This result means that the unidirectional analysis 
works well.  In the case of TCP Vegas, however, the results 
for bidirectional analysis and unidirectional analysis are 
significantly different.  According to the Vegas algorithm, 

∆cwnd takes 1,460 bytes (one segment size), 0, or -1,460 bytes 

independently of cwnd values, which is represented by the 
blue dots [2].  But, in the result for unidirectional analysis, the 

∆sentData values indicated by the orange dots are unstable.  So, 

the unidirectional analysis does not work well.   
In our experiment, the trace for CUBIC TCP is collected 

in the configuration that uses Ethernet between the bridge and 
the TCP receiver, and that for TCP Vegas is collected by use 
of WLAN.  This is one of the reasons.  Figure 4 shows 
examples of the time variation of TCP sequence number for 
CUBIC TCP and TCP Vegas.  In the case of CUBIC TCP, 
data segments are transferred in groups and there are idle time 
periods without any data transmissions.  Therefore, in the 

 
Figure 1.  Experiment configuration. 

 
Figure 2.  Result for CUBIC TCP [2][3]. 

 

Figure 3.  Result for TCP Vegas [2][3]. 
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Figure 4.  Sequence number vs. time. 
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unidirectional analysis, a sequence of data segments sent 
within a congestion window can be traced by use of 100 msec, 
which is a RTT determined tentatively.  But, in the case of 
TCP Vegas, data segments are transmitted contiguously, and 
therefore, if RTT is not estimated correctly, a sentData value 
does not match the real cwnd value.   

There considerations mean that the RTT estimation is 
critical for inferring TCP congestion control algorithms.   

III. RTT ESTIMATION METHODS 

As described in Section I, the RTT estimation methods are 
classified into three categories; the Data-to-ACK-to-Data 
method, the autocorrelation based method, and the Lomb 
periodogram method.   

A. Data-to-Ack-to-Data method 

The Data-to-ACK-to-Data method is illustrated in Figure 
5.  Since there is some transmission delay between a TCP data 
sender and a monitor capturing packet traces, the following 
procedure is used to estimate RTT between sender and 
receiver.  (1) A monitor focuses on a data segment, and 
remembers the time (t1).  (2) A monitor catches the ACK 
segment that acknowledges the data segment.  (3) A monitor 
detects the data segment sent by the sender just after the ACK 
segment in (2), and remember the time (t2).  (4) t3 – t1 is a 
RTT for this moment.  In order to detect data segment (3), the 
TCP time stamp option is used.   

B. Autocorrelation based method 

In the autocorrelation based method, the RTT estimation 
is performed once per measurement interval T.  An array 𝑃[𝑛] 
maintaining the count of data segments is prepared using unit 

time ∆𝑡, where n is ranging from 0 to 𝑇 ∆𝑡⁄ − 1.  If a data 

segment is detected at an interval [𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + 𝑚 ∙ ∆𝑡,
𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + (𝑚 + 1) ∙ ∆𝑡), one is added to 𝑃[𝑚].  For all 
the data segments from start time to start time +T, the array 
𝑃[𝑛] is arranged.  After that, the autocorrelation function is 
defined as 

𝐴(𝑙) =  
1

𝑇
∆𝑡⁄ −𝑙

∑ 𝑃[𝑗] ∙ 𝑃[𝑗 + 𝑙]
𝑇

∆𝑡⁄ −𝑙

𝑗=0
.    (1) 

for lags 𝑙 = 0 ⋯ 𝑇 ∆𝑡⁄ − 1.  RTT is computed as max(𝐴).  

This method can be applied to the unidirectional analysis, and 
will work well for the cases that data segments are distributed 
unevenly in a trace, such as the case of CUBIC TCP in Figure 
4(a).   

C. Lomb periodogram method 

The last method is one based on the spectral analysis, in 
which a sequence of data segments are handled as a pulse time 
sequence, the frequency characteristic of this time sequence is 
analyzed, and the inverse of first harmonic is taken as RTT.  
Traditional spectral analysis, such as Fast Fourier Transform 
(FFT) assume that time domain data are regularly sampled 
[11].  However, in the RTT estimation, the time domain data 
is packet inter-arrival time of a specific flow.  This data is 
sampled at each data packet capturing.  This means that the 
time domain data in this case is irregularly sampled.  In the 
case of the spectral analysis for irregularly sampled data, the 
Lomb periodogram is commonly used [8].   

In the RTT estimation based on the Lomb periodogram, 
time sequence {𝑡𝑖} (𝑖 = 1, ⋯ )  is considered as an input, 
where 𝑡𝑖 corresponds to one data segment capturing time.  At 
a specific time 𝑡𝑘 , the frequency characteristic of this time 
sequence is calculated using N time samples 𝑡𝑘−𝑁+1, ⋯ 𝑡𝑘 in 
the following way (𝑘 > 𝑁) [7].   
 The minimum and maximum frequencies of the range for 

power spectrum are defined as  

𝑓𝑘
𝑚𝑖𝑛 =

1

𝑡𝑘−𝑡𝑘−𝑁+1
 and 𝑓𝑘

𝑚𝑎𝑥 =
𝑁

2
𝑓𝑘

𝑚𝑖𝑛 . 

Accordingly, the power spectrum is calculated for 
angular frequency  

𝜔𝑖 = 2𝜋𝑓𝑘
𝑚𝑖𝑛 + 𝑖∆𝜔  (𝑖 = 0 ⋯  2𝑁 − 1), 

where ∆𝜔＝2𝜋
𝑓𝑘

𝑚𝑎𝑥−𝑓𝑘
𝑚𝑖𝑛

2𝑁
.   

 The power spectrum at angular frequency 𝜔𝑖 is defined 
as  

𝑃𝑘
𝑁(𝜔𝑖) =

1

2𝜎𝑘
2 {

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑐𝑜𝑠𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0 ]

2

∑ 𝑐𝑜𝑠2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

+

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑠𝑖𝑛𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0 ]

2

∑ 𝑠𝑖𝑛2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

}                      (2) 

where ℎ̅𝑘 and 𝜎𝑘
2 are the mean and variance of N samples 

of ℎ𝑘: 

 ℎ̅𝑘 =
1

𝑁
∑ ℎ𝑘−𝑗

𝑁−1
𝑗=0                                   (3) 

 𝜎𝑘
2 =

1

𝑁−1
∑ ℎ𝑘−𝑗

2 −
𝑁

𝑁−1
ℎ̅𝑘

2𝑁−1
𝑗=0 ,           (4) 

and where 𝜏𝑘 is the solution of: 

 𝑡𝑎𝑛(2𝜔𝑖𝜏𝑘) =
∑ 𝑠𝑖𝑛2𝜔𝑖𝑡𝑘−𝑗

𝑁−1
𝑗=0

∑ 𝑐𝑜𝑠2𝜔𝑖𝑡𝑘−𝑗
𝑁−1
𝑗=0

.              (5) 

From the 2𝑁 − 1power spectrum values specified in an 
𝜔 − 𝑃(𝜔)  plane, local maximum values are calculated.  
Among the frequencies generating local maximum power 
spectrum values, the fundamental frequency 𝑓0  is estimated 
under the condition that other frequencies generating local 

maximum values are multiples of 𝑓0.  At last, 𝑇 =  1
𝑓0

⁄  is the 

estimated RTT.   

IV. RESULTS OF RTT ESTIMATION FOR VARIOUS 

CONGESTION CONTROL ALGORITHMS 

This section describes the results of RTT estimation for 
various types of TCP traces with different congestion control 
algorithms.  We use the packet traces used in our previous 
papers [2][3].  As described in Section II, these traces are 
collected at the sender side in the configuration shown in 

 
Figure 5.  Data-to-ACK-to-Data method. 
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Figure 1.  Since packet losses are inserted at the bridge, we 
picked up a part of packet traces where no packet losses are 
detected, that is, where the sequence number of TCP segments 
keeps increasing.  The traces themselves have bidirectional 
packet information and only the capturing time of data 
segments is extracted to build unidirectional traces.  Together 
with the extraction, the real RTT is calculated from the 
mapping between data segments and ACK segments based on 
the Data-to-ACK-to-Data method.   

A. Result for traces including TCP Reno  

(1) Overview 
TCP Reno is a classic congestion control method which 

adopts an Additive Increase and Multiplicative Decrease 
(AIMD) algorithm.  Here, cwnd is increased each time the 
TCP sender receives an ACK segment acknowledging new 

data.  The increase is 
1

𝑐𝑤𝑛𝑑
 segments during the congestion 

avoidance phase, and as a result, cwnd is expected to be 
increased by one segment during one RTT.   

The Reno packet trace we used here is collected in the 
network configuration with Ethernet (see Figure 1), and we 
picked up a part from 27.010458 sec to 45.99513 sec in the 
trace, where no retransmissions are detected for 7068 data 
segments.   

(2) Results of autocorrelation based method 
In the autocorrelation based method, we adopted 1msec as 

the unit time (∆𝑡).  This means that we can estimate RTT in 
the order of mili seconds, which will be enough for discussing 
the estimation capability of this method.  We adopted 400 
msec as the measurement interval (T).  By use of these values, 
the autocorrelation can be calculated with changing the time 
lag from 0 to 399.  We picked up the autocorrelation in the 
range of 𝑙 = 1 ⋯  200.   

 Figure 6 shows the results of the applying autocorrelation 
based method to the TCP Reno traced mentioned above.  
Figure 6(a) shows the histogram result between 27.0 sec and 
27.4 sec.  Three or four data segments are transferred within 1 
msec interval.  The intervals with data segments are repeated 
in a duration of a few msec and 20 msec.  Figure 6(b) shows 
the result of autocorrelation for the data shown in Figure 6(a).  
The range of time lag is 0 through 200, but we use the range 
of 𝑙 = 1 ⋯ 200.  From this result, we can select 105 as the lag 
value which generates the largest autocorrelation.  So, we 
estimated that the RTT at time 27.0 sec is 105 msec.  Similarly, 
we estimated RTT for every 400 msec from the obtained 
packet trace.  Figure 6(c) shows the results.  This figure also 
shows the actual RTT (indicated as RTT in the figure), the 
RTT estimated by the Data-to-ACK-to-Data method by use of 
bidirectional information contained in the original packet 
trace.  The actual RTT is stable at 100 msec, but the estimated 
RTT changes between 0 msec and 200 msec although 60% of 
the results are close to 100 msec.   

(3) Results of Lomb periodogram method 
In order to apply the Lomb periodogram method, we need 

to decide the value of N.  We used N = 500 in calculating the 
Lomb periodogram.  Figure 7 shows a result of RTT 
estimation from the Reno trace.  Figure 7(a) is the result for 

periodogram at time 28.156143 sec.  The horizontal axis is an 
angular frequency and the vertical axis is a periodogram.  This 
figure shows there are several peaks periodically.  Figure 7(b) 
zooms up the low angular frequency part of Figure 7(a).  It 
shows that there are harmonized frequencies such that there 
are large periodogram values at some frequencies which are 
integral multiple of a specific frequency (fundamental 
frequency 𝑓0).  In Figure 7(b), angular frequencies 61.4343, 
118.7525, and 181.5296 are those frequencies.  From this 
result, we can conclude that 2π𝑓0 =  61.4343.  So, we obtain 

𝑓0 =  9.77755 and RTT =  1
𝑓0

⁄ = 0.102275sec.   

We conducted similar calculations for multiple points of 
time in the trace and obtained the estimated RTT as shown in 

 
(a) histogram of data segments between  27 sec and 27.4 sec 

 
(b) autocorrelation for interval [27.0, 27.4] 

 
(c) estimated RTT and actual RTT 

Figure 6.  RTT estimation from Reno trace by autocorrelation. 
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Figure 7(c).  This figure also gives actual RTT values obtained 
from the relationship data and ACK segments in the original 
trace information.  This result says that, although the actual 
RTT is extremely stable at 100 msec, the estimated RTT 
includes some errors in the order of 10 msec.  When this result 
is compared with the result by the autocorrelation based 
method, that by the Lomb periodogram method is better than 
that by the autocorrelation based method.   

The reason that the actual RTT is stable is that this 
experiment is conducted through only Ethernet and that there 
are no large delay variations.  However, the RTT estimation 
by use of neither the autocorrelation nor the Lomb 
periodogram can reflect this situation.   

B. Result for traces including CUBIC TCP  

(1) Overview 
As described in Section II, CUBIC TCP defines cwnd as a 

cubic function of elapsed time T since the last congestion 
event [9].  Specifically, it defines cwnd by (6). 

 𝑐𝑤𝑛𝑑 = 𝐶 (𝑇 − √𝛽 ∙
𝑐𝑤𝑛𝑑𝑚𝑎𝑥

𝐶

3
)

3

+ 𝑐𝑤𝑛𝑑𝑚𝑎𝑥  

Here, C is a predefined constant, 𝛽 is the decrease parameter, 
and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥 is the value of cwnd just before the loss 
detection in the last congestion event.  Comparing with TCP 
Reno, cwnd increases faster in CUBIC TCP.   

We estimated RTT from the unidirectional packet trace 
including only data segments with CUBIC TCP.  The trace is 
collected in the configuration using only Ethernet.  We picked 
up a part in the trace from 23.483123 sec. to 38.348383 sec. 
for the RTT estimation.   

(2) Results of autocorrelation based method 
For the autocorrelation based method, we used the same 

parameters as those for TCP Reno.  That is, 1msec is as ∆𝑡, 
400 msec is as T, and the autocorrelation is evaluated in the 
range of 𝑙 is from 1 to 200.   

The results are shown in Figure 8.  Figure 8(a) shows the 
histogram result between 23.4 sec and 23.8 sec.   Compared 
with the case of TCP Reno given in Figure 6(a), data segments 
are transmitted in a group in the case of CUBIC TCP.  A 

 
(a) periodogram at time 27.03713 sec 

 
(b) zooming up low angular frequency part 

 
(c) estimated RTT and actual RTT 

Figure 7.  RTT estimation from Reno trace by Lomb periodogram. 
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(a) histogram of data segments between  23.4 sec and 23.8 sec 
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Figure 8.  RTT estimation from CUBIC trace by autocorrelation. 
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portion where data segments are sent over multiple time slots 
is repeated every one hundred mili second, and so it is 
considered that the RTT can be easily estimated by the 
autocorrelation.  Figure 8(b) shows the estimated RTT, 
together with the actual RTT.  The estimated RTT takes either 
100 msec or 101 msec, and the actual RTT takes values 
between them.  Since the granularity of the estimated RTT is 
1 msec, it can be said that the autocorrelation based method 
provides good estimation for CUBIC TCP.   

(3) Results of Lomb periodogram method 
By applying the Lomb periodogram similarly with the 

case of Reno, we obtained estimated RTT as shown in Figure 
8.  Figure 9(a) shows the result for periodogram at time 
23.987461 sec.  In this figure, there are peaks of periodogram 
at angular frequencies of 62.110183, 124.170517, and so on.  
So, we estimated that the fundamental angular frequency is 
62.110183, and calculated the estimated RTT at this timing.   

Figure 9(b) shows the estimated RTT together with the 
actual RTT values.  The results show that the actual RTT is 
stable at 100 msec and, on the other hand, the estimated RTT 
changes a lot between 90 msec and 140 msec.  The fluctuation 
is larger for CUBIC than TCP Reno.  Especially, the 
difference between the estimated RTT and the actual RTT 
becomes large when the time is between 36 sec and 38 sec.  
During this period, the cwnd value itself becomes large and 
the large cwnd value may give some bad influence to the RTT 
estimation.   

In the case of CUBIC TCP, the autocorrelation based 
method could provide more precise RTT estimation than the 
Lomb periodogram method.  The reason is considered to be 
that the burstiness of the logged packet sequence is high in this 
case.   

C. Result for traces including TCP Vegas 

(1) Overview 
TCP Vegas estimates the bottleneck buffer size using the 

current values of cwnd and RTT, and the minimal RTT for the 
TCP connection, according to (7) [10].   

 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑐𝑤𝑛𝑑 ×
𝑅𝑇𝑇− 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇
 

At every RTT interval, Vegas uses this BufferSize to 
control cwnd in the congestion avoidance phase in the 
following way.   

 ⊿𝑐𝑤𝑛𝑑 = {

1         (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

  0  (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1        (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)
 

Here, A = 2 and B = 4 (in unit of segment) are used in the 
Linux operating system.   

We estimated RTT from the unidirectional packet trace 
including only data segments with TCP Vegas.  In this case, 
in contrast with the above cases, the trace is collected in the 
configuration using WLAN.  We picked up a part in the trace 
from 37.988347 sec to 59.699611 sec for the RTT estimation.   

(2) Results of autocorrelation based method 
Figure 10 shows the results of the RTT estimation by use 

of the same parameters used in the cases of TCP Reno and 
CUBIC TCP.  Figure 10(a) shows the histogram result 
between 40.0 sec and 40.4 sec.  In this case, the frequency is 
almost two packets and the timing when some packets are 
transmitted is scattered.  That is, the packet transmission is not 
bursty for the Vegas packet trace used in this experiment.  
Figure 10(b) shows the estimated RTT and the actual RTT.  
As supposed from the result of the histogram, the estimated 
RTT is distributed between 0 mse and 200 msec.  Since 200 
msec is the upper bound in the estimation, it is said that the 
estimation here is not done well but the estimated RTT is 
randomly distributed.   

(3) Results of Lomb periodogram method 
Figure 11 shows the result of the RTT estimation based on 

the Lomb periodogram method.  Figure 11(a) is the 
periodogram at time 40.082778 sec.  From this result, we 
obtain that the fundamental angular frequency is 58.288021 
and the estimated RTT at this point is 107.795 msec.   

Figure 11(b) shows the estimated RTT and actual RTT 
obtained for the part of the Vegas packet trace mentioned 
above.  In this case, the estimated RTT is stable around 100 
msec, and on the other hand, the actual RTT values are 
scattered between 100 msec and 140 msec.  That is, although 
the actual RTT is changing, the RTT estimated by the Lomb 
periodogram does not follow the fluctuation.  As we indicated 
in Figure 4(b) and Figure 10(a), the timing of capturing data 
segments is almost uniformly distributed in this case.  As a 

 
(a) periodogram at time 23.987461 sec 

 
(b) estimated RTT and actual RTT 

Figure 9.  RTT estimation from CUBIC trace by Lomb periodogram.   
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result, it is considered that the Lomb periodogram method 
cannot detect the actual RTT.  Compared with the result of the 
autocorrelation based method, however, the Lomb 
periodogram method provides much better estimation in this 
case.   

D. Result for traces including TCP Veno  

(1) Overview 
TCP Veno (Vegas and ReNO) [12] is an example of 

hybrid type congestion control method, considering packet 
losses and delay.  It uses the BufferSize in (7) to adjust the 
growth of cwnd in the congestion avoidance phase as follows.  
If 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵  (B is the Vegas parameter B), cwnd 
grows by 1/cwnd for every other new ACK segment, and 
otherwise, it grows in the same manner with TCP Reno.  That 
is, when the congestion status is heavy, i.e., the bottleneck 
buffer size is large, the increasing rate of cwnd is halved.   

We estimated RTT from the unidirectional Veno trace 
captured in the WLAN configuration in Figure 1.  We picked 
up a part in the trace from 37.684643 sec to 52.653736 sec 
including 23,360 data segments.   

(2) Results of autocorrelation based method 
Figure 12 shows the results of the RTT estimation by the 

autocorrelation for TCP Veno.  Figure 12(a) is the histogram 
result between 38.0 sec and 38.4 sec.  Similarly with the result 
for TCP Vegas shown in Figure 10(a), the data transmissions 
are scattered, that is, not bursty.  The frequency of time slots 

with data transmission is two or three, and the intervals 
between those time slots are less than 20 msec.  As a result, 
the estimated RTT values shown in Figure 12(b) are largely 
different from the actual RTT values.  Especially, in the time 
frame later than 41.4 sec, the estimated RTT is 1 msec.  In the 
Veno packet trace used here, the autocorrelation based method 
was very poor in the RTT estimation.   

(3) Results of Lomb periodogram method 
Figure 13 shows the results of the RTT estimation by the 

Lomb periodogram for TCP Veno.  Figure 13(a) is the 
periodogram at time 38.090911 sec.  This result indicates that 
the fundamental angular frequency is 63.281391 and that the 
estimated RTT at this point is 99.239 msec.   

Figure 13(b) shows the estimated RTT and the actual RTT 
for TCP Veno.  Similarly with the results for TCP Vegas, the 
estimated RTT values are stable around 100 msec, but the 
actual RTT has a distribution between 100 msec and 130 msec.  
In this sense, the Lomb periodogram method cannot estimate 
RTT in a strict sense, but it provides a reasonable estimation 
compared with the autocorrelation based method.   

E. Discussions 

Through the experiments described above, we obtained 
the following discussions.   

 First of all, the autocorrelation based method could not 
estimate RTT correctly in many cases.  In our experiment, 
three cases out of four did not work well.  In the case of 

 
(a) histogram of data segments between  40.0 sec and 40.4 sec 

 
(b) estimated RTT and actual RTT 

Figure 10.  RTT estimation from Vegas trace by autocorrelation. 

0

1

2

3

4

5

6

40 40.1 40.2 40.3 40.4

fr
eq

u
en

cy

time (sec)

0

50

100

150

200

250

40 45 50 55 60

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

 
(a) periodogram at time 40.082778 sec 

 
(b) estimated RTT and actual RTT 

Figure 11.  RTT estimation from Vegas trace by Lomb periodogram.   
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CUBIC TCP, this method could estimate RTT accurately.  
The reason is considered that data segments in 
unidirectional packet traces are transmitted in a burst and 
that the actual RTT is stable.  In other cases, i.e., for TCP 
Reno, TCP Vegas, and TCP Veno, the data transmission 
is performed relatively in a uniform way, and this 
situation makes the RTT estimation difficult by the 
autocorrelation based method.   

 Secondly, compared with the autocorrelation method, the 
Lomb periodogram method was possible to estimate 
approximate RTT values from unidirectional packet 
traces. Strictly speaking, however, the estimated RTT 
values have some errors and they are not tolerable for the 
approaches that require accurate RTT estimation, such as 
our method to infer the TCP congestion algorithms from 
unidirectional packet traces [3].  Moreover, although the 
experiments adopted here added a fix delay, actual TCP 
communications suffer from variable delay like 
Bufferbloat [13].  So, the accurate estimation will be more 
difficult in real environments.   

 The third point is that the estimation by the Lomb 
periodogram method is affected largely by the network 
configuration, such as with Ethernet or with WLAN.  It is 
also affected somehow by the congestion control used in 
packet traces.  In our experiment, the traces of TCP Reno 
and CUBIC TCP were collected in an Ethernet 
configuration.  In this case, the actual RTT was stable and 

the estimated RTT was fluctuated.  In the CUBIC TCP 
trace, where the congestion control is more aggressive, 
the errors of the estimated RTT increased.  On the other 
hand, the traces of TCP Vegas and TCP Veno were 
collected in a WLAN configuration.  In this case, while 
the actual RTT was fluctuated, the Lomb periodogram 
method could not estimate this fluctuation and the 
estimated RTT was stable.   

V. CONCLUSIONS 

This paper described the results of applying the 
autocorrelation based method and the Lomb periodogram 
method to estimating RTT from unidirectional packet traces 
including TCP segments with different congestion control 
algorithms, TCP Reno, CUBIC TCP, TCP Vegas, and TCP 
Veno.  The performance evaluation gave the following results.   

First of all, the autocorrelation based method provided 
poor performance in the RTT estimation.  Only CUBIC TCP 
in our experiment worked well, and the estimation for other 
three congestion control algorithms was not successful.   

Secondly, the Lomb periodogram method was possible to 
estimate more accurate RTT values than the autocorrelation 
based method. However, the estimated RTT values were not 
accurate enough for the applications requiring precise RTT 
estimation, such as our method to infer the TCP congestion 
algorithms [3].   

Lastly, we confirmed a tendency that the estimation by the 
Lomb periodogram is affected by the network configuration, 

 
(a) periodogram at time 38.090911 sec 

 
(b) estimated RTT and actual RTT 

Figure 13.  RTT estimation from VENO trace by Lomb periodogram.  

0

2

4

6

8

10

12

0 50 100 150 200 250 300

p
er

io
d

o
gr

am

angular frequency

(63.281391, 7.73951) (126.49931, 8.382188)
(188.512162, 9.923591)

80

90

100

110

120

130

140

150

160

37 39 41 43 45 47 49 51 53

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

 
(a) histogram of data segments between  38.0 sec and 38.4 sec 

 
(b) estimated RTT and actual RTT 

Figure 12.  RTT estimation from Veno trace by autocorrelation. 
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such as with Ethernet or with WLAN.  In the Ethernet 
configuration, the actual RTT is stable but the estimated RTT 
is fluctuated.  In the WLAN configuration, the result is 
opposite.   

In conclusion, it will be considered that the accurate RTT 
estimation will be difficult from unidirectional packet traces, 
although the rough estimation will be feasible by the Lomb 
periodogram method.   
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