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Abstract—Radar based imaging techniques can be used to Excitation Port Excitation Port

collect 3D information about objects, which in turn can be ugd

to identify and measure specific parameters of these objectSuch

measurements need to correlate specific radar signals witthe

object properties. This can be done using neural networks, &

they are designed to search for patterns, which are difficultto

find using analytic methods. This work presents a neural netark

based reflection signal processing system for object idefigation

by attempting to identify an object placed in a rectangular

waveguide. We extract both the phase and the amplitude of the

reflected signal and compare recognition systems using aniplde

only and using both phase and amplitude. Open boundary *~ Open boundary

Keywords—Scattering signals; Object identification; Neural Net- @) (0)
works Fig. 1. Positioning of a ball of a diameter (a) and a cube with edgam

(b) in a WG-12 rectangular waveguide.
I. INTRODUCTION

Radars find many applications as imaging tools. Using tgrrameter of interest. In the grapevines radar example, the
property of electromagnetic waves to partially penetraté aparameter of interest is the volume of the produced grapes
partially reflect from dielectric materials, they can pd®i3D  and the clutter is the signals from the plant’s trunk anddsav
images of a large set of objects. The development of easilyin order to develop an intelligent 3D image processing
available high-frequency components up in the microwaveystem, we need to start by implementing simple 1D solu-
millimeter wave and even terahertz ranges allows for higfons. In this paper, we present a neural network for shape
spatial resolution of the obtained images. This techniquisfi recognition based on the scattered signal as a benchmark
multiple applications in security systems, in medical ey& case study. The investigated object is a body of perfectly
and in agriculture. conducting material placed in a rectangular hollow wavegui

We can consider as an example the sensor describedThis limits the neural network input signal to the spectral
[2]. The system consists of a 24 GHz Frequency Modulateglpresentation of a single point reflection signal. We have
Continuous Wave (FMCW) radar used to make 3D images @feviously presented identifying simple objects using jhe
grapevine plants in order to estimate the volume of grapes immplitude of the reflected signal [1]. In this paper we coesid
given plant. The radar is equipped with a high gain antenda agoth the amplitude and the phase of the scattered wave.
is mounted on a pan-tilt platform, which allows for perfon@i The setup has been modeled numerically and the scattering
azimuthal and elevation scans. The radar bandwidth is 2 Ghaarmeters have been obtained using computer simulation.
This setup allows for &.5cm depth resolution (that is the Section Il describes the setup of the performed simulation
precision of the measurement of the distance between #®4 shows the computed reflected signals from the two types
object and the radar) and transverse resolution.oEm. Of of objects in a waveguide. Section Ill details the neural
course, using higher signal frequency, bandwidth and masgtwork based signal processing used to identify the abject
directive antennas, resolutions in the millimeter range los& based on the reflected signal. Section Il discusses thenelotai

achieved [3]. experimental results and Section V summarizes the paper and
The processing of the radar signal in order to obtakketches the future work.

information about the object parameters of interest can be a
challenging task. The measurement system described in [2]
relies on statistical analysis in order to obtain the grapes
volume. Neural networks are optimized for pattern search inThe experimental setup consists of a hollow rectangular
complex data. Therefore, they can be used in radar bas®®12 waveguide with an object placed at distante

measurement systems as they can extract the data of intef@sh the excitation port, as shown in Figure 1. The cross-
from the clutter and simultaneously estimate the value ef tisectional dimensions of the waveguide are= 47.5mm

Il. EXPERIMENTAL SETUP
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Fig. 2. Family of curves showing the magnitude of the reftecitoefficient  Fig. 3. Family of curves showing the derivative of the phaseh wespect to
of a waveguide with a conducting cube (a) and a sphere (Ijéndihe frequency of the reflection coefficient of a waveguide withoaducting
solid lines and the dotted lines represent varying posisind size of the cube (a) and a sphere (b) inside. The solid lines and thedltittes

sphere respectively. represent varying position and size of the sphere respéctiv

and b = 22.1mm. The scattering objects are a sphere &ube edge2m respectively—while keeping both objects at
radiusr (Figure 1a) and a cube of lengthn (Figure 1b). fixed positonAz = 100mm andAz = a/2, that is 100
Both objects are made of a perfect electric conductor afdm from the excitation port and in the middle along the
are placed at a distance dfz from the short wall of the direction. The size parametersindm varied from 4 to 10 mm
conductor. The objects were placed in the middle of tie 0.6 mm steps. Then, we held the object dimensions fixed at
waveguide in the verticaj direction. The excitation port has” ™ = 7mm and varied the offset dimension as follows:
been placed at the-z end of the waveguide. The opposite
end has been terminated with an open boundary in order to
model an infinitely extended waveguide and thus eliminate th
reflections from that boundary. The model has been simulatede full combination of offset coefficients has been modeled
for the frequency range of 4 to 6 GHz, which corresponds toWe consider both the amplitude and the phase of the re-
the full single mode range of the waveguide. We measure thected signal, relative to the incident one. This is definetha
reflection coefficient at the excitation port. The used satiah complex reflection coefficienf of the perturbed waveguide
tool is CST Microwave studio. [4]. The amplitude and the phase are two independent vasabl
Two families of results have been generated. First, we @ariand we can get more information about the shape of the
the dimensions of the objects—the sphere radiusnd the object in the waveguide if we consider both of them instead

Az=0to —30mm in 10 mm steps,
Az =0 to 10mm in 5mm steps.
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of just one. The information carried by the distribution bét ) ) .
amplitude of the reflection coefficient in frequenEyf) can Magnitude of the reflection coefficient
be extracted straightforward by feeding it directly to a na¢u
network, as we proceed in Section Ill. There is an intrins
difficulty in working with the phase, though, because we ce
not distinguish a27 phase increment/I" = /T" + n2x. In
other words, the reflection coefficient generated by a ptyfec
conducting transverse wall, shorting a lossless waveguiile
be the same as the one when the wall is moxeq,/2 in
longitudinal direction, where\, is the length of the guided
wave. This can cause significant difficulties for an intelhg
system, trying to identify the shape of the object irrespect
of the distance of interroQation- Mean parametric vector of "Ball" train samples

We attempt to circumvent this problem by using the derivi
tive of the phase of the reflection coefficient with respec¢hto
frequencyd/T"/df, measured in rad/Hz, instead of the phase Fig. 4. Mean parametric vectors over the magnitudes of thectmn
itself. In this way we disregard anyn27 uncertainty while coefficients for 14 train samples of “ball” and “cube”.
keeping the information about the distribution of the phise
frequency.

The results for the amplitude of the reflection coefficier
for a cube and a ball are presented in Figures 2a and
respectively, where the dotted lines show the family of esrv
for varying object size, while the position is held fixed, dhd
solid lines show the results for fixed size and varying offse
The dotted lines show a greater reflection coefficient ans t _ go5
object dimensions andm increase, which can be expected a
larger objects create larger echo. The derivative of thesgh:
with respect to frequency for a cube and a ball is presented -0-01
Figures 3a and 3b respectively.

We have used a combination of the frequency distribution

Mean parametric vector of "Cube" train samples

Derivative of the phase of the reflection
coefficient

A K . X -0.015
the magnitude and phase of the reflection coefficient in orc
to generate an input for the shape recognition neural n&two Mean parametric vector of "Ball" train samples
We have used 11 points from each of the curves from Figure: Mean parametric vector of "Cube" train samples

and 3, as the frequency response varies slowly and using tnis
representation we lose no information. Thus we get an inputF'g
signal of 22 points for each size and position of the respecti
object. As the number of size and position varying simutatio
is also 22, we get 22 input signals of 22 points each for each
object. We use 14 of those signals to train the network and\8o objects under study, we have chosen the adaptive neural
to test it. network method, that provides the most effective recogniti
We compare the efficiency of a shape recognizing neuedl similar input data. As the two 3D objects have similar
network working with reflection coefficient amplitude andshapes, it is necessary to use an adaptive and precise method
phase versus a system working with amplitude only. We ufy recognition and classification of the two objects. Thepe
11 points from each amplitude curve, presented in Figure 2ligarning method using a Multi-Layered-Perception (MLP)
order to train and test such a network. feed forward Neural Network (NN), trained by the Back-
propagation (BP) algorithm, gives satisfactory resultghia
cases described in [5], [6]. This allows precise placemént o
boundaries between object classes with overlapping parame
There are various studies concerning the pre-processingdekcriptions — in our case very similar reflection signaisort
input data for the recognition system to improve its efficien der for the neural network to be “assisted” in advance, dbffie
and accuracy. In order to make a correct choice of thieear transformations (mostly scaling to the rangeg(oft)
recognition method, it is necessary to analyze the dataidgfinor (—1,1)) [7], [8], statistical standardization (using deviation
the parametric descriptions of the objects. This analysis from the mean) or various other appropriate mathematical
based on the calculation of the statistical parameterssofi#ita transformations over the input data [9], [10] are suggedted
as well as the determination of the degree of similarity leefv our study, in order to reduce the preliminary calculationd a
the parametric descriptions of the objects. Since our siady simplify the method, we choose an appropriate combination
volves highly correlated input parametric vectors repnéeg of independent parameters of the reflected radar signah, suc
parametric descriptions of the reflected radar signal fer tlas magnitude and phase of the reflection coefficient.

. 5. Mean parametric vectors over the derivative of thasghof the
reflection coefficients for 14 train samples of “ball” and beu.

IIl. NEURAL NETWORK SIGNAL PROCESSING
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TABLE I. STANDARD DEVIATION AND CORRELATION BETWEEN THE
MEAN PARAMETRIC VECTORS MLP-11-8-5-2
2,5
Standard deviation Correlation between 2 o
Input data mean parametric g 15 . B
Ball Cube vectors : ! s s 5]
IT| 0.801 0.179 —0.337 S - a
g o8 \ / 2 \'\0
d/r/df | 1.05-107% | 8.29-107* 0.972 3 1 Ba g ‘:\’/./
= U o
315 O0-p
r 3.217 1.337 0.976 2

22,5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Test signal number

A. Preprocessing stage

@ [deal values output neuron 1(ball) =——@=— Learned values output neuron 1

|n thIS Stage some Statistical parameters Of the Signa|S | Ideal values output neuron2 (cube) =—8-— Learned values output neuron 2
C_alcmated’ n Ord_er to evaluate t_he correlation between tIgig. 6. MLP NN (11-8-5-2) output results for Output neuronbal{) and for
signals representing the two objects and the mean squadtput neuron 2 (cube) when recognizing the 8 exemplars jectbball
deviation of the signal parameters concerning the training and cube with “magnitude” input vector
samples for each of the two objects. For this purpose, the
mean parametric vectors of the magnitude, of the derivati}ée
of the phase of the reflection coefficient and of the compleX
signal (combining both of them) are calculated. The obthine We have trained the MLP NN in two cases: first only with
mean parametric vectors for 14 train samples of “ball” andnagnitude” input signal, sampling 11 points from each eyrv
“cube” are shown in Figures 4 and 5, respectively. as they vary slowly in frequency and second with “complex”

The next step is to evaluate the standard deviation for eaufinal having 22 points respectively. In both cases theitrgi
of these two signals and calculate the correlation between £€t contains 14 curves with varying offset and object size.
mean parametric vectors of “ball” and “cube”. ConsiderindN€ (€St et contains 8 specimens, representing the tws type
these two parameters, it is easier to make decision whatdtind®! OPJects, whose reflected signals have not participated in
a recognition method to apply, since with a high correlatién the tramlng. set. For 'Fhe first case we have deIS|gned the MLP
interclass parametric descriptions, it is recommendetitose NN Py adding two hidden layers and increasing the number

an adaptive recognition method, such as a neural network Of neurons in each layer until satisfactory recognition was

On the other hand, the adaptation of the neural network arf];l&hleved. The best recognition results were obtained in the

respectively, the accuracy of recognition in this case wdnd o> MLP 11-8-5-2 structure (with two hidden layers, having

g . L 8fand 5 neurons and 2 output neurons, representing the two
much more efficient, if the standard mean square deviation 0 . . . -
the input training parameter vectors within the class ihaig recognizable objects), with a reached minimum Mean Square
Error (MSE<) of 5%. For the second case we train different

The correlation between the mean parametric vectors OY\?[P Structures of 22-10-2- 29-15-2 and 22-20-2 neurons with
the magnitudes, the derivative of the phase of the reflection '

- . . ~..a reached a few times less minimum MSI-ef 0.02 and
coefficients and over the complex (magnitude and derivatiye

. . P :04%.
of the phase) signal for 14 training samples of “ball” an

" R . . : In both cases a step by step “continue” stage of the training
cube” respectively, is has been calculated using the Baar . ! :

: - i as been applied, reducing the error achieved and accepted
correlation coefficient [11]:

at each previous stage. We use steps obtaining MSE of 5%;
— 1%; 0.8%; 0.4%; 0.1%; 0.08%; 0.04%; 0.02%. This method

Neural network: structure and training method

Phall,cube = 2iza(Bi — B)(Ci — ) , (1) permits fine tuning (FT) of a pre-trained network using digh
\/Z?:l (B; — B)%(C; — O)? changed training data.
where B;, C; is the current component of the input vector IV. EXPERIMENTAL RESULTS
“cube/ball”, andn is the number of components (= 11 The MLP NN output results when recognizing the 8 spec-

for input vector “magnitude” and “derivative of the phase”imens, representing the two objects, whose reflected signal
n = 22 for the “complex” vector). The achieved results fohave not participated in the training set, are shown in FEgér

the discussed calculated parameters are shown in Tablgol,10. Figure 6 represents the NN outputs 1 and 2, when
whereT is the complex reflected signdl}| is its magnitude, training the network only with “magnitude” input data for
and d/T'/df is the derivative if the phase of the reflectiora 11-8-5-2 MLP NN. In this case the obtained recognition
signal with respect to the frequency. The obtained resuliscuracy is 75% for both objects, that is, 2 samples of each
show that the correlation has the lowest values for inpaobject are falsely recognized. The training iterations ever
data “magnitude”, but the standard deviation is higheshat tstopped when the MSE has reached 5%. Figures 7, 8 and
complex signal. Thus we will train a MLP neural networl® show the NN outputs 1 and 2, when training the network
(MLP NN) with “magnitude” and “complex” signals, aimingwith “complex” input data, respectively with different MLP

to compare the recognition accuracy results. NN structures: 22-10-2; 22-15-2 and 22-20-2. In order to put
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Fig. 7. MLP NN (22-10-2) output results for Output neuron &l{pand for
Output neuron 2 (cube) when recognizing the 8 exemplars jefctshball
and cube with “complex” input vector

and cube with “complex” input vector

Fig. 9. MLP NN (22-20-2) output results for Output neuron &l{pand for
Output neuron 2 (cube) when recognizing the 8 exemplars jefctdball
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Fig. 8. MLP NN (22-15-2) output results for Output neuron &l{pand for
Output neuron 2 (cube) when recognizing the 8 exemplars jefctsdball

Fig. 10. MLP NN (22-20-2) output results for Output neuronball) and
for Output neuron 2 (cube) when recognizing the 8 exemplasbjects

and cube with “complex” input vector

ball and cube with “complex” input vector applying fine tugitraining

more precise boundaries between the object classes angelq,gnition techniques. The achieved recognition restitsv
improve the accuracy of recognition, it is necessary todase a1 it is very appropriate to implement MLP NN for 3D
the number of neurons in the hidden layer of the MLP NN,jyio ot recognition, when using radar reflection signalse Th
Thus, each subsequent train and test step is made with @i approximation abilities of the MLP NNs make it possible
increased number of neurons in the hidden layer. It is gogd recognize even objects of very similar shapes. It has been
recognizable that the approximation of ideal/ learned e®lughown that a complex signal that has a higher value for
is improved after each subsequent increase of neurons in the. -4 qeviation. results in effective training and éfene
hidden layer. For object "ball” the accuracy increases frofj petter recognition accuracy. As future work, we intend to

87.5% to 100% and for “cube” — from 62.5% (3 sampleggt the method for a larger number of objects with similar 3D
out of 8 are misidentified) to 87.5% (1 sample out of 8

is misidentified). Figure 10 represents the NN outputs in

test phase When fine tuning train method was app“ed TF@BLE Il. RECOGNITIONACCURACY FORDIFFERENTMLP STRUCTURES
! ' . . . T AND INPUT SIGNALS

obtained approximation error for the various structures is

shown in Figure 11. Obviously, the best approximation was MLP Recoaniiion Accuracy. %
achieved in the case of MLP 22-20-2 and fine tuning training. Input Data gniti uracy, »
The summary of the achieved recognition accuracy and the structure| Ball | Cube | MSE<
reached MSE for all tested cases, is shown in Table II. Magnitude | 11-8-5-2| 75% | 75% 5%
Complex | 22-10-2 | 87.5% | 62.5% | 0.02%
. ) V'hC?N_(?LIUS'OE et st Complex | 22-152 | 100% | 75% | 0.02%
is paper shows the initial work on identifying suitable
hpap . . fying Complex | 22-20-2 | 100% | 87.5% | 0.04%
neural network signal processing tools for radar basedeshap
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Fig. 11. Achieved approximation error for “complex” inpugator with
different MLP NN structures.

(8]
object shapes. Also, to generalize the method, the testlsamp
set will be increased. Additional calculations of approation
error are also foreseen. The presented results provideasha{ﬂ
recognition by a single point wideband reflected signal,civhi
is a model of a pulse radar. We intend to expand these results
toward scanning pulsed and scanning frequency modula[%:]
continuous wave (FMCW) radars.
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