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Abstract —Large Software Defined Networks (SDN) solve 

the control scalability problem coming from the SDN control 

centralization principle, by defining and installing several 

regional controllers. Therefore, a controller placement 

problem (CPP) should be solved. During run-time, possible 

failures of links or node appear; then a forwarder node could 

try to select an available and reachable controller among those 

which are functional. This is called controller selection 

problem (CSP). Although many studies have been published, 

the above problems are still open research issues, given the 

various network contexts, providers’ policies and possible 

multiple, different optimization criteria. Therefore, multi-

criteria decision algorithms can provide valuable solutions. 

This paper is based on a previous work which has developed a 

simulation model for multi-controller SDN network, targeting 

optimization while including resilience aspects of the controller 

placement problem and controller selection problem. The 

current paper extends that work, by including a more in-depth 

analysis, giving relevant examples and introducing additional 

novel experiment results. 

Keywords — Software Defined Networking; Multi-criteria 
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I. INTRODUCTION 

 This paper is an extended version of the work [1], 
which has been dedicated to study methods to optimize the 
Software Defined Networking (SDN) controller placement 
and selection in large area SDN networks. It is known that 
SDN has as basic principles the decoupling of the 
architectural Control Plane (CPl) w.r.t Data Plane (DPl) 
and also CPl centralization in SDN controllers. Therefore, in 
large network environments and considering the limited 
processing of controllers, scalability problems of the CPl 
appear [2]. The usual solution for this, adopted in many 
studies, is a distributed multi-controller implementation of 
the SDN control plane. Different flat or hierarchical 
organizations for a multi-controller SDN control plane have 
been developed, e.g., in [3][4]. 

In a basic approach, the SDN controller (SDN-C) is 
understood as a software control entity installed/placed in a 
geographically distinct location, i.e., a particular physical 
network node. The control plane is defined as an overlay 
network on top of the physical one. The links between 
controllers can be physical or virtual.  

Recently, the Network Function Virtualization 

technologies [5] allow that several logical SDN-Cs could be  

realized as virtual entities running on top of virtual 
machines (notation for such controllers could be vSDN-C), 
i.e., several logical controllers can be collocated in the same 
physical node.  

In this work we suppose the basic approach of the SDN 
controllers’ implementation. However, the models 
developed in here can be as well applied to a virtualized 
environment. In such a case, the essential modification of 
the model (considering the optimization objective of this 
study) is that the logical controllers will be virtually linked 
through a control plane graph.  

The controller placement problem (CPP) is a complex 
one, given the variety of factors involved. Some examples 
are: how the network topology is specified - flat or 
hierarchical/clustered; what criteria are considered to solve 
the CPP; number of controllers - predefined or not; failure-
free or failure-aware metrics (e.g., considering backup 
controllers and node/link failures); how the DPl forwarders 
nodes are assigned/mapped to controllers (in static or 
dynamic way, i.e., depending on actual network conditions 
and network provider policies), and others. The evaluation 
of the degree of optimality of different approach can be 
studied on some simplified topologies – in order to compare 
the efficiency of approaches or, on real specific network 
topologies. Many studies, e.g., of Heller [6] et al. - as early 
study - and then others [7-9][11-19] considered various 
aspects and solutions of the CPP. 

In a real network environment, it has been apparent that 
there is no unique best and universal placement rule for any 
SDN-controlled network. Dynamic nodes addition and 
deletion can happen and, in such cases, a forwarder could 
dynamically select an appropriate controller, if it has enough 
pertinent and updated information. The same situation 
appears when the traffic in the data plane is varying and re-
assignment of forwarder to controllers is required, to avoid 
controller overload. This is called controller selection 
problem (CSP) and can be considered as an extension of the 
CPP [7]. 

The CPP was recognized as a non-polynomial (NP) -
hard problem, mentioned in the early work of Heller et al. 
[6]. For such problems different approximation algorithms 
[8] and more pragmatic solutions have been proposed, 
adapted in different contexts. In particular, in SDN-
controlled  networks case, many optimization criteria have 
specific, target performance, both in the data plane and 
control plane,  in failure-free or failure-aware approaches. 
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Examples of specific, individual criteria could be: to 
maximize the controller-forwarder or inter-controller 
communication throughput; reduce the latency of the path 
connecting them;  limit the controller load imbalance;  find 
an optimum controllers’ placement and forwarder-to-
controller allocation, offering a fast recovery after failures 
(controllers, links, nodes). Also, other specific optimization 
goals could be added to the above list, depending on specific 
context (wire-line, wireless/cellular, cloud computing and 
data center networks) and on some specific business targets 
of the Service Provider. 

However, a major issue is that different optimization 
criteria could lead to significant different placement 
solutions; so, a multi-criteria global optimization could be a 
better trade-off approach.  

The paper [9] provided a contribution on multi-criteria 
optimization algorithms for the CPP, not by developing 
specific single-criterion algorithms (many other studies 
already did that) but to achieve an overall optimization by 
applying multi-criteria decision algorithms (MCDA) [10]. 
The input of MCDA is the set of candidates (an instance of 
controller placement is called a candidate solution).  
Examples have been analyzed, on some real network 
topologies, proving the usefulness of the approach. 

The more recent paper [1] extended the model of [9]; 
several reliability aware criteria have been   added to the CPP 
solution. Also the novel CSP extension is introduced, being 
appropriate for a dynamic network context. It has been 
shown that the same basic MCDA can be applied in both 
static and dynamic context, but with different sets of criteria. 
Simulation experiments and novel results have been 
presented. 

Note some limitations:  neither work [9], nor [1]  touch 
the problem of control plane overhead and signaling issues 
between the controllers when a re-configuration of the SDN 
network is performed. This could be the topic for additional   
studies. Also note that in this paper, by “large Software 
Defined Networks”, it is actually understood networks 
having several SDN controllers. 

The structure of this paper (extension of [1]) is described 
here. Section II is a short overview of related work. Section 
III revisits several metrics and optimization algorithms and 
presents   some of their limitations.  Section IV revisits the 
framework for MCDA-RL (the variant which is called 
“reference level”) as a simple but powerful tool applicable to 
solve the CPP and CSP problems. Section V presents the 
implementation performed to validate the MCDA proposed 
model in a resiliency-oriented optimization approach, and 
outlines the simulation experiments performed.  Section VI 
offers few examples of simulation results to illustrate the 
validity of the approach. Section VII presents conclusions 
and future work. 

II. RELATED WORK 

This short section is included mainly for guiding the 
reader to references. More comprehensive overviews on 
published work on CPP in SDN-controlled   WANs are 

given in [11-14].  The main goal is to find those controller 
placements that provide high performance (e.g., low delay 
for controller-forwarder communications) and also create 
robustness to controllers and/or network failures.  

An early work of Heller et al. [6] has shown that it is 
possible to find optimal controller placement solutions for 
realistic network instances, in failure-free scenarios, by 
analyzing the entire solution space, with off-line 
computations (the metric is latency). The studies [15-21] 
have been more focused, i.e., additionally considered the 
resilience as being important with respect to events like: 
controller failures, network links/paths/nodes failures, 
controller overload (load imbalance). The Inter-Controller 
Latency is also important and, generally, it cannot be 
minimized while simultaneously minimizing controller-
forwarders latency; a tradeoff solution could be the answer. 

The works [15][17] developed several algorithms for  
real topologies, aiming to find solutions for reliable. SDN 
control, but still keep acceptable latencies. The controller 
instances are chosen as to minimize connectivity losses; 
connections are defined according to the shortest path 
between controllers and forwarding devices. Muller et al. 
[18] eliminate some restrictions of previous studies, like: 
single paths, processing (in controllers) of the forwarders 
requests only on-demand and some constraints imposed on 
failover mechanisms. Hock et al. [16] adopted a multi-
criteria approach for some combinations of the metrics (e.g., 
max. latency and controller load imbalance for failure-free 
and respectively failure use cases). 

In a recent work [7], K. Sood and Y. Siang propose to 
extend the CPP problem into CSP, i.e., to consider the 
dynamics of the network and make controller selection. They 
explore the relationship between traffic intensity, resources 
requirement, and QoS requirements. It is claimed that to 
optimize the control layer performance, the solutions must be 
topology-independent and adaptive to the needs of the 
underlying network   behaviour. They propose a topology 
independent framework to optimize the control layer, aiming 
to calculate the optimal number of controllers to reduce the 
workload, and investigate the placement/location of the 
controllers. However, their first declared objective has been 
not to determine the optimal placement of controllers in the 
network, but to motivate the CSP. 

In recent papers [20][21] Y. Xu, M. Cello et al.,  
developed dynamic forwarder/switch migration scenarios 
and algorithms, starting from a given switch-controller 
assignment and partition (based on some criteria) of the 
network in domains, each one controlled by a single 
controller. Also, a realistic assumption is considered, i.e., 
limited processing capacity of the controllers. During run 
time, if some controllers are overloaded (such events are 
dynamically observed by a monitoring system), then a 
heuristic algorithm is applied, to optimally move (re-assign) 
a part of the switches coordinated by that controller to other 
controller less loaded. In order to reduce the signaling 
(related to migration) between controllers, the migration is 
cluster-based, i.e., not a single switch is migrated but a 
cluster of switches are moved from an overloaded 
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controller, e.g., CTi, to another less loaded controller CTj. 
Thus, the algorithm realizes a controller load balancing (the 
name BalCon is coined for the algorithm [20]). 

Many of the mentioned studies considered a single 
criterion in the optimization algorithms. In [9][1] a multi-
criteria algorithm is used (applicable for an arbitrary number 
of decision criteria) to solve the CPP; validation of results 
have been presented for some real network topologies 
[22][23].  

A recent work [24] studies the load balancing via switch 
migration in a network having several SDN controllers. The 
goal is to migrate  switches from overloaded to under-loaded 
controllers, depending on the  traffic variation. The work 
presents a heuristic approach to solve the switch migration 
problem. The advantage of the proposed solution versus 
other approaches is that the algorithm does not halt the 
search whenever a switch migration is not possible. Instead, 
it searches for more complex moves like swapping two 
switches to further improve the results. 

The work in this paper is an extension of [1], with focus 
on optimal initial placement of the SDN controllers, 
considering among multi-criteria some reliability – related 
ones. 

 

III. EXAMPLES OF CONTROLLER PLACEMENT METRICS 

AND ASSOCIATED ALGORITHMS 

This section is a short presentation of a few typical 
metrics and optimization algorithms for CPP and CSP. A 
more detailed presentation of them can be found in [13]. 
Considering a particular metric (criterion) an optimization 
algorithm can be run for a given metric, as in [6][15-18].  

As already stated, this paper goal is not to develop a new 
particular algorithm based on a given single metric, but to 
search for a global optimization. The individual metrics 
presented in this section can be embedded in a multi-criteria 
optimization algorithm. 

The SDN-controlled network is abstracted by an 
undirected graph G(V, E), with  V - set of nodes, E – set of 
edges and  n=|V| the total number of nodes. The edges 
weights represent an additive metric (e.g., propagation 
latency [6]).    

A basic metric is d(v, c): shortest path distance from a 
forwarder node v∈V to a controller c∈V. We denote by  Ci a 
particular placement of controllers; Ci ⊆ V and |Ci| < |V|. The 
number of controllers is limited to |Ci|= k for any particular 
placement Ci. The set of all possible placements is denoted 
by C = {C1, C2 …}. Some metrics are basic, i.e., failure-free; 
others take into account failure events of links or nodes.  

An important metric for SDN control is the latency 
between nodes. Note that, while it has a dynamic nature, in 
some simplified assumptions it is estimated as a static value.  

A. Failure-free scenarios 

• Forwarder-to-controller latency 
 In Heller’s work [6], two (failure-free) metrics are 

defined for a given placement Ci: Worst_case_latency and 
Average_latency between a forwarder and a controller. In [5], 

the above two  kinds of latencies are defined, for a particular 
placement Ci of controllers, where Ci ⊆ V and |Ci| ≤|V|. The 
number of controllers is k  for any particular placement Ci. 
The set of all possible placements is C = {C1, C2, ….}. One 
can define, for a given placement Ci : 

Average_latency:  

 
∈

∈
=
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n
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Worst_case_latency :  
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The optimization algorithm should find a particular 
placement Copt, where either average latency or the worst 
case latency is minimum. 

 
 
The work [8] proposes an algorithm to maximize the 

number of nodes within a latency bound, i.e., to find a 
placement of k controllers, such that they cover a maximum 
number of forwarder nodes, but with an upper latency bound 
of each forwarder latency to its controller.  

• Inter-controller latency  
The SDN controllers should inter-communicate and 

therefore, the inter-controller latency is important. For a 
given placement Ci, one can minimize the maximum latency 
between two controllers. Note that this can increase the 
forwarder-controller distance (latency). Therefore, a trade-off 
is necessary, thus justifying the necessity to apply some 
multi-criteria optimization algorithms, e.g., like Pareto 
frontier - based ones [16]. 

B. Failure-aware scenarios 

In such scenarios controller and/or network failures 
events are considered. The optimization process aims now to 
find trade-offs to preserve a convenient behavior of the 
overall system in failure cases (controllers, or nodes, or 
links). 

• Multiple-path connectivity metrics  
If multiple paths are available between a forwarder node 

and a controller [9], this can exploited in order to reduce the 
occurrence of controller-less events, in cases of failures of 
nodes/links. The goal in this case is to maximize connectivity 
between forwarding nodes and controller instances. A special   
metric can be  defined as: 

 
∈∈

=

VvCc

i cvndp
V
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i
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1
)(                     (3) 

The ndp(v,c) is the number of disjoint paths between a 
node v and a controller c, for an instance placement Ci. An 
optimization algorithm should find the placement Copt which 
maximizes M(Ci). 

• Controller failures 
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To minimize the impact of such failures, the latency-
based metric should consider both the distance to the 
(primary) controller and the distance to other (backup) 
controllers. For a total number of k controllers, the failures 
can be modeled [16],  by constructing a set C of scenarios, 
including all possible combinations of faulty controller 
number, from 0 of up to k - 1. The Worst_case_latency_cf  
will be: 

 ( )cvdL
ii CcCCVv

cfwc ,minmaxmax
∈∈∈

− =                  (4) 

The optimization algorithm should find a placement 
which minimizes the expression (4).  

Note that in failure-free case, the optimization algorithm 
tends to rather equally spread the controllers in the network, 
among the forwarders. To minimize (4), the controllers tend 
to be placed in the center of the network, such that in a worst 
case, a single controller can take over all control. However, 
the scenario supposed by the expression (4) is very 
pessimistic; a large network could be split in some 
regions/areas, each served by a primary controller; then some 
lists of possible backup controllers can be constructed for 
each area, as in [18]. The conclusion is that an optimization 
trade-off should be found, for the failure-free or failure cases. 
A multi-criteria approach can provide the solution. 

• Nodes/links failures  
For such cases, the objective could be to find a controller 

placement that minimizes the number of nodes possible to 
enter into controller-less situations, in various scenarios of 
link/node failures. A realistic assumption is to limit the 
number of simultaneous failures at only a few (e.g., two 
[16]). If more than two arbitrary link/node failures happen 
simultaneously, then the topology can be totally 
disconnected and optimization of controller placement would 
be no longer useful. 

For  a placement Ci of the controllers, an additive integer 
value metric Nlf(Ci) could be defined,  as below: consider a 
failure scenario denoted by fk, with fk∈F, where F is  the set 
of all network failure scenarios (suppose that in an instance 
scenario, at most two link/nodes are down); initialize  
Nlfk(Ci) =0; then for each node v∈V, add one to Nlfk(Ci) if 
the node v has no path to any controller c∈Ci and add zero 
otherwise; compute the maximum value (i.e., consider the 
worst failure scenario). In equivalent words, the algorithm 
counts the nodes that have no more connectivity to any 
controller.  

 ( ) ( )iki CNlfCNlf max=                  (5) 

The optimization algorithm should find a placement to  
minimize (5), where k should cover all scenarios of F. It is 
expected that increasing the number of controllers, will 
decrease the Nlf value. However, the optimum solution based 
on the metric (5) could be very different from those provided 
by the algorithms using the latency-based metrics.  

 
•  Load balancing for controllers  

It is desired a good balance of the node-to-controller 
distribution. A metric Ib(Ci) will measure the degree of 
imbalance of a given placement Ci as the difference between 
the maximum and minimum number of forwarders nodes 
assigned to a controller. If the failure scenarios set S is 
considered, then the worst case should evaluate the 
maximum imbalance as: 

 }minmax{max)( s
c

Cc

s
c

CcSs
i nnCIb

ii ∈∈∈
−=               (6) 

where s

cn  is the number of forwarder nodes assigned to a 

controller c. Equation (4) takes into account that in case of 
failures, the forwarders can be reassigned to other controllers 
and therefore, the load of those controllers will increase. An 
optimization algorithm should find that placement which 
minimizes the expression (4). 

IV. MULTI-CRITERIA OPTIMIZATION ALGORITHMS 

SDN controllers’ placement and/or selection may involve 
several particular metrics (as summarized in Section III). If   
optimization algorithms for particular metrics are applied, 
then one can obtain different non-convergent solutions. 
Actually the CPP and CSP problems have naturally multi-
criteria characteristics; therefore, MCDA is a good way to 
achieve a convenient trade-off solution.  

This paper uses the same variant of MCDA 
implementation as in [9], i.e., the reference level (RL) 
decision algorithm [10] as a general way to optimize the 
controller placement, and controller selection, for an 
arbitrary number metrics. The MCDA-RL selects the optimal 
solution based on normalized values of different criteria 
(metrics).  

The MCDA considers m objectives functions (whose 
values, assumed to be positive should be minimized). A 
solution of the problem  is represented  as a point in a space 
Rm of objectives;  the  decision parameters/variables are: vi, i 
= 1, ..m,  with ∀i, vi ≥ 0; so, the  image of a candidate 
solution is Sls=(vs1,vs2, ..,vsm), represented as a point in Rm. 
The number of candidate solutions is S. Note that the value 
ranges of decision variables may be bounded by given 
constrains. The optimization process consists in selecting a 
solution satisfying a given objective function and 
conforming a particular metric. 

The basic MCDA-RL [10] defines two reference 
parameters: ri =reservation level=the upper limit, not allowed 
to be crossed by the actual decision variable vi of a solution; 
ai=aspiration level=the lower bound beyond which the 
decision variables (and therefore, the associate solutions) are 
seen as similar (i.e., any solution can be seen as “good”- 
from the point of view of this variable). Applying these for 
each decision variable vi, one can define two values named ri 
and ai, i= 1, ..m, by computing among all solutions s = 1, 2, 
..S: 

 
, ..S, , s = v  = a

, ..S, s = v r

isi

isi

21][min

21 ],[max  =
                (7) 
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An important modification is proposed in [16], aiming to 
make the algorithm agnostic versus different nature of 
criteria. The absolute value vi of any decision variable is 
replaced with distance from it to the reservation level: ri-vi; 
(so, increasing vi will decrease the distance); normalization is 
also introduced, in order to get non-dimensional values, 
which can be numerically compared despite their different 
nature. For each variable vsi, a ratio is computed: 

 is)-a)/(r-v' = (rv iisiisi ,, ∀                 (8) 

The factor 1/(ri-ai) - plays also the role of a weight. A  
variable for which  the possible  dispersion of values is high  
(max – min has a high value in formula (6)) will have lower 
weight and so, greater chances to be considered in 
determination of the minimum in the next relation (7). On 
the other side, if the values min, max are rather close to each 
other, then any solution could be enough “good”, w.r.t. that 
respective decision variable.  

The basic MCDA-RL algorithm steps are (see also [13] ): 
Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m 
Step 1. Compute for each candidate solution s, the minimum 
among all its normalized variables vsi': 

 ...m'}; i={v = sis 1minmin                     (9) 

Step 2. Select the best solution: 

 , ..S}, s= {  = v sopt 1minmax               (10) 

Formula (7) selects for each candidate solution s, the 
worst case, i.e., the closest solution to the reservation level 
(after searching among all decision variables). Then the 
formula (8) selects among the solutions, the best one, i.e., 
that one having the highest value of the normalized 
parameter. One can also finally, select more than one 
solution (quasi-optimum solutions in a given range).  The 
network provider might want to apply different policies 
when deciding the controller placement; so, some decision 
variables could be more important than others. A simple 
modification of the algorithm can support a variety of 
provider policies. The new normalized decision variables 
will be: 

 )-a)/(r-v(r' = wv iisiiisi                          (11) 

where wi ∈ (0,1] is a weight (priority), depending on policy 
considerations. Its value can significantly influence the final 
selection. A lower value of wi represents actually a higher 
priority of that parameter in the selection process. 

V. MCDA-BASED IMPLEMENTATION FOR SDN 

CONTROLLER PLACEMENT 

A proof of concept simulation program (written in 
Python language [1] [13]) has been constructed by the 

authors, to validate the MCDA–RL based CPP problem and 
allocation of forwarders to controllers. The program has been 
extended in this study with reliability-related evaluation 
features. The simulation program uses the standard libraries 
and additionally the NetworkX and matplotlib, in order to 
create and  manipulate the network graphs. 

The simplifying assumptions (they could be also seen as   
limitations) of the model studied here, are:  the network 
architecture is flat, i.e.,  no disjoint regions are defined;  the 
network graph is undirected; any network node can be a 
forwarder but also can collocate a controller;  when 
computing paths or distances, the metrics are additive; the 
number of controllers is predefined; the data traffic aspects 
and signaling interactions are not considered; the dynamic 
variation of the traffic in the data plane is not considered.   

 A. The MCDA basic model  

The basic model considered in this paper, to solve the 
CPP and CSP problems has two working modes:  

a. static mode: the input data are: network graph (overlay 
or physical), link costs/capacities, shortest path distances 
between nodes (e.g., computed with Dijkstra algorithm based 
on additive metric), desired number of controllers, the 
criteria (decision variables –these could be anyone, among 
those of Section III,l or others) for MCDA, and weights 
assigned to the decision variables).  

Two working phases are defined: 
 (1) Phase 1:  
1.1. Compute all controller placements C1, C2, …. (i.e., 

the set of candidate solutions). The number of placements is 
Cn

k (n= total number of network nodes;  k= number of 
controllers). 

1.3. Compute the values of the normalized metrics for 
each possible controller placement (i.e., future MCDA 
candidate solution), by using specialized algorithms and 
metrics like those defined in Section III.  

The Phase 1 phase has as outputs the set of candidate 
solutions (i.e., placement instances) and their associated 
values to fill the entries of the matrix M defined in Section 
IV. The Phase 1 computation could be time consuming; it  
depends  on network size, but also on the number of criteria 
selected and the complexity to compute the metrics like in 
Section III., Such computations could be performed off-line 
[5].  For instance, in a real network, a master SDN controller 
having all these information could perform these 
computations. However, in a network exposing high 
dynamicity computing the Phase 1 in real time is a 
challenging issue. 

 (2) Phase 2: MCDA-RL: define ri and ai, for each 
decision variable; eliminate those candidates having 
parameter values out of range defined by ri; assign – if 
wanted – convenient weights wi for different decision 
variables; compute the normalized variables (formula (8)); 
run the MCDA Step 0, 1 and 2 of the (formulas (9) and (10)).  

The Phase 2 provides the CPP solution. 
The pseudocode of basic MCDA-based optimization  

processing is high level presented   below: 
 

Start 
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//Initialize 

  {Parse the arguments; 
      Define the decision variables vi, i=1,..m, 

∀i, 
          vi ≥ 0;} 

//Build candidate solutions 

       {Build the weighted graphs; 
      Build candidate solutions;//S= the set of  

candidates 

       } 

  {Compute all shortest paths between pairs of 
       network   nodes; // Dijkstra algorithm} 

{Normalize the decision variables; //(formula (8) 

 Compute the matrix M{vsi'}, s=1…S, i=1…m; 

 Compute for each candidate s, the min. among 

all  its normalized variables vsi';/formula (9) 

 } 

 Select the best solution; //formula (10) 

Stop 

 

b. dynamic mode : the semantic of the word dynamic 
here is the fact that some parameters are randomly generated 
i.e, not predefined.  The initial input information is the total 
number of network nodes (not the complete graph) and 
desired number of controllers. The graph (which could be 
full-mesh or not) and costs of the links are randomly 
generated by the program.  

B. Resilience-capable  models 

As shown in Section III, more realistic scenarios consider 
the possible occurrence of controller and/or network failures 
events. It is desired a resilient system i.e., able to recover (as 
much as possible) after failure events. The optimization 
process aims now to proactively find trade-off solutions  to 
provide still a convenient behavior of the overall system in 
failure cases. 

• Backup controllers 
A simple static solution for assignment/mapping  of the 

forwarders (this is CSP problem) to primary and backup 
controllers is presented below. For a given placement of the 
controllers, let it be Cp, the identities of nodes playing the 
role of controllers are known. The simplest 
assignment/mapping of forwarders to controllers is based on 
the shortest path (metric is average estimated latency 
forwarder-controller) to a controller. So, an algorithm will 
compute, for a given placement Cp, the   distances from each 
Fi to each controller CT1, CT2, …CTk and select the closest 
controller, let it be  CTm, as primary controller for Fi.  

How to define the backup controllers? A natural solution 
(supposing that the total number of controllers is still k) will 
be to allow a forwarder to migrate from a failed primary 
controller to another backup/secondary controller, selected 
from the same set. This backup controller can be determined 
by the above algorithm, as the second one in the ordered list 
(using the shortest distance as criterion).  This assignment 
should be performed for every possible placement Ci. If CPP 
optimization and forwarders-to-controllers assignment is 
wanted for the backup controllers, then it is necessary to add 
a new criterion (decision variable- e.g., similar to the average 
distance given by the formula (1)) to the  MCDA algorithm, 
with a metric similar to that of formula (1). The reason is that 
for primary controller placement and forwarder assignment, 

one can find Ci as the best solution while for and backup 
controller placement and assignment other different Cj could 
be the best. Therefore, the MCDA can provide the best trade-
off. 

An auxiliary algorithm is used to compute a simple 
metric (average distance to a backup controller) to be added 
to MCDA. We introduce a novel decision variable 
dist_backup and perform the following computation (for 
each possible controller placement Ci containing the 
controllers CT1, CT2, ….CTk): 

 
For each forwarder Fi, i=1..N 

 Do 

Dist_backup = 0; 

   Compute dist. from Fi to any CTj, j=1..k; 

   Dist_backup=Dist_backup + second_shortest_cost; 

  Od 

   Dist_backup_avg = Dist_backup/N; 
 
This Dist_backup_avg can be added as a new decision 

variable to MCDA (maybe with appropriate wight) 
Therefore, the optimization will select a solution which  
considers also the backup controller placement and 
assignment of forwarder nodes as a factors influencing the 
final solution selection.   

A simple example (Figure 1) will show the need of the 
additional MCDA criterion for the backup controllers. The 
example network is represented by an undirected graph, 
where the metric indicated on the edges can be the average 
latency between nodes (vertices).  
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Figure 1. Simple example of two instances of primary controller 

placements and forwarders assignment 

 

51

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



  

The network nodes are denoted with Vi, in order to 
emphasize that a given node can play the role of a forwarder 
but also a controller can be installed there. The edges costs 
correspond to an additive metric, i.e the average estimated 
communication delay between two nodes. The edges can 
represent real links or overlay ones (this aspect is irrelevant 
for the purposes of this study). It is assumed that three 
controllers exist, CT1, CT2, CT3. We consider two 
placements of the primary controller placement C1 and C2. If 
one uses the optimization criterion given by the formula (1), 
then the assignment of forwarders to controllers are 
determined by the shortest path of each node to  CT1, CT2, 
CT3. The list of ordered distances can also provide the 
identity of the backup controller for each node Vi. Table I 
clarifies the assignment of the primary and backup 
controllers of the placement C1. A similar table is valid for 
C2, etc. 

 

TABLE I.  EXAMPLE: DISTANCES FROM NODES TO CONTROLLERS 

AND BACKUP CONTROLLERS DETERMINATION  (PLACEMENT C1) 

    Selection 

Controller/ 

Node 

CT1 CT2 CT3 Primary Backup 

V1 1 6 1 CT1 CT3 

V2 0 6 2 CT1 CT3 

V3 3 3 5 CT2 CT1 

V4 2 4 0 CT3 CT1 

V5 2 5 4 CT1 CT3 

V6 6 0 4 CT2 CT3 

V7 4 3 2 CT3 CT2 

V8 5 2 3 CT2 CT3 

 
Considering the values of Table I the best assignment of 

forwarders to controllers  for C1 placement, is: 
Primary controllers: 

CT1: {V3, V4}, CT2: {V3, V6, V8 }, CT3: { V4, V7} 
Backup  controllers: 

CT1: {V3, V4}, CT2: {V7}, CT3: { V1, V2, V5, V6, V8 } 
Analyzing the results two conclusions can be drawn: 
- the assignment of the fowarders to primary controllers 

and respectively backup, can be very different 
- the balance between solutions can be also very 

different; one can see the unbalance of the backup 
controller assignment. 

Simple computations show that the average values of 
distances for the primary and respectively backup controllers 
are 1.25 and 2.75. 

 
For another placement instance, i.e.,  C2 (see Figure 1) 

one gets: 
 Primary controllers: 

CT1: {V1, V2, V4, V7}, CT2: {V3, V6}, CT3: { V5, V8} 
Backup  controllers: 

CT1: {V3, V5, V8}, CT2: {Ø}, CT3: { V1, V2, V4, V6, V7 } 
 
The average values of distances for the primary and 

respectively backup controllers are 1.5 and 3.5. So one can 
say that C1 placement is a better solution. 

Even such simple examples prove the real need and 
usefulness of multi-criteria optimization, where resilience-
oriented metrics can be added. 

 
• Load balancing for controllers  

As shown in Section III, a good balance of the node-to-
controller distribution is desired as a proactive procedure to 
minimize the chance of future controller overload and to 
provide fairness between controllers. This paragraph will 
propose a simple load balancing solution for controllers. The 
solution is static, i.e., it will try to assign to different 
controllers, approximately, the  same number of forwarders 
to be controlled. Note that such a solution will produce 
enough good results during the run-time, only if the data 
plane traffic distribution between the forwarders is rather 
uniform. 

If the total number of nodes is N and the number of 
controllers is k, then the average number of nodes allocated 
to a controller is N/k. A simple new metric can be added to 
the set of MCDA criteria. This decision variable D_avg will  
measure the deviation of the actual number of nodes 
allocated to a controller CTi, i.e., ni, from the average value 
N/k, and averaging this for all controllers. 

 

D_avg = (1/N) ͍Σ |(ni – N/k)|   (12) 
i= 1…k            

 
If wanted, this variable can get an appropriate weight in the 
multi-criteria optimization process. If  the example of the 
previous sub-section on backup controller problem is 
considered, then one can learn that solutions found there  
(based on latency criteria) could expose significant 
unbalance between controllers.   
 

• Nodes and link failures  

Nodes and link failures could appear in the network. 
Evaluation of effects of such events could be taken into 
account by adding new decision appropriate parameters in 
the set of MCDA input multi-criteria. Here, we adopted a 
different approach in comparison with the metric presented 
in Section III [7]. Given that most important metrics are 
forwarder-controller latency, inter-controller latency, load 
balancing of the controllers, optimization of the placement 
of the primary and backup controllers, the MCDA has been 
first run to produce controllers’ placement optimization 
based on these important parameters. Then the simulation 
program allows some events to happen (e.g., nodes or link 
failures). The MCDA has been run again and produce a new 
placement after removing from the graph the failured 
entities. Finally, the placement produced in the updated 
conditions can be compared with the initial one, to evaluate 
if significant changes appeared. In such a way one can 
evaluate the robustness of the initial placement, and decide 
if that can be preserved or must be changed. 

Two input parameters have been defined in the model:  
nf- number of nodes supposed to fail  
ef – number of links supposed to fail. 
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The specific nodes and links which will fail will be 
selected as to to simulate the “worst case”, i.e., those nodes 
having the lowest cost of the adjacent links and, respectively 
those links having the least costs. If after second run of the 
MCDA, the initial placement of the controllers does not 
change, this means that initial placement has enough good 
robustness properties. Of course, this result will depend on 

selection of nf and ef values, for a given N nodes of the 
graph.  

C. Simulation program for controller placement and 

selection optimization 

      The user interface of the simulation program (having 
resilience features included)  is presented in Figure 2.   

 

stefan@mint ~/Desktop/simulator_mcda $ python mcda.py -h 

usage: mcda.py [-h] [-a [A]] [-w [W]] [-i [I]] [-b [B]] [-l [L]] [--dynamic] [-n N] [-c C] [-nf NF] [-ef 

EF] [--debug] 

 

Multi-criteria optimization algorithm 

Optional arguments: 

  -h, --help  show this help message and exit 

  -a [A]      Average latency - failure free scenario. Expects a weight (priority) in interval (0, 1]. 

  -w [W]      Worst case latency - failure free scenario. Expects a weight (priority) in interval (0, 1]. 

  -i [I]      Inter controller latency. Expects a weight (priority) in interval (0, 1]. 

  -b [B]      Average latency - failure scenario. Expects a weight (priority) in interval (0, 1]. 

  -l [L]      Controller load-balancing. Expects a weight (priority) in interval (0, 1]. 

  --dynamic   Generate dynamic undirected graph 

  -n N        Number of graph nodes. Valid only in dynamic mode. 

  -c C        Number of controllers in graph. Valid only in dynamic mode. 

              Allowed values are between N/3 and N/7 

  -nf NF      Number of nodes that fail. Valid only in dynamic mode. Allowed  values: 1.. N-C. 

  -ef EF      Number of edges that fail. Valid only in dynamic mode. Allowed  values: 1 ..N-C. 

  --debug     Prints some computing results for debugging purposes. 

Figure 2. The interface of the MCDA CPP simulation program 

The decision parameters considered have been: average and 
worst latency between a forwarder and controller, inter-

controller latency and load balancing related parameter. 
The program can be run in static or dynamic mode, with any 
number and set of criteria among those presented in the 
interface.  The program is flexible in the sense that  the set 
of decision weighted parameters (having appropriate 
metrics) can be enriched at will;  the only needed 
modification is the number of columns of the matrix M. 
    Several numerical examples and results of the basic CPP 
solutions have been already presented in the work [13]. The 
current version of the implementation added reliability 
feature presented in Section IV.B. 
      
     The pseudo-code of the simulation program for dynamic 
mode is presented below,  in high level view.  
Start 

   Generate the random graph; 

   Generate all controlers’ placements; 

   Run MCDA; 

   If link_failures are specified as a running 

option then eliminate from the graph a number of 

ef links having the minimum costs;  

   If node_failures are specified as a running 

option then eliminate from the graph a number of 

nf nodes; 

   If failures_are produced  

      then {generate modified graph; Run MCDA;} 

   Display the graphs; 

Stop 

D. Dynamic controller selection 

In a dynamic network context, the controller selection 
(CSP) can be performed in a dynamic way. The multi-criteria 

algorithm can be as well applied in such cases. We consider 
here only the situations in which controller/node/link –
failures  occur.  

In the static approach the backup controllers are 
predefined; their placement is selected by the optimization   
algorithm. For a real network, the algorithm can be run 
offline in a management center (in a hierarchical 
organization of the control plane, this could be a master SDN 
controller). This center is supposed to know all information 
in order to run MCDA-RL algorithm. The aspects related of 
collecting this information at the master SDN controller 
constitute a separate problem, which is not studied  in this 
paper. 

If a running forwarder looses its connectivity with its 
primary controller, it can act in two ways; a. try to connect to 
a known backup controller; b. select among several available 
controllers by running a MCDA algorithm. The input 
information for MCDA (decision criteria) could be:  

- identities/addresses of a set of SDN controllers;  
- degree of load for those controllers (e.g.,  

periodically communicated, by a traffic monitoring 
system (having its central intelligence in the master 
SDN controller) to the forwarder  

- local information  observed by the forwarder, like 
connectivity to different nodes/controllers, etc. So, 
the forwarder can select based on MCDA-RL a 
novel controller.   

VI. EXPERIMENTAL RESULTS 

This section will shortly present some simple but relevant 
examples of results, in order to prove the validity of 
approach. The experiments are mainly oriented to test the 
resiliency. 
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• Basic controller  placement examples 
 

 
 
Figure 3. Static MCDA CPP optimization with individual criteria in 
MCDA 
 

The objective of the first example is to show that 
applying a single optimization criteria the solutions can be 
very different. Figure 3 shows an example of optimization 
for a network statically defined, having N= 6 nodes and c= 2 
controllers. Four controller placements have been 
considered:C0: nodes [4, 5]; C1: nodes [2, 4]; C2: nodes [2, 
5]; C3: nodes [3, 5]. 

The result placements (examples) for different 
individual criteria are listed below: 

 
stephan@mint$ python mcda.py –a //average latency 

to the primary controllers 

Optimum Ci placement is Ci=3;  

CT0 is placed in node 3 

CT1 is placed in node 5 

CT0 nodes {1,3,4}  

CT1 nodes {0,2,5}  

 

The computed latencies for the four placements are : C0: 
1.33;  C1: 1,66;  C2: 2,33;  C3: 1.13. One can see that C3 is 
the best. 
stephan@mint$ python mcda.py –b //average latency 

to the backup controllers 

Optimum Ci placement is Ci=0 

CT0 is placed in node 4 

CT1 is placed in node 5 

CT0 nodes {1,3,4}  

CT1 nodes {0,2,5}  

 

stephan@mint$ python mcda.py –w //max latency to 

the backup controllers 

Optimum Ci placement is Ci=3 

CT0 is placed in node 3 

CT1 is placed in node 5 

CT0 nodes {1,3,4}  

CT1 nodes {0,2,5}  

 

stephan@mint$ python mcda.py –i //inter-controller 

latency  

Optimum Ci placement is Ci=2 

CT0 is placed in node 2 

CT1 is placed in node 5 

CT0 nodes {1,2}  

CT1 nodes {0,3,4,5} 

 

 
. Figure 4. Basic MCDA CPP optimization with dynamically generated 

network graph  

The variety of the above results obtained for single 
criterion shows clearly the necessity of a multi-criteria 
optimization. 

The second example shows a multi-criteria scenario. 
Figure 4 shows a graph dynamically generated with  N=7 
nodes and  k=2 controllers. The optimization criteria have 
been  average latency, worst latency and inter-controller 

latency, with equal weights d1=d2=d3=1. The best placement 
selected is C2 , having the controllers placed in the nodes 0 
and 3. The allocation of forwarders to controller can be 
selected based on shortest path principle. The command to 
run program and the main  results are listed below. 
 
stephan@mint$ python mcda.py –a l –w 1 –i 1 –

dynamic –n 7 –c 2 

Optimum Ci placement is Ci=2 

Controller is placed in node 0 

Controller is placed in node 3 

 

• Load balancing for controllers  
Figure 5 shows an example in which the network graph 

has been dynamically generated with N=6 nodes and k= 2 
controllers. The decision criteria have been inter-controller 
latency (weight = 1) and balancing criterion (weight = 0.5, 
i.e., having twice higher priority).  The MCDA program has 
been run   with parameters : 

 
stefan@mint$ python mcda.py -i 1 -l 0.5 --

dynamic -n 6 -c 2 

 
The results obtained are: controllers CT0 and CT3 placed 

in the nodes 0 and 3. The allocation of forwarders to 
controllers are : 
   Controller 0 has allocated node(s): 0, 2, 4. 

   Controller 3 has allocated node(s): 1, 3, 5. 
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Figure 5. Example of a balanced allocation of the forwarders to controllers 

(after MCDA run) 

       Note that in this solution the inter-controller latency is 
taken into consideration, but the final value is not minimum; 
however, the allocation of the forwarders to controllers is 
balanced (3 forwarders per each controller). The reason is 
that load balancing criterion has been assigned a higher 
priority versus the inter-controller-latency. 

 

• Links and node failures  

       To experiment such scenarios the simulator should be 
launched in dynamic mode and the number of links/nodes 
which will be in failure should be also specified. One can 
check if the placement selected is resilient to failures. For 
instance, if the unique parameter considered in MCDA 
would be the average latency of the forwarders to backup 
controllers, then one would expect that the resulting 
placement could be enough resilient to a low number of 
nodes and/or link failure events.  Figure 6 shows such an 
example, by presenting the graphs resulted after running the 
program with the command: 

   

python mcda.py -b --dynamic -n 8 -c 3 -ef 2 

 
      In this example, the network has N=8 nodes and c= 3 
controllers; the number of failure links ef=2.  This first 
placement (Figure 6a) has the controllers installed in nodes 
3,4,5. The program is run again after some links failure (1-6, 
3-7).  Still the controller placement (i.e., after running again 
the MCDA on the reduced graph) is the same (Figure 6 – 
right), i.e., in the nodes 3,4,5. 

 
Now we consider an experiment in which  the criterion of 

the first run of the  MCDA is to minimize the average 
latency between the forwarders and primary controllers 
(parameter introduced with weight = 1). The optimum 
placement of the controllers (with N=8, c=3), after first run 
of the MCDA, is in nodes 0, 2, 6. (Figure 7, left). Then two 
link failures are simulated (i.e., links  5-6 and 0-1 will be out 
of order). The command for such a run is: 

 
   python mcda.py -a --dynamic -n 8 -c 3 -ef 2 

 
 

The optimum placement of the controllers in the new 
context (failure links) has been changed in nodes 3,5,6 
(Figure 7b). So, one can conclude that the first placement is 
less resilient to link failures. 

The lesson learned from such experiments is that there is 
no absolute unique optimum solution of such problems, to 
satisfy all requirements. Depending on the particular context 
of the SDN-controlled network and some network owner 
policies, different placement solutions can be found as more 
appropriate, to satisfy in a convenient way several criteria.  

These examples illustrate the power of the MCDA 
algorithm where various sets of criteria and different 
priorities (driven by policies) can be considered. 

 
 
 
 

 
 

 Figure 6. Example of  controller placement resilient to link failures  a.Left: placement before link failures; b.Right: placement after some links failures. 
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Figure 7. Example of  placement non-resilient  to link failures 
a.Left: controller placement before link failures; b. Right: controller placement after some links failures (5-6, 0-1). 

 

VII. CONCLUSIONS AND FUTURE WORK  

This paper extended the study [1], on using multi-
criteria decision algorithms (MCDA) to optimally place the 
controllers in large SDN, based networks, while aiming to 
achieve good resiliency properties of the system. It is 
illustrated the main MCDA advantage, i.e.,  that it can 
produce a tradeoff (optimum) result, while considering 
several weighted criteria, part of them even being partially 
contradictory.  

This study provides (in comparison to [1]) more 
comprehensive discussion and analysis of resiliency-oriented 
properties of a SDN network with distributed control plane.  
Simple but relevant examples have been added, to show that 
actually no unique solution exists for controller placement to 
be optimal with respect to all criteria envisaged.  Therefore, 
in practice, the weights of the decision parameters introduced 
in MCDA should be cleverly adopted, to meet the prioritized 
list of the network provider requirements.  

This study has shown that actually the MCDA – based 
optimization can be performed in a flexible way: 

- introducing in MCDA all decision parameters, with 
appropriate weights in order to achieve a trade-off 
solution after a single  MCDA run; 

- using iteratively several rounds (see Section VI), i.e., 
introducing first the most important parameters and 
run MCDA; then modify the topology/conditions and 
check if the first controller placement is still good 
enough in these new conditions; if not, then add 
parameters to MCDA and run again the algorithm. 

The paper added several additional experimental results 
in Section VI. The forwarder-controller mapping 
optimization and backup controller selection have been also 
considered.  

Future work will be still necessary for CPP and CSP 
problems. Experiments on large networks [22[23] could 
better validate the optimization solutions in a more realistic 
environment. Another important aspect can be the dynamic 
of the overall system during run-time, when the traffic 
amount inside different regions of the the data plane (i.e., 

between different forwarders) might have significant 
variations. This can lead to overload of some SDN 
controllers, especially if reactive-mode of the control plane is 
applied in those networks and given the limited controller 
processing capacity. This problem could be solved in two 
ways: a. moving some controllers (so, the placement will be 
modified) to the overloaded regions to better serve the 
forwarder requests for flow table configuration); b. 
dynamically migrate some switches/forwarders between the 
controllers, in order to better balance the controllers’ load. 
For instance, in recent studies [20][21], the dynamic switch 
migration is optimized based on input information 
periodically provided by a monitoring system. However, 
these studies do not consider multi-criteria approach, but 
only the traffic load of the network data plane and impact on 
controller tasks. Here, combining MCDA with such traffic-
based algorithms could provide better results. 
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