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Abstract—Radar based imaging techniques can be used to
collect 3D information about objects, which in turn can be used
to identify and measure specific parameters of these objects. Such
measurements need to correlate specific radar signals with the
object properties. This can be done using neural networks, as
they are designed to search for patterns, which are difficultto
find using analytic methods. This work presents a neural network
based reflection signal processing system for object identification
by attempting to identify an object placed in a rectangular
waveguide. We extract both the phase and the amplitude of the
reflected signal and compare recognition systems using amplitude
only and using both phase and amplitude.
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I. I NTRODUCTION

Radars find many applications as imaging tools. Using the
property of electromagnetic waves to partially penetrate and
partially reflect from dielectric materials, they can provide 3D
images of a large set of objects. The development of easily
available high-frequency components up in the microwave,
millimeter wave and even terahertz ranges allows for high
spatial resolution of the obtained images. This technique finds
multiple applications in security systems, in medical systems
and in agriculture.

We can consider as an example the sensor described in
[2]. The system consists of a 24 GHz Frequency Modulated
Continuous Wave (FMCW) radar used to make 3D images of
grapevine plants in order to estimate the volume of grapes ina
given plant. The radar is equipped with a high gain antenna and
is mounted on a pan-tilt platform, which allows for performing
azimuthal and elevation scans. The radar bandwidth is 2 GHz.
This setup allows for a7.5 cm depth resolution (that is the
precision of the measurement of the distance between the
object and the radar) and transverse resolution of1.5 cm. Of
course, using higher signal frequency, bandwidth and more
directive antennas, resolutions in the millimeter range can be
achieved [3].

The processing of the radar signal in order to obtain
information about the object parameters of interest can be a
challenging task. The measurement system described in [2]
relies on statistical analysis in order to obtain the grapes
volume. Neural networks are optimized for pattern search in
complex data. Therefore, they can be used in radar based
measurement systems as they can extract the data of interest
from the clutter and simultaneously estimate the value of the
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Fig. 1. Positioning of a ball of a diameter2r (a) and a cube with edge2m
(b) in a WG-12 rectangular waveguide.

parameter of interest. In the grapevines radar example, the
parameter of interest is the volume of the produced grapes
and the clutter is the signals from the plant’s trunk and leaves.

In order to develop an intelligent 3D image processing
system, we need to start by implementing simple 1D solu-
tions. In this paper, we present a neural network for shape
recognition based on the scattered signal as a benchmark
case study. The investigated object is a body of perfectly
conducting material placed in a rectangular hollow waveguide.
This limits the neural network input signal to the spectral
representation of a single point reflection signal. We have
previously presented identifying simple objects using just the
amplitude of the reflected signal [1]. In this paper we consider
both the amplitude and the phase of the scattered wave.
The setup has been modeled numerically and the scattering
paarmeters have been obtained using computer simulation.

Section II describes the setup of the performed simulation
and shows the computed reflected signals from the two types
of objects in a waveguide. Section III details the neural
network based signal processing used to identify the objects
based on the reflected signal. Section II discusses the obtained
experimental results and Section V summarizes the paper and
sketches the future work.

II. EXPERIMENTAL SETUP

The experimental setup consists of a hollow rectangular
WG12 waveguide with an object placed at distance∆z
form the excitation port, as shown in Figure 1. The cross-
sectional dimensions of the waveguide area = 47.5mm
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Fig. 2. Family of curves showing the magnitude of the reflection coefficient
of a waveguide with a conducting cube (a) and a sphere (b) inside. The
solid lines and the dotted lines represent varying positionand size of the

sphere respectively.

and b = 22.1mm. The scattering objects are a sphere of
radius r (Figure 1a) and a cube of length2m (Figure 1b).
Both objects are made of a perfect electric conductor and
are placed at a distance of∆x from the short wall of the
conductor. The objects were placed in the middle of the
waveguide in the verticaly direction. The excitation port has
been placed at the−z end of the waveguide. The opposite
end has been terminated with an open boundary in order to
model an infinitely extended waveguide and thus eliminate the
reflections from that boundary. The model has been simulated
for the frequency range of 4 to 6 GHz, which corresponds to
the full single mode range of the waveguide. We measure the
reflection coefficient at the excitation port. The used simulation
tool is CST Microwave studio.

Two families of results have been generated. First, we varied
the dimensions of the objects—the sphere radiusr and the
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Fig. 3. Family of curves showing the derivative of the phase with respect to
frequency of the reflection coefficient of a waveguide with a conducting

cube (a) and a sphere (b) inside. The solid lines and the dotted lines
represent varying position and size of the sphere respectively.

cube edge2m respectively—while keeping both objects at
fixed position∆z = 100mm and∆x = a/2, that is 100
mm from the excitation port and in the middle along thex
direction. The size parametersr andm varied from 4 to 10 mm
in 0.6 mm steps. Then, we held the object dimensions fixed at
r,m = 7mm and varied the offset dimension as follows:

∆z = 0 to − 30mm in 10 mm steps,

∆x = 0 to 10mm in 5 mm steps.

The full combination of offset coefficients has been modeled.
We consider both the amplitude and the phase of the re-

flected signal, relative to the incident one. This is defined as the
complex reflection coefficientΓ of the perturbed waveguide
[4]. The amplitude and the phase are two independent variables
and we can get more information about the shape of the
object in the waveguide if we consider both of them instead
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of just one. The information carried by the distribution of the
amplitude of the reflection coefficient in frequencyΓ(f) can
be extracted straightforward by feeding it directly to a neural
network, as we proceed in Section III. There is an intrinsic
difficulty in working with the phase, though, because we can
not distinguish a2π phase increment:6 Γ = 6 Γ ± n2π. In
other words, the reflection coefficient generated by a perfectly
conducting transverse wall, shorting a lossless waveguide, will
be the same as the one when the wall is moved±λg/2 in
longitudinal direction, whereλg is the length of the guided
wave. This can cause significant difficulties for an intelligent
system, trying to identify the shape of the object irrespective
of the distance of interrogation.

We attempt to circumvent this problem by using the deriva-
tive of the phase of the reflection coefficient with respect tothe
frequencyd6 Γ/df , measured in rad/Hz, instead of the phase
itself. In this way we disregard any±n2π uncertainty while
keeping the information about the distribution of the phasein
frequency.

The results for the amplitude of the reflection coefficient
for a cube and a ball are presented in Figures 2a and 2b,
respectively, where the dotted lines show the family of curves
for varying object size, while the position is held fixed, andthe
solid lines show the results for fixed size and varying offset.
The dotted lines show a greater reflection coefficient ans the
object dimensionsr andm increase, which can be expected as
larger objects create larger echo. The derivative of the phase
with respect to frequency for a cube and a ball is presented in
Figures 3a and 3b respectively.

We have used a combination of the frequency distribution of
the magnitude and phase of the reflection coefficient in order
to generate an input for the shape recognition neural network.
We have used 11 points from each of the curves from Figures 2
and 3, as the frequency response varies slowly and using this
representation we lose no information. Thus we get an input
signal of 22 points for each size and position of the respective
object. As the number of size and position varying simulations
is also 22, we get 22 input signals of 22 points each for each
object. We use 14 of those signals to train the network and 8
to test it.

We compare the efficiency of a shape recognizing neural
network working with reflection coefficient amplitude and
phase versus a system working with amplitude only. We use
11 points from each amplitude curve, presented in Figure 2 in
order to train and test such a network.

III. N EURAL NETWORK SIGNAL PROCESSING

There are various studies concerning the pre-processing of
input data for the recognition system to improve its efficiency
and accuracy. In order to make a correct choice of the
recognition method, it is necessary to analyze the data defining
the parametric descriptions of the objects. This analysis is
based on the calculation of the statistical parameters of the data
as well as the determination of the degree of similarity between
the parametric descriptions of the objects. Since our studyin-
volves highly correlated input parametric vectors representing
parametric descriptions of the reflected radar signal for the
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two objects under study, we have chosen the adaptive neural
network method, that provides the most effective recognition
of similar input data. As the two 3D objects have similar
shapes, it is necessary to use an adaptive and precise method
for recognition and classification of the two objects. The Deep
Learning method using a Multi-Layered-Perception (MLP)
feed forward Neural Network (NN), trained by the Back-
propagation (BP) algorithm, gives satisfactory results inthe
cases described in [5], [6]. This allows precise placement of
boundaries between object classes with overlapping parametric
descriptions – in our case very similar reflection signals. In or-
der for the neural network to be “assisted” in advance, different
linear transformations (mostly scaling to the ranges of(0, 1)
or (−1, 1)) [7], [8], statistical standardization (using deviation
from the mean) or various other appropriate mathematical
transformations over the input data [9], [10] are suggested. In
our study, in order to reduce the preliminary calculations and
simplify the method, we choose an appropriate combination
of independent parameters of the reflected radar signal, such
as magnitude and phase of the reflection coefficient.
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TABLE I. STANDARD DEVIATION AND CORRELATION BETWEEN THE
MEAN PARAMETRIC VECTORS

Input data
Standard deviation Correlation between

mean parametric
vectorsBall Cube

|Γ| 0.801 0.179 −0.337

d 6 Γ/df 1.05 · 10−3
8.29 · 10−4

0.972

Γ 3.217 1.337 0.976

A. Preprocessing stage

In this stage some statistical parameters of the signals are
calculated, in order to evaluate the correlation between the
signals representing the two objects and the mean square
deviation of the signal parameters concerning the training
samples for each of the two objects. For this purpose, the
mean parametric vectors of the magnitude, of the derivative
of the phase of the reflection coefficient and of the complex
signal (combining both of them) are calculated. The obtained
mean parametric vectors for 14 train samples of “ball” and
“cube” are shown in Figures 4 and 5, respectively.

The next step is to evaluate the standard deviation for each
of these two signals and calculate the correlation between the
mean parametric vectors of “ball” and “cube”. Considering
these two parameters, it is easier to make decision what kindof
a recognition method to apply, since with a high correlationof
interclass parametric descriptions, it is recommended to choose
an adaptive recognition method, such as a neural network.

On the other hand, the adaptation of the neural network and,
respectively, the accuracy of recognition in this case would be
much more efficient, if the standard mean square deviation of
the input training parameter vectors within the class is higher.
The correlation between the mean parametric vectors over
the magnitudes, the derivative of the phase of the reflection
coefficients and over the complex (magnitude and derivative
of the phase) signal for 14 training samples of “ball” and
“cube” respectively, is has been calculated using the Pearson
correlation coefficient [11]:

ρball,cube =

∑n

i=1
(Bi −B)(Ci − C)

√

∑n

i=1
(Bi −B)2(Ci − C)2

, (1)

whereBi, Ci is the current component of the input vector
“cube/ball”, andn is the number of components (n = 11
for input vector “magnitude” and “derivative of the phase”;
n = 22 for the “complex” vector). The achieved results for
the discussed calculated parameters are shown in Table I,
whereΓ is the complex reflected signal,|Γ| is its magnitude,
and d6 Γ/df is the derivative if the phase of the reflection
signal with respect to the frequency. The obtained results
show that the correlation has the lowest values for input
data “magnitude”, but the standard deviation is highest at the
complex signal. Thus we will train a MLP neural network
(MLP NN) with “magnitude” and “complex” signals, aiming
to compare the recognition accuracy results.
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B. Neural network: structure and training method

We have trained the MLP NN in two cases: first only with
“magnitude” input signal, sampling 11 points from each curve,
as they vary slowly in frequency and second with “complex”
signal having 22 points respectively. In both cases the training
set contains 14 curves with varying offset and object size.
The test set contains 8 specimens, representing the two types
of objects, whose reflected signals have not participated in
the training set. For the first case we have designed the MLP
NN by adding two hidden layers and increasing the number
of neurons in each layer until satisfactory recognition was
achieved. The best recognition results were obtained in the
case MLP 11-8-5-2 structure (with two hidden layers, having
8 and 5 neurons and 2 output neurons, representing the two
recognizable objects), with a reached minimum Mean Square
Error (MSE-ε) of 5%. For the second case we train different
MLP structures of 22-10-2; 22-15-2 and 22-20-2 neurons with
a reached a few times less minimum MSE–ε) of 0.02 and
0.04%.

In both cases a step by step “continue” stage of the training
has been applied, reducing the error achieved and accepted
at each previous stage. We use steps obtaining MSE of 5%;
1%; 0.8%; 0.4%; 0.1%; 0.08%; 0.04%; 0.02%. This method
permits fine tuning (FT) of a pre-trained network using slightly
changed training data.

IV. EXPERIMENTAL RESULTS

The MLP NN output results when recognizing the 8 spec-
imens, representing the two objects, whose reflected signals
have not participated in the training set, are shown in Figures 6
to 10. Figure 6 represents the NN outputs 1 and 2, when
training the network only with “magnitude” input data for
a 11-8-5-2 MLP NN. In this case the obtained recognition
accuracy is 75% for both objects, that is, 2 samples of each
object are falsely recognized. The training iterations were
stopped when the MSE has reached 5%. Figures 7, 8 and
9 show the NN outputs 1 and 2, when training the network
with “complex” input data, respectively with different MLP
NN structures: 22-10-2; 22-15-2 and 22-20-2. In order to put
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more precise boundaries between the object classes and to
improve the accuracy of recognition, it is necessary to increase
the number of neurons in the hidden layer of the MLP NN.
Thus, each subsequent train and test step is made with an
increased number of neurons in the hidden layer. It is good
recognizable that the approximation of ideal/ learned values
is improved after each subsequent increase of neurons in the
hidden layer. For object “ball” the accuracy increases from
87.5% to 100% and for “cube” – from 62.5% (3 samples
out of 8 are misidentified) to 87.5% (1 sample out of 8
is misidentified). Figure 10 represents the NN outputs in
test phase, when fine tuning train method was applied. The
obtained approximation error for the various structures is
shown in Figure 11. Obviously, the best approximation was
achieved in the case of MLP 22-20-2 and fine tuning training.
The summary of the achieved recognition accuracy and the
reached MSE for all tested cases, is shown in Table II.

V. CONCLUSION

This paper shows the initial work on identifying suitable
neural network signal processing tools for radar based shape
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recognition techniques. The achieved recognition resultsshow
that it is very appropriate to implement MLP NN for 3D
object recognition, when using radar reflection signals. The
good approximation abilities of the MLP NNs make it possible
to recognize even objects of very similar shapes. It has been
shown that a complex signal that has a higher value for
standard deviation, results in effective training and therefore
in better recognition accuracy. As future work, we intend to
test the method for a larger number of objects with similar 3D

TABLE II. R ECOGNITIONACCURACY FORDIFFERENTMLP STRUCTURES

AND INPUT SIGNALS

Input Data
MLP Recognition Accuracy, %

structure Ball Cube MSE-ε

Magnitude 11-8-5-2 75% 75% 5%

Complex 22-10-2 87.5% 62.5% 0.02%

Complex 22-15-2 100% 75% 0.02%

Complex 22-20-2 100% 87.5% 0.04%
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object shapes. Also, to generalize the method, the test sample
set will be increased. Additional calculations of approximation
error are also foreseen. The presented results provide shape
recognition by a single point wideband reflected signal, which
is a model of a pulse radar. We intend to expand these results
toward scanning pulsed and scanning frequency modulated
continuous wave (FMCW) radars.
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