
1

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Study on Round-trip Time Estimation from Unidirectional Packet Traces

Using Different TCP Congestion Control Algorithms

Toshihiko Kato, Xiaofan Yan, Ryo Yamamoto, and Satoshi Ohzahata

Graduate School of Informatics and Engineering

University of Electro-Communications

Tokyo, Japan

e-mail: kato@is.uec.ac.jp, yanxiaofan@net.is.uec.ac.jp, ryo_yamamoto@is.uec.ac.jp, ohzahata@is.uec.ac.jp

Abstract—Network operators often attempt to analyze traffic in

the middle of their networks for various purposes. In such

traffic analysis, the estimation of Round-Trip Time (RTT) is

indispensable. Primarily, the RTT estimation is performed by

consulting the relationship between a request and its response,

such as a data segment and the associated ACK segment.

However, in the middle of Internet, it is common that a network

operator monitors traffic only in one direction. In such a case,

an operator is required to estimate RTT from unidirectional

packet traces. So far, several methods have been proposed for

RTT estimation from unidirectional traces. Our previous paper

showed a result that adopts the Lomb periodogram method to

various TCP traces using different congestion control

algorithms. In this paper, we show the RTT estimation using

the autocorrelation based method and the Lomb periodogram

method from unidirectional TCP traces, collected through

Ethernet or wireless LAN, using different congestion control

algorithms, i.e., TCP Reno, CUBIC TCP, TCP Vegas, and TCP

Veno. As a result, the autocorrelation based method could not

estimate RTT correctly, the Lomb periodogram method

provided reasonable estimation, and the results by the Lomb

periodogram method are not accurate enough for subtle

analysis, such as congestion window estimation.

Keywords- Unidirectional Packet trace; Round-trip Time;

Autocorrelation; Lomb Periodogram; Congestion Control.

I. INTRODUCTION

This paper is an extension of our previous paper [1], which
is presented in an IARIA conference.

Traffic analysis in the middle of Internet is an important
issue for network operators. It can be applied the traffic
classification, the traffic demand forecasting, and the
malicious traffic detection. In the previous paper, we
proposed a method to infer TCP congestion control algorithm
from passively collected packet traces [2]. It adopts the
following approaches.
(1) Focus on a specific TCP flow using source/destination IP

addresses and ports.
(2) From the mapping between data segments and

acknowledgment (ACK) segments, estimating Round-
Trip Time (RTT) of the focused flow.

(3) Estimate a congestion window size (cwnd) from the data
size transferred during one RTT.

(4) Obtain a sequence of cwnd values, and calculate a
sequence of cwnd difference between adjacent cwnd

values (we call ∆cwnd).

(5) From the mapping between cwnd and ∆cwnd, infer a

congestion control algorithm for the TCP flow.
This method requires a bidirectional trace to obtain both data
and ACK segments.

In actual networks, however, it is often possible that only
unidirectional traces are collected in the middle of networks.
In this case, the above method cannot be applied. So, in
another previous paper, we tried to modify the above method
to infer TCP congestion control algorithms from
unidirectional traces [3]. In the modified method, a fixed time
duration is used instead of RTT, and data size transferred
during this duration was handled as cwnd. As a result,
congestion control algorithms were estimated in some cases,
but not in other cases. This is because our method depends
largely on RTT value.

On the other hand, the estimation of RTT from traces has
been actively studied and there are several proposals [4]-[7].
The RTT estimation methods proposed so far are classified
into three categories. One is a method called Data-to-ACK-
to-Data, which measures time between a data segment and the
data segment sent just after the first data segment is ACKed
[4]-[6]. This requires bidirectional packet traces and our first
paper used it. Next is a method based on the autocorrelation
[5][6]. This method counts the number of data segments in a
short interval, and makes an array of counts indexed by the
normalized interval. Then, it calculates the autocorrelation
over the array and takes the maximum as a RTT. This method
can be applied to unidirectional packet traces. The third one
is use of spectral analysis [6][7]. A sequence of data segments
are handled as a pulse function of time, which takes 1 when
there is a data segment. Then, the frequency characteristic of
this function is analyzed and the inverse of first harmonic is
taken as RTT. Since the interval of data is irregular, the
spectral analysis is performed by the Lomb periodogram [8].

In our previous paper [1], we picked up the third method
for estimating RTT from unidirectional traces including
different TCP congestion control algorithms, which we used
for inferring congestion control algorithms [2][3]. In this
paper, we add the results of RTT estimation by use of the
second method, the autocorrelation based method, and discuss
the results in more detail.

The rest of this paper is organized as follows. Section II
explains the problems we suffered from in our previous work
on estimating congestion window sizes from unidirectional
packet traces [3]. Section III explains the conventional RTT
estimation methods in detail. Section IV gives the results of
RTT estimation for different TCP congestion control

2

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithms, using the autocorrelation based method and the
Lomb periodogram method, and compare the results. In the
end, Section V concludes this paper.

II. RELATED WORK PROBLEMS ON CONGESTION WINDOW

SIZE ESTIMATION FROM UNIDIRECTIONAL TRACES

A. Problems on congestion window size estimation from

unidirectional traces

In our previous papers [2][3], we collected packet traces
in the configuration shown in Figure 1. A TCP data sender is
connected with a bridge through 100 Mbps Ethernet. The
bridge inserts 100 msec RTT (50 msec delay for each
direction) and 0.01% packet losses. The bridge is connected
with a TCP data receiver through IEEE 11g wireless LAN
(WLAN) or 100 Mbps Ethernet. The packet trace is collected
at the TCP sender side. The collected traces include
bidirectional ones, and in the unidirectional analysis, we
picked up only data segments from the TCP sender to the TCP
receiver.

Figures 2 and 3 show the results for CUBIC TCP [9] and
TCP Vegas [10]. In the analysis a from bidirectional trace,

cwnd and ∆cwnd (both in bytes) are estimated in the way

described in Section I, and their relationship is given in the
figures (by blue dots). In the analysis from a unidirectional
trace, we assumed that RTT is 100 msec. The data size
transferred during 100 msec and its difference are called

sentData and ∆sentData (both in bytes), respectively, and

shown in the figures by orange dots. In the case of CUBIC
TCP, both results show the similar graph, which is a function

in the form of (√𝑐𝑛𝑤𝑑
3

)
2

 with decreasing and increasing

parts [2]. This result means that the unidirectional analysis
works well. In the case of TCP Vegas, however, the results
for bidirectional analysis and unidirectional analysis are
significantly different. According to the Vegas algorithm,

∆cwnd takes 1,460 bytes (one segment size), 0, or -1,460 bytes

independently of cwnd values, which is represented by the
blue dots [2]. But, in the result for unidirectional analysis, the

∆sentData values indicated by the orange dots are unstable. So,

the unidirectional analysis does not work well.
In our experiment, the trace for CUBIC TCP is collected

in the configuration that uses Ethernet between the bridge and
the TCP receiver, and that for TCP Vegas is collected by use
of WLAN. This is one of the reasons. Figure 4 shows
examples of the time variation of TCP sequence number for
CUBIC TCP and TCP Vegas. In the case of CUBIC TCP,
data segments are transferred in groups and there are idle time
periods without any data transmissions. Therefore, in the

Figure 1. Experiment configuration.

Figure 2. Result for CUBIC TCP [2][3].

Figure 3. Result for TCP Vegas [2][3].

-4000

-2000

0

2000

4000

6000

8000

10000

12000

100000 200000 300000 400000 500000

cwnd/sentData (byte)

Δcwnd/ΔsentData (byte)

ΔsentData

Δcwnd

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

-2000

-1500

-1000

-500

0

500

1000

1500

2000

20000 40000 60000 80000 100000 120000 140000

Δ
se

n
tD

at
a

(b
yt

e)

Δ
cw

n
d

 (
b

yt
e)

cwnd/sentData(byte)

Δcwnd

ΔsentData

Figure 4. Sequence number vs. time.

89.2

89.4

89.6

89.8

90

90.2

90.4

90.6

37.8 37.85 37.9 37.95 38 38.05 38.1 38.15

se
q

u
en

ce
 n

u
m

b
er

 (
M

B
)

time (sec)
(a) CUBIC TCP

23.9

23.92

23.94

23.96

23.98

24

24.02

24.04

24.06

58.7 58.75 58.8 58.85 58.9

se
q

u
en

ce
 n

u
m

b
er

 (
M

B
)

time (sec)
(b) TCP Vegas

3

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

unidirectional analysis, a sequence of data segments sent
within a congestion window can be traced by use of 100 msec,
which is a RTT determined tentatively. But, in the case of
TCP Vegas, data segments are transmitted contiguously, and
therefore, if RTT is not estimated correctly, a sentData value
does not match the real cwnd value.

There considerations mean that the RTT estimation is
critical for inferring TCP congestion control algorithms.

III. RTT ESTIMATION METHODS

As described in Section I, the RTT estimation methods are
classified into three categories; the Data-to-ACK-to-Data
method, the autocorrelation based method, and the Lomb
periodogram method.

A. Data-to-Ack-to-Data method

The Data-to-ACK-to-Data method is illustrated in Figure
5. Since there is some transmission delay between a TCP data
sender and a monitor capturing packet traces, the following
procedure is used to estimate RTT between sender and
receiver. (1) A monitor focuses on a data segment, and
remembers the time (t1). (2) A monitor catches the ACK
segment that acknowledges the data segment. (3) A monitor
detects the data segment sent by the sender just after the ACK
segment in (2), and remember the time (t2). (4) t3 – t1 is a
RTT for this moment. In order to detect data segment (3), the
TCP time stamp option is used.

B. Autocorrelation based method

In the autocorrelation based method, the RTT estimation
is performed once per measurement interval T. An array 𝑃[𝑛]
maintaining the count of data segments is prepared using unit

time ∆𝑡, where n is ranging from 0 to 𝑇 ∆𝑡⁄ − 1. If a data

segment is detected at an interval [𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + 𝑚 ∙ ∆𝑡,
𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 + (𝑚 + 1) ∙ ∆𝑡), one is added to 𝑃[𝑚]. For all
the data segments from start time to start time +T, the array
𝑃[𝑛] is arranged. After that, the autocorrelation function is
defined as

𝐴(𝑙) =
1

𝑇
∆𝑡⁄ −𝑙

∑ 𝑃[𝑗] ∙ 𝑃[𝑗 + 𝑙]
𝑇

∆𝑡⁄ −𝑙

𝑗=0
. (1)

for lags 𝑙 = 0 ⋯ 𝑇 ∆𝑡⁄ − 1. RTT is computed as max(𝐴).

This method can be applied to the unidirectional analysis, and
will work well for the cases that data segments are distributed
unevenly in a trace, such as the case of CUBIC TCP in Figure
4(a).

C. Lomb periodogram method

The last method is one based on the spectral analysis, in
which a sequence of data segments are handled as a pulse time
sequence, the frequency characteristic of this time sequence is
analyzed, and the inverse of first harmonic is taken as RTT.
Traditional spectral analysis, such as Fast Fourier Transform
(FFT) assume that time domain data are regularly sampled
[11]. However, in the RTT estimation, the time domain data
is packet inter-arrival time of a specific flow. This data is
sampled at each data packet capturing. This means that the
time domain data in this case is irregularly sampled. In the
case of the spectral analysis for irregularly sampled data, the
Lomb periodogram is commonly used [8].

In the RTT estimation based on the Lomb periodogram,
time sequence {𝑡𝑖} (𝑖 = 1, ⋯) is considered as an input,
where 𝑡𝑖 corresponds to one data segment capturing time. At
a specific time 𝑡𝑘 , the frequency characteristic of this time
sequence is calculated using N time samples 𝑡𝑘−𝑁+1, ⋯ 𝑡𝑘 in
the following way (𝑘 > 𝑁) [7].
 The minimum and maximum frequencies of the range for

power spectrum are defined as

𝑓𝑘
𝑚𝑖𝑛 =

1

𝑡𝑘−𝑡𝑘−𝑁+1
 and 𝑓𝑘

𝑚𝑎𝑥 =
𝑁

2
𝑓𝑘

𝑚𝑖𝑛 .

Accordingly, the power spectrum is calculated for
angular frequency

𝜔𝑖 = 2𝜋𝑓𝑘
𝑚𝑖𝑛 + 𝑖∆𝜔 (𝑖 = 0 ⋯ 2𝑁 − 1),

where ∆𝜔＝2𝜋
𝑓𝑘

𝑚𝑎𝑥−𝑓𝑘
𝑚𝑖𝑛

2𝑁
.

 The power spectrum at angular frequency 𝜔𝑖 is defined
as

𝑃𝑘
𝑁(𝜔𝑖) =

1

2𝜎𝑘
2 {

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑐𝑜𝑠𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0]

2

∑ 𝑐𝑜𝑠2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

+

[∑ (ℎ𝑘−𝑗−ℎ̅𝑘)𝑠𝑖𝑛𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)𝑁−1
𝑗=0]

2

∑ 𝑠𝑖𝑛2𝑁−1
𝑗=0 𝜔𝑖(𝑡𝑘−𝑗−𝜏𝑘)

} (2)

where ℎ̅𝑘 and 𝜎𝑘
2 are the mean and variance of N samples

of ℎ𝑘:

 ℎ̅𝑘 =
1

𝑁
∑ ℎ𝑘−𝑗

𝑁−1
𝑗=0 (3)

 𝜎𝑘
2 =

1

𝑁−1
∑ ℎ𝑘−𝑗

2 −
𝑁

𝑁−1
ℎ̅𝑘

2𝑁−1
𝑗=0 , (4)

and where 𝜏𝑘 is the solution of:

 𝑡𝑎𝑛(2𝜔𝑖𝜏𝑘) =
∑ 𝑠𝑖𝑛2𝜔𝑖𝑡𝑘−𝑗

𝑁−1
𝑗=0

∑ 𝑐𝑜𝑠2𝜔𝑖𝑡𝑘−𝑗
𝑁−1
𝑗=0

. (5)

From the 2𝑁 − 1power spectrum values specified in an
𝜔 − 𝑃(𝜔) plane, local maximum values are calculated.
Among the frequencies generating local maximum power
spectrum values, the fundamental frequency 𝑓0 is estimated
under the condition that other frequencies generating local

maximum values are multiples of 𝑓0. At last, 𝑇 = 1
𝑓0

⁄ is the

estimated RTT.

IV. RESULTS OF RTT ESTIMATION FOR VARIOUS

CONGESTION CONTROL ALGORITHMS

This section describes the results of RTT estimation for
various types of TCP traces with different congestion control
algorithms. We use the packet traces used in our previous
papers [2][3]. As described in Section II, these traces are
collected at the sender side in the configuration shown in

Figure 5. Data-to-ACK-to-Data method.

ReceiverSender

Data (1)

Monitor

Data

Data (3)

ACK (2)

t1

t2

t3

4

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Since packet losses are inserted at the bridge, we
picked up a part of packet traces where no packet losses are
detected, that is, where the sequence number of TCP segments
keeps increasing. The traces themselves have bidirectional
packet information and only the capturing time of data
segments is extracted to build unidirectional traces. Together
with the extraction, the real RTT is calculated from the
mapping between data segments and ACK segments based on
the Data-to-ACK-to-Data method.

A. Result for traces including TCP Reno

(1) Overview
TCP Reno is a classic congestion control method which

adopts an Additive Increase and Multiplicative Decrease
(AIMD) algorithm. Here, cwnd is increased each time the
TCP sender receives an ACK segment acknowledging new

data. The increase is
1

𝑐𝑤𝑛𝑑
 segments during the congestion

avoidance phase, and as a result, cwnd is expected to be
increased by one segment during one RTT.

The Reno packet trace we used here is collected in the
network configuration with Ethernet (see Figure 1), and we
picked up a part from 27.010458 sec to 45.99513 sec in the
trace, where no retransmissions are detected for 7068 data
segments.

(2) Results of autocorrelation based method
In the autocorrelation based method, we adopted 1msec as

the unit time (∆𝑡). This means that we can estimate RTT in
the order of mili seconds, which will be enough for discussing
the estimation capability of this method. We adopted 400
msec as the measurement interval (T). By use of these values,
the autocorrelation can be calculated with changing the time
lag from 0 to 399. We picked up the autocorrelation in the
range of 𝑙 = 1 ⋯ 200.

 Figure 6 shows the results of the applying autocorrelation
based method to the TCP Reno traced mentioned above.
Figure 6(a) shows the histogram result between 27.0 sec and
27.4 sec. Three or four data segments are transferred within 1
msec interval. The intervals with data segments are repeated
in a duration of a few msec and 20 msec. Figure 6(b) shows
the result of autocorrelation for the data shown in Figure 6(a).
The range of time lag is 0 through 200, but we use the range
of 𝑙 = 1 ⋯ 200. From this result, we can select 105 as the lag
value which generates the largest autocorrelation. So, we
estimated that the RTT at time 27.0 sec is 105 msec. Similarly,
we estimated RTT for every 400 msec from the obtained
packet trace. Figure 6(c) shows the results. This figure also
shows the actual RTT (indicated as RTT in the figure), the
RTT estimated by the Data-to-ACK-to-Data method by use of
bidirectional information contained in the original packet
trace. The actual RTT is stable at 100 msec, but the estimated
RTT changes between 0 msec and 200 msec although 60% of
the results are close to 100 msec.

(3) Results of Lomb periodogram method
In order to apply the Lomb periodogram method, we need

to decide the value of N. We used N = 500 in calculating the
Lomb periodogram. Figure 7 shows a result of RTT
estimation from the Reno trace. Figure 7(a) is the result for

periodogram at time 28.156143 sec. The horizontal axis is an
angular frequency and the vertical axis is a periodogram. This
figure shows there are several peaks periodically. Figure 7(b)
zooms up the low angular frequency part of Figure 7(a). It
shows that there are harmonized frequencies such that there
are large periodogram values at some frequencies which are
integral multiple of a specific frequency (fundamental
frequency 𝑓0). In Figure 7(b), angular frequencies 61.4343,
118.7525, and 181.5296 are those frequencies. From this
result, we can conclude that 2π𝑓0 = 61.4343. So, we obtain

𝑓0 = 9.77755 and RTT = 1
𝑓0

⁄ = 0.102275sec.

We conducted similar calculations for multiple points of
time in the trace and obtained the estimated RTT as shown in

(a) histogram of data segments between 27 sec and 27.4 sec

(b) autocorrelation for interval [27.0, 27.4]

(c) estimated RTT and actual RTT

Figure 6. RTT estimation from Reno trace by autocorrelation.

0

1

2

3

4

5

27 27.1 27.2 27.3 27.4

fr
e

q
u

e
n

cy

time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200

au
to

co
rr

e
la

ti
o

n

time lag (l)

0

50

100

150

200

250

27 32 37 42 47

R
T

T/
e

st
im

at
ed

 R
T

T
(m

se
c)

time (sec)

estimated RTT

RTT

5

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7(c). This figure also gives actual RTT values obtained
from the relationship data and ACK segments in the original
trace information. This result says that, although the actual
RTT is extremely stable at 100 msec, the estimated RTT
includes some errors in the order of 10 msec. When this result
is compared with the result by the autocorrelation based
method, that by the Lomb periodogram method is better than
that by the autocorrelation based method.

The reason that the actual RTT is stable is that this
experiment is conducted through only Ethernet and that there
are no large delay variations. However, the RTT estimation
by use of neither the autocorrelation nor the Lomb
periodogram can reflect this situation.

B. Result for traces including CUBIC TCP

(1) Overview
As described in Section II, CUBIC TCP defines cwnd as a

cubic function of elapsed time T since the last congestion
event [9]. Specifically, it defines cwnd by (6).

 𝑐𝑤𝑛𝑑 = 𝐶 (𝑇 − √𝛽 ∙
𝑐𝑤𝑛𝑑𝑚𝑎𝑥

𝐶

3
)

3

+ 𝑐𝑤𝑛𝑑𝑚𝑎𝑥

Here, C is a predefined constant, 𝛽 is the decrease parameter,
and 𝑐𝑤𝑛𝑑𝑚𝑎𝑥 is the value of cwnd just before the loss
detection in the last congestion event. Comparing with TCP
Reno, cwnd increases faster in CUBIC TCP.

We estimated RTT from the unidirectional packet trace
including only data segments with CUBIC TCP. The trace is
collected in the configuration using only Ethernet. We picked
up a part in the trace from 23.483123 sec. to 38.348383 sec.
for the RTT estimation.

(2) Results of autocorrelation based method
For the autocorrelation based method, we used the same

parameters as those for TCP Reno. That is, 1msec is as ∆𝑡,
400 msec is as T, and the autocorrelation is evaluated in the
range of 𝑙 is from 1 to 200.

The results are shown in Figure 8. Figure 8(a) shows the
histogram result between 23.4 sec and 23.8 sec. Compared
with the case of TCP Reno given in Figure 6(a), data segments
are transmitted in a group in the case of CUBIC TCP. A

(a) periodogram at time 27.03713 sec

(b) zooming up low angular frequency part

(c) estimated RTT and actual RTT

Figure 7. RTT estimation from Reno trace by Lomb periodogram.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400

p
er

io
d

o
gr

am

angular frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300

p
er

io
d

o
gr

am

angular frequency

(61.4343, 1.309284)

(118.7525, 0.95506)

(181.5296, 0.803438)

80

90

100

110

120

27 32 37 42 47

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

(a) histogram of data segments between 23.4 sec and 23.8 sec

(b) estimated RTT and actual RTT

Figure 8. RTT estimation from CUBIC trace by autocorrelation.

0

5

10

15

20

25

30

35

40

45

50

23.4 23.5 23.6 23.7 23.8

fr
eq

u
en

cy

time (sec)

99.8

100

100.2

100.4

100.6

100.8

101

101.2

23 25 27 29 31 33 35 37 39

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

6

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

portion where data segments are sent over multiple time slots
is repeated every one hundred mili second, and so it is
considered that the RTT can be easily estimated by the
autocorrelation. Figure 8(b) shows the estimated RTT,
together with the actual RTT. The estimated RTT takes either
100 msec or 101 msec, and the actual RTT takes values
between them. Since the granularity of the estimated RTT is
1 msec, it can be said that the autocorrelation based method
provides good estimation for CUBIC TCP.

(3) Results of Lomb periodogram method
By applying the Lomb periodogram similarly with the

case of Reno, we obtained estimated RTT as shown in Figure
8. Figure 9(a) shows the result for periodogram at time
23.987461 sec. In this figure, there are peaks of periodogram
at angular frequencies of 62.110183, 124.170517, and so on.
So, we estimated that the fundamental angular frequency is
62.110183, and calculated the estimated RTT at this timing.

Figure 9(b) shows the estimated RTT together with the
actual RTT values. The results show that the actual RTT is
stable at 100 msec and, on the other hand, the estimated RTT
changes a lot between 90 msec and 140 msec. The fluctuation
is larger for CUBIC than TCP Reno. Especially, the
difference between the estimated RTT and the actual RTT
becomes large when the time is between 36 sec and 38 sec.
During this period, the cwnd value itself becomes large and
the large cwnd value may give some bad influence to the RTT
estimation.

In the case of CUBIC TCP, the autocorrelation based
method could provide more precise RTT estimation than the
Lomb periodogram method. The reason is considered to be
that the burstiness of the logged packet sequence is high in this
case.

C. Result for traces including TCP Vegas

(1) Overview
TCP Vegas estimates the bottleneck buffer size using the

current values of cwnd and RTT, and the minimal RTT for the
TCP connection, according to (7) [10].

 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 = 𝑐𝑤𝑛𝑑 ×
𝑅𝑇𝑇− 𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇

At every RTT interval, Vegas uses this BufferSize to
control cwnd in the congestion avoidance phase in the
following way.

 ⊿𝑐𝑤𝑛𝑑 = {

1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 < 𝐴)

 0 (𝐴 ≦ 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 ≦ 𝐵)

−1 (𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵)

Here, A = 2 and B = 4 (in unit of segment) are used in the
Linux operating system.

We estimated RTT from the unidirectional packet trace
including only data segments with TCP Vegas. In this case,
in contrast with the above cases, the trace is collected in the
configuration using WLAN. We picked up a part in the trace
from 37.988347 sec to 59.699611 sec for the RTT estimation.

(2) Results of autocorrelation based method
Figure 10 shows the results of the RTT estimation by use

of the same parameters used in the cases of TCP Reno and
CUBIC TCP. Figure 10(a) shows the histogram result
between 40.0 sec and 40.4 sec. In this case, the frequency is
almost two packets and the timing when some packets are
transmitted is scattered. That is, the packet transmission is not
bursty for the Vegas packet trace used in this experiment.
Figure 10(b) shows the estimated RTT and the actual RTT.
As supposed from the result of the histogram, the estimated
RTT is distributed between 0 mse and 200 msec. Since 200
msec is the upper bound in the estimation, it is said that the
estimation here is not done well but the estimated RTT is
randomly distributed.

(3) Results of Lomb periodogram method
Figure 11 shows the result of the RTT estimation based on

the Lomb periodogram method. Figure 11(a) is the
periodogram at time 40.082778 sec. From this result, we
obtain that the fundamental angular frequency is 58.288021
and the estimated RTT at this point is 107.795 msec.

Figure 11(b) shows the estimated RTT and actual RTT
obtained for the part of the Vegas packet trace mentioned
above. In this case, the estimated RTT is stable around 100
msec, and on the other hand, the actual RTT values are
scattered between 100 msec and 140 msec. That is, although
the actual RTT is changing, the RTT estimated by the Lomb
periodogram does not follow the fluctuation. As we indicated
in Figure 4(b) and Figure 10(a), the timing of capturing data
segments is almost uniformly distributed in this case. As a

(a) periodogram at time 23.987461 sec

(b) estimated RTT and actual RTT

Figure 9. RTT estimation from CUBIC trace by Lomb periodogram.

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

p
er

io
d

o
gr

am

angular frequency

(62.110183, 5.769778) (124.170517, 8.391328)

(173.818785, 0.366998)

80

90

100

110

120

130

140

24 26 28 30 32 34 36 38

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

7

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

result, it is considered that the Lomb periodogram method
cannot detect the actual RTT. Compared with the result of the
autocorrelation based method, however, the Lomb
periodogram method provides much better estimation in this
case.

D. Result for traces including TCP Veno

(1) Overview
TCP Veno (Vegas and ReNO) [12] is an example of

hybrid type congestion control method, considering packet
losses and delay. It uses the BufferSize in (7) to adjust the
growth of cwnd in the congestion avoidance phase as follows.
If 𝐵𝑢𝑓𝑓𝑒𝑟𝑆𝑖𝑧𝑒 > 𝐵 (B is the Vegas parameter B), cwnd
grows by 1/cwnd for every other new ACK segment, and
otherwise, it grows in the same manner with TCP Reno. That
is, when the congestion status is heavy, i.e., the bottleneck
buffer size is large, the increasing rate of cwnd is halved.

We estimated RTT from the unidirectional Veno trace
captured in the WLAN configuration in Figure 1. We picked
up a part in the trace from 37.684643 sec to 52.653736 sec
including 23,360 data segments.

(2) Results of autocorrelation based method
Figure 12 shows the results of the RTT estimation by the

autocorrelation for TCP Veno. Figure 12(a) is the histogram
result between 38.0 sec and 38.4 sec. Similarly with the result
for TCP Vegas shown in Figure 10(a), the data transmissions
are scattered, that is, not bursty. The frequency of time slots

with data transmission is two or three, and the intervals
between those time slots are less than 20 msec. As a result,
the estimated RTT values shown in Figure 12(b) are largely
different from the actual RTT values. Especially, in the time
frame later than 41.4 sec, the estimated RTT is 1 msec. In the
Veno packet trace used here, the autocorrelation based method
was very poor in the RTT estimation.

(3) Results of Lomb periodogram method
Figure 13 shows the results of the RTT estimation by the

Lomb periodogram for TCP Veno. Figure 13(a) is the
periodogram at time 38.090911 sec. This result indicates that
the fundamental angular frequency is 63.281391 and that the
estimated RTT at this point is 99.239 msec.

Figure 13(b) shows the estimated RTT and the actual RTT
for TCP Veno. Similarly with the results for TCP Vegas, the
estimated RTT values are stable around 100 msec, but the
actual RTT has a distribution between 100 msec and 130 msec.
In this sense, the Lomb periodogram method cannot estimate
RTT in a strict sense, but it provides a reasonable estimation
compared with the autocorrelation based method.

E. Discussions

Through the experiments described above, we obtained
the following discussions.

 First of all, the autocorrelation based method could not
estimate RTT correctly in many cases. In our experiment,
three cases out of four did not work well. In the case of

(a) histogram of data segments between 40.0 sec and 40.4 sec

(b) estimated RTT and actual RTT

Figure 10. RTT estimation from Vegas trace by autocorrelation.

0

1

2

3

4

5

6

40 40.1 40.2 40.3 40.4

fr
eq

u
en

cy

time (sec)

0

50

100

150

200

250

40 45 50 55 60

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

(a) periodogram at time 40.082778 sec

(b) estimated RTT and actual RTT

Figure 11. RTT estimation from Vegas trace by Lomb periodogram.

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

p
er

io
d

o
gr

am

angular frequency

(58.288021, 5.856735)

(118.058296, 3.251566)

(183.573467, 1.042022)

80

100

120

140

160

180

40 45 50 55 60

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

8

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CUBIC TCP, this method could estimate RTT accurately.
The reason is considered that data segments in
unidirectional packet traces are transmitted in a burst and
that the actual RTT is stable. In other cases, i.e., for TCP
Reno, TCP Vegas, and TCP Veno, the data transmission
is performed relatively in a uniform way, and this
situation makes the RTT estimation difficult by the
autocorrelation based method.

 Secondly, compared with the autocorrelation method, the
Lomb periodogram method was possible to estimate
approximate RTT values from unidirectional packet
traces. Strictly speaking, however, the estimated RTT
values have some errors and they are not tolerable for the
approaches that require accurate RTT estimation, such as
our method to infer the TCP congestion algorithms from
unidirectional packet traces [3]. Moreover, although the
experiments adopted here added a fix delay, actual TCP
communications suffer from variable delay like
Bufferbloat [13]. So, the accurate estimation will be more
difficult in real environments.

 The third point is that the estimation by the Lomb
periodogram method is affected largely by the network
configuration, such as with Ethernet or with WLAN. It is
also affected somehow by the congestion control used in
packet traces. In our experiment, the traces of TCP Reno
and CUBIC TCP were collected in an Ethernet
configuration. In this case, the actual RTT was stable and

the estimated RTT was fluctuated. In the CUBIC TCP
trace, where the congestion control is more aggressive,
the errors of the estimated RTT increased. On the other
hand, the traces of TCP Vegas and TCP Veno were
collected in a WLAN configuration. In this case, while
the actual RTT was fluctuated, the Lomb periodogram
method could not estimate this fluctuation and the
estimated RTT was stable.

V. CONCLUSIONS

This paper described the results of applying the
autocorrelation based method and the Lomb periodogram
method to estimating RTT from unidirectional packet traces
including TCP segments with different congestion control
algorithms, TCP Reno, CUBIC TCP, TCP Vegas, and TCP
Veno. The performance evaluation gave the following results.

First of all, the autocorrelation based method provided
poor performance in the RTT estimation. Only CUBIC TCP
in our experiment worked well, and the estimation for other
three congestion control algorithms was not successful.

Secondly, the Lomb periodogram method was possible to
estimate more accurate RTT values than the autocorrelation
based method. However, the estimated RTT values were not
accurate enough for the applications requiring precise RTT
estimation, such as our method to infer the TCP congestion
algorithms [3].

Lastly, we confirmed a tendency that the estimation by the
Lomb periodogram is affected by the network configuration,

(a) periodogram at time 38.090911 sec

(b) estimated RTT and actual RTT

Figure 13. RTT estimation from VENO trace by Lomb periodogram.

0

2

4

6

8

10

12

0 50 100 150 200 250 300

p
er

io
d

o
gr

am

angular frequency

(63.281391, 7.73951) (126.49931, 8.382188)
(188.512162, 9.923591)

80

90

100

110

120

130

140

150

160

37 39 41 43 45 47 49 51 53

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

(a) histogram of data segments between 38.0 sec and 38.4 sec

(b) estimated RTT and actual RTT

Figure 12. RTT estimation from Veno trace by autocorrelation.

0

1

2

3

4

38 38.1 38.2 38.3 38.4

fr
e

q
u

e
n

cy

time (sec)

0

20

40

60

80

100

120

140

160

180

37 39 41 43 45 47 49 51 53

R
TT

/e
st

im
at

ed
 R

TT
 (

m
se

c)

time (sec)

estimated RTT

RTT

9

International Journal on Advances in Networks and Services, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such as with Ethernet or with WLAN. In the Ethernet
configuration, the actual RTT is stable but the estimated RTT
is fluctuated. In the WLAN configuration, the result is
opposite.

In conclusion, it will be considered that the accurate RTT
estimation will be difficult from unidirectional packet traces,
although the rough estimation will be feasible by the Lomb
periodogram method.

REFERENCES

[1] T. Kato, X. Yan, R. Yamamoto, and S. Ohzahata, “Applying
Lomb Periodogram to Round-trip Time Estimation from
Unidirectional Packet Traces with Different TCP Congestion
Controls,” IARIA ICIMP 2018, pp. 1-6, Jul. 2018.

[2] T. Kato, A. Oda, C. Wu, and S. Ohzahata, “Comparing TCP
Congestion Control Algorithms Based on Passively Collected
Packet Traces,” IARIA ICSNC 2015, pp. 135-141, Nov. 2015.

[3] T. Kato, L. Yongxialee, R. Yamamoto, and S. Ohzahata, “How
to Characterize TCP Congestion Control Algorithms from
Unidirectional Packet Traces,” IARIA ICIMP 2016, pp. 23-28,
May 2016.

[4] H. Jiang and C. Dovrolis, “Passive Estimation of TCP Round-
Trip Times,” ACM SIGCOMM Comp. Commun. Rev. vol. 32,
issue 3, pp. 75-88, Jul. 2002.

[5] B. Veal, K. Li, and D. Lowenthal, “New Methods for Passive
Estimation of TCP Round-Trip Times,” Passive and Active
Nework Measurement, PAM 2005, LNCS, vol. 3431, pp. 121-
134.

[6] R. Lance and I. Frommer, “Round-Trip Time Inference Via
Pasive Monitoring,” ACM SIGMETRICS Perf. Eval. Rev., vol.
33, issue 3, pp. 32-38, Dec. 2005.

[7] D. Carra et al., “Passive Online RTT Estimation for Flow-
Aware Routers Using One-Way Traffic,” NETWORKING
2010 LNCS6091, pp. 109-121, 2010.

[8] J. Scargle, “Statistical aspects of spacial analysis of unevently
spaced data,” J. Astrophysics, vol 263, pp. 835-853, Dec. 1982.

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant,” ACM SIGOPS Op. Syst. Review,
vol. 42, issue 5, pp. 64-74, Jul. 2008.

[10] L. Brakmo and L. Peterson, “TCP Vegas: End to End
Congestion Avoidance on a Global Internet,” IEEE J. Sel.
Areas Commun., vol. 13, no. 8, pp. 1465-1480, Oct. 1995.

[11] S. Kay and S. Marple, “Spectrum analysis; A modern
perspective,” Proc. of the IEEE, vol. 69, issue 11, pp. 1380-
1419, Nov. 1981.

[12] C Fu and C. Liew, “TCP Veno: TCP enhancement for
transmission over wireless access networks,” IEEE J. Sel.
Areas Commun., vol. 21, no. 2, Feb. 2003.

[13] S. Strowes, “Passively Measuring TCP Round-trip Times,”
ACM Queue, vol. 11, issue 8, pp. 1-12, Aug. 2013.

