

Distributed Resilient Control Plane for Large Software Defined Networks

Eugen Borcoci, Stefan Ghita

University POLITEHNICA of Bucharest - UPB
Bucharest, Romania

Emails: eugen.borcoci@elcom.pub.ro, stalghita@gmail.com

Abstract —Large Software Defined Networks (SDN) solve

the control scalability problem coming from the SDN control

centralization principle, by defining and installing several

regional controllers. Therefore, a controller placement

problem (CPP) should be solved. During run-time, possible

failures of links or node appear; then a forwarder node could

try to select an available and reachable controller among those

which are functional. This is called controller selection

problem (CSP). Although many studies have been published,

the above problems are still open research issues, given the

various network contexts, providers’ policies and possible

multiple, different optimization criteria. Therefore, multi-

criteria decision algorithms can provide valuable solutions.

This paper is based on a previous work which has developed a

simulation model for multi-controller SDN network, targeting

optimization while including resilience aspects of the controller

placement problem and controller selection problem. The

current paper extends that work, by including a more in-depth

analysis, giving relevant examples and introducing additional

novel experiment results.

Keywords — Software Defined Networking; Multi-criteria

optimization; Controller placement; Controller selection;

Forwarder nodes assignment; Reliability; Resilience

I. INTRODUCTION

 This paper is an extended version of the work [1],
which has been dedicated to study methods to optimize the
Software Defined Networking (SDN) controller placement
and selection in large area SDN networks. It is known that
SDN has as basic principles the decoupling of the
architectural Control Plane (CPl) w.r.t Data Plane (DPl)
and also CPl centralization in SDN controllers. Therefore, in
large network environments and considering the limited
processing of controllers, scalability problems of the CPl
appear [2]. The usual solution for this, adopted in many
studies, is a distributed multi-controller implementation of
the SDN control plane. Different flat or hierarchical
organizations for a multi-controller SDN control plane have
been developed, e.g., in [3][4].

In a basic approach, the SDN controller (SDN-C) is
understood as a software control entity installed/placed in a
geographically distinct location, i.e., a particular physical
network node. The control plane is defined as an overlay
network on top of the physical one. The links between
controllers can be physical or virtual.

Recently, the Network Function Virtualization

technologies [5] allow that several logical SDN-Cs could be

realized as virtual entities running on top of virtual
machines (notation for such controllers could be vSDN-C),
i.e., several logical controllers can be collocated in the same
physical node.

In this work we suppose the basic approach of the SDN
controllers’ implementation. However, the models
developed in here can be as well applied to a virtualized
environment. In such a case, the essential modification of
the model (considering the optimization objective of this
study) is that the logical controllers will be virtually linked
through a control plane graph.

The controller placement problem (CPP) is a complex
one, given the variety of factors involved. Some examples
are: how the network topology is specified - flat or
hierarchical/clustered; what criteria are considered to solve
the CPP; number of controllers - predefined or not; failure-
free or failure-aware metrics (e.g., considering backup
controllers and node/link failures); how the DPl forwarders
nodes are assigned/mapped to controllers (in static or
dynamic way, i.e., depending on actual network conditions
and network provider policies), and others. The evaluation
of the degree of optimality of different approach can be
studied on some simplified topologies – in order to compare
the efficiency of approaches or, on real specific network
topologies. Many studies, e.g., of Heller [6] et al. - as early
study - and then others [7-9][11-19] considered various
aspects and solutions of the CPP.

In a real network environment, it has been apparent that
there is no unique best and universal placement rule for any
SDN-controlled network. Dynamic nodes addition and
deletion can happen and, in such cases, a forwarder could
dynamically select an appropriate controller, if it has enough
pertinent and updated information. The same situation
appears when the traffic in the data plane is varying and re-
assignment of forwarder to controllers is required, to avoid
controller overload. This is called controller selection
problem (CSP) and can be considered as an extension of the
CPP [7].

The CPP was recognized as a non-polynomial (NP) -
hard problem, mentioned in the early work of Heller et al.
[6]. For such problems different approximation algorithms
[8] and more pragmatic solutions have been proposed,
adapted in different contexts. In particular, in SDN-
controlled networks case, many optimization criteria have
specific, target performance, both in the data plane and
control plane, in failure-free or failure-aware approaches.

46

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Examples of specific, individual criteria could be: to
maximize the controller-forwarder or inter-controller
communication throughput; reduce the latency of the path
connecting them; limit the controller load imbalance; find
an optimum controllers’ placement and forwarder-to-
controller allocation, offering a fast recovery after failures
(controllers, links, nodes). Also, other specific optimization
goals could be added to the above list, depending on specific
context (wire-line, wireless/cellular, cloud computing and
data center networks) and on some specific business targets
of the Service Provider.

However, a major issue is that different optimization
criteria could lead to significant different placement
solutions; so, a multi-criteria global optimization could be a
better trade-off approach.

The paper [9] provided a contribution on multi-criteria
optimization algorithms for the CPP, not by developing
specific single-criterion algorithms (many other studies
already did that) but to achieve an overall optimization by
applying multi-criteria decision algorithms (MCDA) [10].
The input of MCDA is the set of candidates (an instance of
controller placement is called a candidate solution).
Examples have been analyzed, on some real network
topologies, proving the usefulness of the approach.

The more recent paper [1] extended the model of [9];
several reliability aware criteria have been added to the CPP
solution. Also the novel CSP extension is introduced, being
appropriate for a dynamic network context. It has been
shown that the same basic MCDA can be applied in both
static and dynamic context, but with different sets of criteria.
Simulation experiments and novel results have been
presented.

Note some limitations: neither work [9], nor [1] touch
the problem of control plane overhead and signaling issues
between the controllers when a re-configuration of the SDN
network is performed. This could be the topic for additional
studies. Also note that in this paper, by “large Software
Defined Networks”, it is actually understood networks
having several SDN controllers.

The structure of this paper (extension of [1]) is described
here. Section II is a short overview of related work. Section
III revisits several metrics and optimization algorithms and
presents some of their limitations. Section IV revisits the
framework for MCDA-RL (the variant which is called
“reference level”) as a simple but powerful tool applicable to
solve the CPP and CSP problems. Section V presents the
implementation performed to validate the MCDA proposed
model in a resiliency-oriented optimization approach, and
outlines the simulation experiments performed. Section VI
offers few examples of simulation results to illustrate the
validity of the approach. Section VII presents conclusions
and future work.

II. RELATED WORK

This short section is included mainly for guiding the
reader to references. More comprehensive overviews on
published work on CPP in SDN-controlled WANs are

given in [11-14]. The main goal is to find those controller
placements that provide high performance (e.g., low delay
for controller-forwarder communications) and also create
robustness to controllers and/or network failures.

An early work of Heller et al. [6] has shown that it is
possible to find optimal controller placement solutions for
realistic network instances, in failure-free scenarios, by
analyzing the entire solution space, with off-line
computations (the metric is latency). The studies [15-21]
have been more focused, i.e., additionally considered the
resilience as being important with respect to events like:
controller failures, network links/paths/nodes failures,
controller overload (load imbalance). The Inter-Controller
Latency is also important and, generally, it cannot be
minimized while simultaneously minimizing controller-
forwarders latency; a tradeoff solution could be the answer.

The works [15][17] developed several algorithms for
real topologies, aiming to find solutions for reliable. SDN
control, but still keep acceptable latencies. The controller
instances are chosen as to minimize connectivity losses;
connections are defined according to the shortest path
between controllers and forwarding devices. Muller et al.
[18] eliminate some restrictions of previous studies, like:
single paths, processing (in controllers) of the forwarders
requests only on-demand and some constraints imposed on
failover mechanisms. Hock et al. [16] adopted a multi-
criteria approach for some combinations of the metrics (e.g.,
max. latency and controller load imbalance for failure-free
and respectively failure use cases).

In a recent work [7], K. Sood and Y. Siang propose to
extend the CPP problem into CSP, i.e., to consider the
dynamics of the network and make controller selection. They
explore the relationship between traffic intensity, resources
requirement, and QoS requirements. It is claimed that to
optimize the control layer performance, the solutions must be
topology-independent and adaptive to the needs of the
underlying network behaviour. They propose a topology
independent framework to optimize the control layer, aiming
to calculate the optimal number of controllers to reduce the
workload, and investigate the placement/location of the
controllers. However, their first declared objective has been
not to determine the optimal placement of controllers in the
network, but to motivate the CSP.

In recent papers [20][21] Y. Xu, M. Cello et al.,
developed dynamic forwarder/switch migration scenarios
and algorithms, starting from a given switch-controller
assignment and partition (based on some criteria) of the
network in domains, each one controlled by a single
controller. Also, a realistic assumption is considered, i.e.,
limited processing capacity of the controllers. During run
time, if some controllers are overloaded (such events are
dynamically observed by a monitoring system), then a
heuristic algorithm is applied, to optimally move (re-assign)
a part of the switches coordinated by that controller to other
controller less loaded. In order to reduce the signaling
(related to migration) between controllers, the migration is
cluster-based, i.e., not a single switch is migrated but a
cluster of switches are moved from an overloaded

47

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

controller, e.g., CTi, to another less loaded controller CTj.
Thus, the algorithm realizes a controller load balancing (the
name BalCon is coined for the algorithm [20]).

Many of the mentioned studies considered a single
criterion in the optimization algorithms. In [9][1] a multi-
criteria algorithm is used (applicable for an arbitrary number
of decision criteria) to solve the CPP; validation of results
have been presented for some real network topologies
[22][23].

A recent work [24] studies the load balancing via switch
migration in a network having several SDN controllers. The
goal is to migrate switches from overloaded to under-loaded
controllers, depending on the traffic variation. The work
presents a heuristic approach to solve the switch migration
problem. The advantage of the proposed solution versus
other approaches is that the algorithm does not halt the
search whenever a switch migration is not possible. Instead,
it searches for more complex moves like swapping two
switches to further improve the results.

The work in this paper is an extension of [1], with focus
on optimal initial placement of the SDN controllers,
considering among multi-criteria some reliability – related
ones.

III. EXAMPLES OF CONTROLLER PLACEMENT METRICS

AND ASSOCIATED ALGORITHMS

This section is a short presentation of a few typical
metrics and optimization algorithms for CPP and CSP. A
more detailed presentation of them can be found in [13].
Considering a particular metric (criterion) an optimization
algorithm can be run for a given metric, as in [6][15-18].

As already stated, this paper goal is not to develop a new
particular algorithm based on a given single metric, but to
search for a global optimization. The individual metrics
presented in this section can be embedded in a multi-criteria
optimization algorithm.

The SDN-controlled network is abstracted by an
undirected graph G(V, E), with V - set of nodes, E – set of
edges and n=|V| the total number of nodes. The edges
weights represent an additive metric (e.g., propagation
latency [6]).

A basic metric is d(v, c): shortest path distance from a
forwarder node v∈V to a controller c∈V. We denote by Ci a
particular placement of controllers; Ci ⊆ V and |Ci| < |V|. The
number of controllers is limited to |Ci|= k for any particular
placement Ci. The set of all possible placements is denoted
by C = {C1, C2 …}. Some metrics are basic, i.e., failure-free;
others take into account failure events of links or nodes.

An important metric for SDN control is the latency
between nodes. Note that, while it has a dynamic nature, in
some simplified assumptions it is estimated as a static value.

A. Failure-free scenarios

• Forwarder-to-controller latency
 In Heller’s work [6], two (failure-free) metrics are

defined for a given placement Ci: Worst_case_latency and
Average_latency between a forwarder and a controller. In [5],

the above two kinds of latencies are defined, for a particular
placement Ci of controllers, where Ci ⊆ V and |Ci| ≤|V|. The
number of controllers is k for any particular placement Ci.
The set of all possible placements is C = {C1, C2, ….}. One
can define, for a given placement Ci :

Average_latency:

∈

∈
=

Vv
Cic

iavg cvd
n

CL),(min
1

)((1)

Worst_case_latency :

 ()cvdL
iCcVv

wc ,minmax
∈∈

= (2)

The optimization algorithm should find a particular
placement Copt, where either average latency or the worst
case latency is minimum.

The work [8] proposes an algorithm to maximize the

number of nodes within a latency bound, i.e., to find a
placement of k controllers, such that they cover a maximum
number of forwarder nodes, but with an upper latency bound
of each forwarder latency to its controller.

• Inter-controller latency
The SDN controllers should inter-communicate and

therefore, the inter-controller latency is important. For a
given placement Ci, one can minimize the maximum latency
between two controllers. Note that this can increase the
forwarder-controller distance (latency). Therefore, a trade-off
is necessary, thus justifying the necessity to apply some
multi-criteria optimization algorithms, e.g., like Pareto
frontier - based ones [16].

B. Failure-aware scenarios

In such scenarios controller and/or network failures
events are considered. The optimization process aims now to
find trade-offs to preserve a convenient behavior of the
overall system in failure cases (controllers, or nodes, or
links).

• Multiple-path connectivity metrics
If multiple paths are available between a forwarder node

and a controller [9], this can exploited in order to reduce the
occurrence of controller-less events, in cases of failures of
nodes/links. The goal in this case is to maximize connectivity
between forwarding nodes and controller instances. A special
metric can be defined as:

∈∈

=

VvCc

i cvndp
V

CM

i

),(
||

1
)((3)

The ndp(v,c) is the number of disjoint paths between a
node v and a controller c, for an instance placement Ci. An
optimization algorithm should find the placement Copt which
maximizes M(Ci).

• Controller failures

48

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To minimize the impact of such failures, the latency-
based metric should consider both the distance to the
(primary) controller and the distance to other (backup)
controllers. For a total number of k controllers, the failures
can be modeled [16], by constructing a set C of scenarios,
including all possible combinations of faulty controller
number, from 0 of up to k - 1. The Worst_case_latency_cf
will be:

 ()cvdL
ii CcCCVv

cfwc ,minmaxmax
∈∈∈

− = (4)

The optimization algorithm should find a placement
which minimizes the expression (4).

Note that in failure-free case, the optimization algorithm
tends to rather equally spread the controllers in the network,
among the forwarders. To minimize (4), the controllers tend
to be placed in the center of the network, such that in a worst
case, a single controller can take over all control. However,
the scenario supposed by the expression (4) is very
pessimistic; a large network could be split in some
regions/areas, each served by a primary controller; then some
lists of possible backup controllers can be constructed for
each area, as in [18]. The conclusion is that an optimization
trade-off should be found, for the failure-free or failure cases.
A multi-criteria approach can provide the solution.

• Nodes/links failures
For such cases, the objective could be to find a controller

placement that minimizes the number of nodes possible to
enter into controller-less situations, in various scenarios of
link/node failures. A realistic assumption is to limit the
number of simultaneous failures at only a few (e.g., two
[16]). If more than two arbitrary link/node failures happen
simultaneously, then the topology can be totally
disconnected and optimization of controller placement would
be no longer useful.

For a placement Ci of the controllers, an additive integer
value metric Nlf(Ci) could be defined, as below: consider a
failure scenario denoted by fk, with fk∈F, where F is the set
of all network failure scenarios (suppose that in an instance
scenario, at most two link/nodes are down); initialize
Nlfk(Ci) =0; then for each node v∈V, add one to Nlfk(Ci) if
the node v has no path to any controller c∈Ci and add zero
otherwise; compute the maximum value (i.e., consider the
worst failure scenario). In equivalent words, the algorithm
counts the nodes that have no more connectivity to any
controller.

 () ()iki CNlfCNlf max= (5)

The optimization algorithm should find a placement to
minimize (5), where k should cover all scenarios of F. It is
expected that increasing the number of controllers, will
decrease the Nlf value. However, the optimum solution based
on the metric (5) could be very different from those provided
by the algorithms using the latency-based metrics.

• Load balancing for controllers

It is desired a good balance of the node-to-controller
distribution. A metric Ib(Ci) will measure the degree of
imbalance of a given placement Ci as the difference between
the maximum and minimum number of forwarders nodes
assigned to a controller. If the failure scenarios set S is
considered, then the worst case should evaluate the
maximum imbalance as:

 }minmax{max)(s
c

Cc

s
c

CcSs
i nnCIb

ii ∈∈∈
−= (6)

where s

cn is the number of forwarder nodes assigned to a

controller c. Equation (4) takes into account that in case of
failures, the forwarders can be reassigned to other controllers
and therefore, the load of those controllers will increase. An
optimization algorithm should find that placement which
minimizes the expression (4).

IV. MULTI-CRITERIA OPTIMIZATION ALGORITHMS

SDN controllers’ placement and/or selection may involve
several particular metrics (as summarized in Section III). If
optimization algorithms for particular metrics are applied,
then one can obtain different non-convergent solutions.
Actually the CPP and CSP problems have naturally multi-
criteria characteristics; therefore, MCDA is a good way to
achieve a convenient trade-off solution.

This paper uses the same variant of MCDA
implementation as in [9], i.e., the reference level (RL)
decision algorithm [10] as a general way to optimize the
controller placement, and controller selection, for an
arbitrary number metrics. The MCDA-RL selects the optimal
solution based on normalized values of different criteria
(metrics).

The MCDA considers m objectives functions (whose
values, assumed to be positive should be minimized). A
solution of the problem is represented as a point in a space
Rm of objectives; the decision parameters/variables are: vi, i
= 1, ..m, with ∀i, vi ≥ 0; so, the image of a candidate
solution is Sls=(vs1,vs2, ..,vsm), represented as a point in Rm.
The number of candidate solutions is S. Note that the value
ranges of decision variables may be bounded by given
constrains. The optimization process consists in selecting a
solution satisfying a given objective function and
conforming a particular metric.

The basic MCDA-RL [10] defines two reference
parameters: ri =reservation level=the upper limit, not allowed
to be crossed by the actual decision variable vi of a solution;
ai=aspiration level=the lower bound beyond which the
decision variables (and therefore, the associate solutions) are
seen as similar (i.e., any solution can be seen as “good”-
from the point of view of this variable). Applying these for
each decision variable vi, one can define two values named ri
and ai, i= 1, ..m, by computing among all solutions s = 1, 2,
..S:

, ..S, , s = v = a

, ..S, s = v r

isi

isi

21][min

21],[max =
 (7)

49

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An important modification is proposed in [16], aiming to
make the algorithm agnostic versus different nature of
criteria. The absolute value vi of any decision variable is
replaced with distance from it to the reservation level: ri-vi;
(so, increasing vi will decrease the distance); normalization is
also introduced, in order to get non-dimensional values,
which can be numerically compared despite their different
nature. For each variable vsi, a ratio is computed:

 is)-a)/(r-v' = (rv iisiisi ,, ∀ (8)

The factor 1/(ri-ai) - plays also the role of a weight. A
variable for which the possible dispersion of values is high
(max – min has a high value in formula (6)) will have lower
weight and so, greater chances to be considered in
determination of the minimum in the next relation (7). On
the other side, if the values min, max are rather close to each
other, then any solution could be enough “good”, w.r.t. that
respective decision variable.

The basic MCDA-RL algorithm steps are (see also [13]):
Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m
Step 1. Compute for each candidate solution s, the minimum
among all its normalized variables vsi':

 ...m'}; i={v = sis 1minmin (9)

Step 2. Select the best solution:

 , ..S}, s= { = v sopt 1minmax (10)

Formula (7) selects for each candidate solution s, the
worst case, i.e., the closest solution to the reservation level
(after searching among all decision variables). Then the
formula (8) selects among the solutions, the best one, i.e.,
that one having the highest value of the normalized
parameter. One can also finally, select more than one
solution (quasi-optimum solutions in a given range). The
network provider might want to apply different policies
when deciding the controller placement; so, some decision
variables could be more important than others. A simple
modification of the algorithm can support a variety of
provider policies. The new normalized decision variables
will be:

)-a)/(r-v(r' = wv iisiiisi (11)

where wi ∈ (0,1] is a weight (priority), depending on policy
considerations. Its value can significantly influence the final
selection. A lower value of wi represents actually a higher
priority of that parameter in the selection process.

V. MCDA-BASED IMPLEMENTATION FOR SDN

CONTROLLER PLACEMENT

A proof of concept simulation program (written in
Python language [1] [13]) has been constructed by the

authors, to validate the MCDA–RL based CPP problem and
allocation of forwarders to controllers. The program has been
extended in this study with reliability-related evaluation
features. The simulation program uses the standard libraries
and additionally the NetworkX and matplotlib, in order to
create and manipulate the network graphs.

The simplifying assumptions (they could be also seen as
limitations) of the model studied here, are: the network
architecture is flat, i.e., no disjoint regions are defined; the
network graph is undirected; any network node can be a
forwarder but also can collocate a controller; when
computing paths or distances, the metrics are additive; the
number of controllers is predefined; the data traffic aspects
and signaling interactions are not considered; the dynamic
variation of the traffic in the data plane is not considered.

 A. The MCDA basic model

The basic model considered in this paper, to solve the
CPP and CSP problems has two working modes:

a. static mode: the input data are: network graph (overlay
or physical), link costs/capacities, shortest path distances
between nodes (e.g., computed with Dijkstra algorithm based
on additive metric), desired number of controllers, the
criteria (decision variables –these could be anyone, among
those of Section III,l or others) for MCDA, and weights
assigned to the decision variables).

Two working phases are defined:
 (1) Phase 1:
1.1. Compute all controller placements C1, C2, …. (i.e.,

the set of candidate solutions). The number of placements is
Cn

k (n= total number of network nodes; k= number of
controllers).

1.3. Compute the values of the normalized metrics for
each possible controller placement (i.e., future MCDA
candidate solution), by using specialized algorithms and
metrics like those defined in Section III.

The Phase 1 phase has as outputs the set of candidate
solutions (i.e., placement instances) and their associated
values to fill the entries of the matrix M defined in Section
IV. The Phase 1 computation could be time consuming; it
depends on network size, but also on the number of criteria
selected and the complexity to compute the metrics like in
Section III., Such computations could be performed off-line
[5]. For instance, in a real network, a master SDN controller
having all these information could perform these
computations. However, in a network exposing high
dynamicity computing the Phase 1 in real time is a
challenging issue.

 (2) Phase 2: MCDA-RL: define ri and ai, for each
decision variable; eliminate those candidates having
parameter values out of range defined by ri; assign – if
wanted – convenient weights wi for different decision
variables; compute the normalized variables (formula (8));
run the MCDA Step 0, 1 and 2 of the (formulas (9) and (10)).

The Phase 2 provides the CPP solution.
The pseudocode of basic MCDA-based optimization

processing is high level presented below:

Start

50

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

//Initialize

 {Parse the arguments;
 Define the decision variables vi, i=1,..m,

∀i,
 vi ≥ 0;}

//Build candidate solutions

 {Build the weighted graphs;
 Build candidate solutions;//S= the set of

candidates

 }

 {Compute all shortest paths between pairs of
 network nodes; // Dijkstra algorithm}

{Normalize the decision variables; //(formula (8)

 Compute the matrix M{vsi'}, s=1…S, i=1…m;

 Compute for each candidate s, the min. among

all its normalized variables vsi';/formula (9)

 }

 Select the best solution; //formula (10)

Stop

b. dynamic mode : the semantic of the word dynamic
here is the fact that some parameters are randomly generated
i.e, not predefined. The initial input information is the total
number of network nodes (not the complete graph) and
desired number of controllers. The graph (which could be
full-mesh or not) and costs of the links are randomly
generated by the program.

B. Resilience-capable models

As shown in Section III, more realistic scenarios consider
the possible occurrence of controller and/or network failures
events. It is desired a resilient system i.e., able to recover (as
much as possible) after failure events. The optimization
process aims now to proactively find trade-off solutions to
provide still a convenient behavior of the overall system in
failure cases.

• Backup controllers
A simple static solution for assignment/mapping of the

forwarders (this is CSP problem) to primary and backup
controllers is presented below. For a given placement of the
controllers, let it be Cp, the identities of nodes playing the
role of controllers are known. The simplest
assignment/mapping of forwarders to controllers is based on
the shortest path (metric is average estimated latency
forwarder-controller) to a controller. So, an algorithm will
compute, for a given placement Cp, the distances from each
Fi to each controller CT1, CT2, …CTk and select the closest
controller, let it be CTm, as primary controller for Fi.

How to define the backup controllers? A natural solution
(supposing that the total number of controllers is still k) will
be to allow a forwarder to migrate from a failed primary
controller to another backup/secondary controller, selected
from the same set. This backup controller can be determined
by the above algorithm, as the second one in the ordered list
(using the shortest distance as criterion). This assignment
should be performed for every possible placement Ci. If CPP
optimization and forwarders-to-controllers assignment is
wanted for the backup controllers, then it is necessary to add
a new criterion (decision variable- e.g., similar to the average
distance given by the formula (1)) to the MCDA algorithm,
with a metric similar to that of formula (1). The reason is that
for primary controller placement and forwarder assignment,

one can find Ci as the best solution while for and backup
controller placement and assignment other different Cj could
be the best. Therefore, the MCDA can provide the best trade-
off.

An auxiliary algorithm is used to compute a simple
metric (average distance to a backup controller) to be added
to MCDA. We introduce a novel decision variable
dist_backup and perform the following computation (for
each possible controller placement Ci containing the
controllers CT1, CT2, ….CTk):

For each forwarder Fi, i=1..N

 Do

Dist_backup = 0;

 Compute dist. from Fi to any CTj, j=1..k;

 Dist_backup=Dist_backup + second_shortest_cost;

 Od

 Dist_backup_avg = Dist_backup/N;

This Dist_backup_avg can be added as a new decision

variable to MCDA (maybe with appropriate wight)
Therefore, the optimization will select a solution which
considers also the backup controller placement and
assignment of forwarder nodes as a factors influencing the
final solution selection.

A simple example (Figure 1) will show the need of the
additional MCDA criterion for the backup controllers. The
example network is represented by an undirected graph,
where the metric indicated on the edges can be the average
latency between nodes (vertices).

V1

V2, CT1

V8 V4,CT3

V7

Shortest path (e.g., average latency)
from forwarder nodes to the controllers

sCT

Placement C1
of primary
controllers

4

1

Primary
Controller

4 3

2

2

3

3 1

V3

V5 V6, CT2
5

2

Nodes
assigned
to CT1

V4

V5, CT3

V8

V1,CT1

V7

Placement C2

of primary
controllers

4

1

4 3

2

2

3

3

1

V6

V2

V3, CT2

5

2

Nodes
assigned
to CT1

1

1

Figure 1. Simple example of two instances of primary controller

placements and forwarders assignment

51

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The network nodes are denoted with Vi, in order to
emphasize that a given node can play the role of a forwarder
but also a controller can be installed there. The edges costs
correspond to an additive metric, i.e the average estimated
communication delay between two nodes. The edges can
represent real links or overlay ones (this aspect is irrelevant
for the purposes of this study). It is assumed that three
controllers exist, CT1, CT2, CT3. We consider two
placements of the primary controller placement C1 and C2. If
one uses the optimization criterion given by the formula (1),
then the assignment of forwarders to controllers are
determined by the shortest path of each node to CT1, CT2,
CT3. The list of ordered distances can also provide the
identity of the backup controller for each node Vi. Table I
clarifies the assignment of the primary and backup
controllers of the placement C1. A similar table is valid for
C2, etc.

TABLE I. EXAMPLE: DISTANCES FROM NODES TO CONTROLLERS

AND BACKUP CONTROLLERS DETERMINATION (PLACEMENT C1)

 Selection

Controller/

Node

CT1 CT2 CT3 Primary Backup

V1 1 6 1 CT1 CT3

V2 0 6 2 CT1 CT3

V3 3 3 5 CT2 CT1

V4 2 4 0 CT3 CT1

V5 2 5 4 CT1 CT3

V6 6 0 4 CT2 CT3

V7 4 3 2 CT3 CT2

V8 5 2 3 CT2 CT3

Considering the values of Table I the best assignment of

forwarders to controllers for C1 placement, is:
Primary controllers:

CT1: {V3, V4}, CT2: {V3, V6, V8 }, CT3: { V4, V7}
Backup controllers:

CT1: {V3, V4}, CT2: {V7}, CT3: { V1, V2, V5, V6, V8 }
Analyzing the results two conclusions can be drawn:
- the assignment of the fowarders to primary controllers

and respectively backup, can be very different
- the balance between solutions can be also very

different; one can see the unbalance of the backup
controller assignment.

Simple computations show that the average values of
distances for the primary and respectively backup controllers
are 1.25 and 2.75.

For another placement instance, i.e., C2 (see Figure 1)

one gets:
 Primary controllers:

CT1: {V1, V2, V4, V7}, CT2: {V3, V6}, CT3: { V5, V8}
Backup controllers:

CT1: {V3, V5, V8}, CT2: {Ø}, CT3: { V1, V2, V4, V6, V7 }

The average values of distances for the primary and

respectively backup controllers are 1.5 and 3.5. So one can
say that C1 placement is a better solution.

Even such simple examples prove the real need and
usefulness of multi-criteria optimization, where resilience-
oriented metrics can be added.

• Load balancing for controllers

As shown in Section III, a good balance of the node-to-
controller distribution is desired as a proactive procedure to
minimize the chance of future controller overload and to
provide fairness between controllers. This paragraph will
propose a simple load balancing solution for controllers. The
solution is static, i.e., it will try to assign to different
controllers, approximately, the same number of forwarders
to be controlled. Note that such a solution will produce
enough good results during the run-time, only if the data
plane traffic distribution between the forwarders is rather
uniform.

If the total number of nodes is N and the number of
controllers is k, then the average number of nodes allocated
to a controller is N/k. A simple new metric can be added to
the set of MCDA criteria. This decision variable D_avg will
measure the deviation of the actual number of nodes
allocated to a controller CTi, i.e., ni, from the average value
N/k, and averaging this for all controllers.

D_avg = (1/N) ͍Σ |(ni – N/k)| (12)
i= 1…k

If wanted, this variable can get an appropriate weight in the
multi-criteria optimization process. If the example of the
previous sub-section on backup controller problem is
considered, then one can learn that solutions found there
(based on latency criteria) could expose significant
unbalance between controllers.

• Nodes and link failures

Nodes and link failures could appear in the network.
Evaluation of effects of such events could be taken into
account by adding new decision appropriate parameters in
the set of MCDA input multi-criteria. Here, we adopted a
different approach in comparison with the metric presented
in Section III [7]. Given that most important metrics are
forwarder-controller latency, inter-controller latency, load
balancing of the controllers, optimization of the placement
of the primary and backup controllers, the MCDA has been
first run to produce controllers’ placement optimization
based on these important parameters. Then the simulation
program allows some events to happen (e.g., nodes or link
failures). The MCDA has been run again and produce a new
placement after removing from the graph the failured
entities. Finally, the placement produced in the updated
conditions can be compared with the initial one, to evaluate
if significant changes appeared. In such a way one can
evaluate the robustness of the initial placement, and decide
if that can be preserved or must be changed.

Two input parameters have been defined in the model:
nf- number of nodes supposed to fail
ef – number of links supposed to fail.

52

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The specific nodes and links which will fail will be
selected as to to simulate the “worst case”, i.e., those nodes
having the lowest cost of the adjacent links and, respectively
those links having the least costs. If after second run of the
MCDA, the initial placement of the controllers does not
change, this means that initial placement has enough good
robustness properties. Of course, this result will depend on

selection of nf and ef values, for a given N nodes of the
graph.

C. Simulation program for controller placement and

selection optimization

 The user interface of the simulation program (having
resilience features included) is presented in Figure 2.

stefan@mint ~/Desktop/simulator_mcda $ python mcda.py -h

usage: mcda.py [-h] [-a [A]] [-w [W]] [-i [I]] [-b [B]] [-l [L]] [--dynamic] [-n N] [-c C] [-nf NF] [-ef

EF] [--debug]

Multi-criteria optimization algorithm

Optional arguments:

 -h, --help show this help message and exit

 -a [A] Average latency - failure free scenario. Expects a weight (priority) in interval (0, 1].

 -w [W] Worst case latency - failure free scenario. Expects a weight (priority) in interval (0, 1].

 -i [I] Inter controller latency. Expects a weight (priority) in interval (0, 1].

 -b [B] Average latency - failure scenario. Expects a weight (priority) in interval (0, 1].

 -l [L] Controller load-balancing. Expects a weight (priority) in interval (0, 1].

 --dynamic Generate dynamic undirected graph

 -n N Number of graph nodes. Valid only in dynamic mode.

 -c C Number of controllers in graph. Valid only in dynamic mode.

 Allowed values are between N/3 and N/7

 -nf NF Number of nodes that fail. Valid only in dynamic mode. Allowed values: 1.. N-C.

 -ef EF Number of edges that fail. Valid only in dynamic mode. Allowed values: 1 ..N-C.

 --debug Prints some computing results for debugging purposes.

Figure 2. The interface of the MCDA CPP simulation program

The decision parameters considered have been: average and
worst latency between a forwarder and controller, inter-

controller latency and load balancing related parameter.
The program can be run in static or dynamic mode, with any
number and set of criteria among those presented in the
interface. The program is flexible in the sense that the set
of decision weighted parameters (having appropriate
metrics) can be enriched at will; the only needed
modification is the number of columns of the matrix M.
 Several numerical examples and results of the basic CPP
solutions have been already presented in the work [13]. The
current version of the implementation added reliability
feature presented in Section IV.B.

 The pseudo-code of the simulation program for dynamic
mode is presented below, in high level view.
Start

 Generate the random graph;

 Generate all controlers’ placements;

 Run MCDA;

 If link_failures are specified as a running

option then eliminate from the graph a number of

ef links having the minimum costs;

 If node_failures are specified as a running

option then eliminate from the graph a number of

nf nodes;

 If failures_are produced

 then {generate modified graph; Run MCDA;}

 Display the graphs;

Stop

D. Dynamic controller selection

In a dynamic network context, the controller selection
(CSP) can be performed in a dynamic way. The multi-criteria

algorithm can be as well applied in such cases. We consider
here only the situations in which controller/node/link –
failures occur.

In the static approach the backup controllers are
predefined; their placement is selected by the optimization
algorithm. For a real network, the algorithm can be run
offline in a management center (in a hierarchical
organization of the control plane, this could be a master SDN
controller). This center is supposed to know all information
in order to run MCDA-RL algorithm. The aspects related of
collecting this information at the master SDN controller
constitute a separate problem, which is not studied in this
paper.

If a running forwarder looses its connectivity with its
primary controller, it can act in two ways; a. try to connect to
a known backup controller; b. select among several available
controllers by running a MCDA algorithm. The input
information for MCDA (decision criteria) could be:

- identities/addresses of a set of SDN controllers;
- degree of load for those controllers (e.g.,

periodically communicated, by a traffic monitoring
system (having its central intelligence in the master
SDN controller) to the forwarder

- local information observed by the forwarder, like
connectivity to different nodes/controllers, etc. So,
the forwarder can select based on MCDA-RL a
novel controller.

VI. EXPERIMENTAL RESULTS

This section will shortly present some simple but relevant
examples of results, in order to prove the validity of
approach. The experiments are mainly oriented to test the
resiliency.

53

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Basic controller placement examples

Figure 3. Static MCDA CPP optimization with individual criteria in
MCDA

The objective of the first example is to show that
applying a single optimization criteria the solutions can be
very different. Figure 3 shows an example of optimization
for a network statically defined, having N= 6 nodes and c= 2
controllers. Four controller placements have been
considered:C0: nodes [4, 5]; C1: nodes [2, 4]; C2: nodes [2,
5]; C3: nodes [3, 5].

The result placements (examples) for different
individual criteria are listed below:

stephan@mint$ python mcda.py –a //average latency

to the primary controllers

Optimum Ci placement is Ci=3;

CT0 is placed in node 3

CT1 is placed in node 5

CT0 nodes {1,3,4}

CT1 nodes {0,2,5}

The computed latencies for the four placements are : C0:
1.33; C1: 1,66; C2: 2,33; C3: 1.13. One can see that C3 is
the best.
stephan@mint$ python mcda.py –b //average latency

to the backup controllers

Optimum Ci placement is Ci=0

CT0 is placed in node 4

CT1 is placed in node 5

CT0 nodes {1,3,4}

CT1 nodes {0,2,5}

stephan@mint$ python mcda.py –w //max latency to

the backup controllers

Optimum Ci placement is Ci=3

CT0 is placed in node 3

CT1 is placed in node 5

CT0 nodes {1,3,4}

CT1 nodes {0,2,5}

stephan@mint$ python mcda.py –i //inter-controller

latency

Optimum Ci placement is Ci=2

CT0 is placed in node 2

CT1 is placed in node 5

CT0 nodes {1,2}

CT1 nodes {0,3,4,5}

. Figure 4. Basic MCDA CPP optimization with dynamically generated

network graph

The variety of the above results obtained for single
criterion shows clearly the necessity of a multi-criteria
optimization.

The second example shows a multi-criteria scenario.
Figure 4 shows a graph dynamically generated with N=7
nodes and k=2 controllers. The optimization criteria have
been average latency, worst latency and inter-controller

latency, with equal weights d1=d2=d3=1. The best placement
selected is C2 , having the controllers placed in the nodes 0
and 3. The allocation of forwarders to controller can be
selected based on shortest path principle. The command to
run program and the main results are listed below.

stephan@mint$ python mcda.py –a l –w 1 –i 1 –

dynamic –n 7 –c 2

Optimum Ci placement is Ci=2

Controller is placed in node 0

Controller is placed in node 3

• Load balancing for controllers
Figure 5 shows an example in which the network graph

has been dynamically generated with N=6 nodes and k= 2
controllers. The decision criteria have been inter-controller
latency (weight = 1) and balancing criterion (weight = 0.5,
i.e., having twice higher priority). The MCDA program has
been run with parameters :

stefan@mint$ python mcda.py -i 1 -l 0.5 --

dynamic -n 6 -c 2

The results obtained are: controllers CT0 and CT3 placed

in the nodes 0 and 3. The allocation of forwarders to
controllers are :
 Controller 0 has allocated node(s): 0, 2, 4.

 Controller 3 has allocated node(s): 1, 3, 5.

54

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Example of a balanced allocation of the forwarders to controllers

(after MCDA run)

 Note that in this solution the inter-controller latency is
taken into consideration, but the final value is not minimum;
however, the allocation of the forwarders to controllers is
balanced (3 forwarders per each controller). The reason is
that load balancing criterion has been assigned a higher
priority versus the inter-controller-latency.

• Links and node failures

 To experiment such scenarios the simulator should be
launched in dynamic mode and the number of links/nodes
which will be in failure should be also specified. One can
check if the placement selected is resilient to failures. For
instance, if the unique parameter considered in MCDA
would be the average latency of the forwarders to backup
controllers, then one would expect that the resulting
placement could be enough resilient to a low number of
nodes and/or link failure events. Figure 6 shows such an
example, by presenting the graphs resulted after running the
program with the command:

python mcda.py -b --dynamic -n 8 -c 3 -ef 2

 In this example, the network has N=8 nodes and c= 3
controllers; the number of failure links ef=2. This first
placement (Figure 6a) has the controllers installed in nodes
3,4,5. The program is run again after some links failure (1-6,
3-7). Still the controller placement (i.e., after running again
the MCDA on the reduced graph) is the same (Figure 6 –
right), i.e., in the nodes 3,4,5.

Now we consider an experiment in which the criterion of

the first run of the MCDA is to minimize the average
latency between the forwarders and primary controllers
(parameter introduced with weight = 1). The optimum
placement of the controllers (with N=8, c=3), after first run
of the MCDA, is in nodes 0, 2, 6. (Figure 7, left). Then two
link failures are simulated (i.e., links 5-6 and 0-1 will be out
of order). The command for such a run is:

 python mcda.py -a --dynamic -n 8 -c 3 -ef 2

The optimum placement of the controllers in the new
context (failure links) has been changed in nodes 3,5,6
(Figure 7b). So, one can conclude that the first placement is
less resilient to link failures.

The lesson learned from such experiments is that there is
no absolute unique optimum solution of such problems, to
satisfy all requirements. Depending on the particular context
of the SDN-controlled network and some network owner
policies, different placement solutions can be found as more
appropriate, to satisfy in a convenient way several criteria.

These examples illustrate the power of the MCDA
algorithm where various sets of criteria and different
priorities (driven by policies) can be considered.

 Figure 6. Example of controller placement resilient to link failures a.Left: placement before link failures; b.Right: placement after some links failures.

55

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Example of placement non-resilient to link failures
a.Left: controller placement before link failures; b. Right: controller placement after some links failures (5-6, 0-1).

VII. CONCLUSIONS AND FUTURE WORK

This paper extended the study [1], on using multi-
criteria decision algorithms (MCDA) to optimally place the
controllers in large SDN, based networks, while aiming to
achieve good resiliency properties of the system. It is
illustrated the main MCDA advantage, i.e., that it can
produce a tradeoff (optimum) result, while considering
several weighted criteria, part of them even being partially
contradictory.

This study provides (in comparison to [1]) more
comprehensive discussion and analysis of resiliency-oriented
properties of a SDN network with distributed control plane.
Simple but relevant examples have been added, to show that
actually no unique solution exists for controller placement to
be optimal with respect to all criteria envisaged. Therefore,
in practice, the weights of the decision parameters introduced
in MCDA should be cleverly adopted, to meet the prioritized
list of the network provider requirements.

This study has shown that actually the MCDA – based
optimization can be performed in a flexible way:

- introducing in MCDA all decision parameters, with
appropriate weights in order to achieve a trade-off
solution after a single MCDA run;

- using iteratively several rounds (see Section VI), i.e.,
introducing first the most important parameters and
run MCDA; then modify the topology/conditions and
check if the first controller placement is still good
enough in these new conditions; if not, then add
parameters to MCDA and run again the algorithm.

The paper added several additional experimental results
in Section VI. The forwarder-controller mapping
optimization and backup controller selection have been also
considered.

Future work will be still necessary for CPP and CSP
problems. Experiments on large networks [22[23] could
better validate the optimization solutions in a more realistic
environment. Another important aspect can be the dynamic
of the overall system during run-time, when the traffic
amount inside different regions of the the data plane (i.e.,

between different forwarders) might have significant
variations. This can lead to overload of some SDN
controllers, especially if reactive-mode of the control plane is
applied in those networks and given the limited controller
processing capacity. This problem could be solved in two
ways: a. moving some controllers (so, the placement will be
modified) to the overloaded regions to better serve the
forwarder requests for flow table configuration); b.
dynamically migrate some switches/forwarders between the
controllers, in order to better balance the controllers’ load.
For instance, in recent studies [20][21], the dynamic switch
migration is optimized based on input information
periodically provided by a monitoring system. However,
these studies do not consider multi-criteria approach, but
only the traffic load of the network data plane and impact on
controller tasks. Here, combining MCDA with such traffic-
based algorithms could provide better results.

REFERENCES

[1] E. Borcoci and S. Ghita, "Reliability-aware Optimization of
the Controller Placement and Selection in SDN Large Area
Networks", The Thirteenth International Conference on
Systems and Networks Communications, ICSNC, Nice,
2018,
https://www.iaria.org/conferences2018/ICSNC18.html,
[retrieved: 6, 2019].

[2] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On
Scalability of Software-Defined Networking”, IEEE Comm.
Magazine, pp. 136-141, February 2013.

[3] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed
control plane for openflow” in Proc. INM/WREN, 2010,
https://pdfs.semanticscholar.org/f7bd/dc08b9d9e2993b3639
72b89e08e67dd8518b.pdf, [retrieved: 5, 2018].

[4] T. Koponen, M. Casado, N. Gude, J. Stribling, L.
Poutievski, et al., “Onix: a distributed control platform for
large-scale production networks,” in Proc. OSDI, 2010,
https://www.usenix.org/legacy/event/osdi10/tech/full_papers
/Koponen.pdf, [retrieved: 5, 2018].

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network
Function Virtualisation: Challenges and Opportunities for

56

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Innovations”, IEEE Communications Magazine, pp. 90-97,
February 2015.

[6] B. Heller, R. Sherwood, and N. McKeown, “The controller
placement problem,” in Proc. HotSDN, pp. 7–12, 2012,
https://dl.acm.org/citation.cfm?id=2342444, [retrieved: 5,
2019].

[7] K. Sood and Y. Xiang, “The controller placement problem
or the controller selection problem?”, Journal of
Communications and Information Networks, Vol.2, No.3,
pp.1-9, Sept.2017.

[8] D. Hochba, “Approximation algorithms for np-hard
problems”, ACM SIGACT News, 28(2), pp. 40–52, 1997.

[9] E. Borcoci, T. Ambarus, and M. Vochin, „Multi-criteria
based Optimization of Placement for Software Defined
Networking Controllers and Forwarding Nodes,” The 15th
International Conference on Networks, ICN 2016, Lisbon,
http://www.iaria.org/conferences2016/ICN16.html,
[retrieved: 5, 2019].

[10] A. P. Wierzbicki, “The use of reference objectives in
multiobjective optimization”. Lecture Notes in Economics
and Mathematical Systems, vol. 177. Springer-Verlag, pp.
468–486.

[11] S. Yoon, Z. Khalib1, N. Yaakob, and A. Amir, “Controller
Placement Algorithms in Software Defined Network - A
Review of Trends and Challenges”, MATEC Web of
Conferences ICEESI 2017 140, 01014
DOI:10.1051/matecconf/201714001014, 2017.

[12] G.Wang, Y.Zhao, J.Huang, and W.Wang, “The Controller
Placement Problem in Software Defined Networking: A
Survey”, IEEE Network, pp. 21- 27, September/October
2017.

[13] A. K. Singh and S. Srivastava, "A survey and classification
of controller placement problem in SDN", International
Journal of Network Management, March 2018, pp 1-25,
https://doi.org/10.1002/nem.2018.

[14] A.Kumari and A.S.Sairam, "A Survey of Controller
Placement Problem in Software Defined Networks",
arXiv:1905.04649v1 [cs.NI] 12 May 2019.

[15] H. Yan-nan, W. Wen-dong, G. Xiang-yang, Q. Xi-rong, and
C. Shi-duan, ”On the placement of controllers in software-
defined networks”, ELSEVIER, Science Direct, vol. 19,
Suppl.2, pp. 92–97, October 2012, ,
http://www.sciencedirect.com/science/article/pii/S10058885
1160438X, [retrieved: 1, 2018]..

[16] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner,
and P. Tran-Gia, “Pareto-Optimal Resilient Controller
Placement in SDN-based Core Networks,” Proceedings of
the ITC, Shanghai, China, 2013,
https://ieeexplore.ieee.org/document/6662939/, [retrieved: 1,
2019].

[17] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan,
“Reliability aware controller placement for software-defined
networks,” in Proc. IM. IEEE, pp. 672–675, 2013,
https://ieeexplore.ieee.org/document/6573050/, [retrieved:
1, 2019].

[18] L. Muller, R. Oliveira, M. Luizelli, L. Gaspary, and M.
Barcellos, “Survivor: an Enhanced Controller Placement
Strategy for Improving SDN Survivability”, IEEE Global
Comm. Conference (GLOBECOM); 12/2014,
https://ieeexplore.ieee.org/document/7037087/, [retrieved: 4,
2018].

[19] Y. Zhang, N. Beheshti, and M. Tatipamula, “On Resilience
of Split-Architecture Networks” in GLOBECOM 2011,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.69
1.795&rep=rep1&type=pdf, [retrieved: 5, 2019]. .

[20] M. Cello, Y. Xu, A. Walid, G. Wilfong, H. J. Chao, et al.,
“Balcon: A distributed elastic SDN control via efficient
switch migration”, in Proc. IEEE Int. Conf. Cloud Eng.
(IC2E), April 2017, pp. 40–50.

[21] Y.Xu, M.Cello, I-Chih Wang, A. Walid, G. Wilfong, et al.,
“Dynamic Switch Migration in Distributed Software-
Defined Networks to Achieve Controller Load Balance”,
IEEE Journal on Selected Areas in Communications , Vol.
37, No. 3, March 2019, pp. 515-528.

[22] Internet2 open science, scholarship and services exchange.
http://www.internet2.edu/network/ose/, [retrieved: 4, 2018].

[23] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M.
Roughan, “The Internet Topology Zoo,” IEEE JSAC, vol. 29,
no. 9, 2011, pp.1765-1475.

[24] F. Al-Tam and N.Correia, "On Load Balancing via Switch
Migration in Software-Defined Networking", IEEE Access,
DOI 10.1109/ACCESS.2019.2929651, pp.1-13, July 2019.

57

International Journal on Advances in Networks and Services, vol 12 no 3 & 4, year 2019, http://www.iariajournals.org/networks_and_services/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

