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Abstract— This paper presents a people detection and tracking 
method using Light Detection And Ranging sensors (LiDARs) set 
in an environment. Each LiDAR detects people from its own 
LiDAR measurements, exchanges information of people positions 
by communicating with its neighboring LiDARs, and then fuses 
the information of people positions. Thereafter, each LiDAR 
estimates people’s poses from the information of people’s positions, 
and the estimates are fused by exchanging information among 
neigboring LiDARs. A one-dimensional convolutional neural 
network is applied to accurately detect people from LiDAR 
measurements in an environment where various objects, such as 
people, two-wheelers, and cars, coexist. A distributed interacting 
multimodel estimator is applied to accurately estimate the poses of 
people under various motion modes, such as stopping, walking, 
and suddenly running and stopping, in a distributed manner 
without a central server. Simulation results of eight people tracked 
by four Velodyne 32-layer LiDARs in an intersection environment 
where people and cars coexist show the performance of the 
proposed method. 

Keywords- LiDAR network; people detection and tracking; one-
dimensional convolutional neural network; distributed interacting 
multimodel estimator. 

I. INTRODUCTION 
This paper is an extended and improved version of an earlier 

paper presented at the IARIA Conference on Sensor 
Technologies and Applications (SENSORCOMM 2023) [1] in 
Porto, Portugal. 

People tracking (motion estimation, such as position and 
velocity) is an important technology in various fields, including 
surveillance, security, and Intelligent Transportation Systems 
(ITS). Consequently, many related studies have been actively 
performed using Light Detection And Ranging sensors 
(LiDARs) and cameras [2]–[5]．This paper focuses on people 
tracking using sensors set in an environment.  

In sparse and not crowded environments, the tracking 
performance of a single sensor is high; however, in dense 
environments, tracking performance deteriorates due to 
occlusions. To reduce occlusions and accurately track people in 
dense environments, a cooperative people tracking method has 
been proposed in which data from networked sensors set at 
different locations are shared [6]–[9]．In addition, Bayesian 
filters, such as Kalman and particle filters, are commonly used 
to accurately track people without interrupting the tracking 
process even in occluded conditions.  

Most conventional Bayesian-filter-based people tracking 
methods tend to perform their tasks under the assumption that 

people move at a nearly constant velocity, and thus tracking 
performance can be significantly compromised when people’s 
behaviors suddenly change, such as sudden running and sudden 
turn.  

For example, let us consider that in an intersection 
environment, tracking of people crossing a crosswalk is 
performed by sensors set on signal lights. In principle, people’s 
motions change according to the signal light conditions, i.e., 
stop at red lights, walk or run at a nearly constant speed at green 
lights, and suddenly run at yellow lights. Therefore, it is 
necessary to develop tracking systems in ITS domains that can 
accurately track people even in such rapidly changing behaviors. 

Multimodel methods, including the Interacting MultiModel 
(IMM) method [10], are well known for accurately tracking 
objects exhibiting various behaviors [11]. We previously 
presented an IMM-based people tracking method [12] using 
ground LiDAR, and we extended this method to cooperative 
people tracking using multiple ground LiDARs [13][14].  

Most conventional methods for cooperative people tracking, 
including the one presented in our previous study, are based on 
a centralized fusion method in which data from multiple sensors, 
such as LiDARs and cameras, are collected and fused on a 
central server. As a result, central server failure will 
unavoidably lead to malfunctions to the entire tracking system. 
To address this problem and also maintain system robustness 
even in cases of central server failure, this paper presents a 
cooperative people tracking method using distributed data 
fusion  (Distributed Interacting MultiModel (DIMM)-based 
method [15]), in which data among LiDARs are processed 
without the requirement of a central server.  

As a preprocessing people tracking step, it is necessary to 
accurately detect people from the entire sensor measurements. 
A simple method for detecting people is based on a background 
subtraction method [12], in which people are detected by 
subtracting an environmental map (sensor measurements 
obtained in advance) from current sensor measurements. 
However, this approach exhibits a tendency to  misidentify 
objects, such as cars and two-wheelers, that do not exist in the 
environmental map as people. 

To accurately distinguish people from objects in various 
environments, many studies have been conducted using machine 
learning methods [16][17]. In this paper, a One-Dimensional 
Convolutional Neural Network (1D-CNN) method for people 
detection [18] is implemented in our LiDAR-based cooperative 
people tracking system.  

The performance of cooperative people tracking using a 
DIMM-based estimator in conjunction with 1D-CNN is 
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quantitatively evaluated through simulation experiments in an 
intersection environment where people and cars move 
simultaneously. The rest of this paper is organized as follows. In 
Section II, an overview of related works is presented . In Section 
III, the experimental system is described. In Section IV, people 
detection and tracking methods are discussed and then described 
in Sections V and VI, respectively. In Section VII, simulation 
experiments are conducted to evaluate the performance of the 
proposed method, followed by our conclusions in Section VIII. 

II. RELATED WORK 
Compared with centralized data fusion, distributed data 

fusion enhances system robustness and scalability. Therefore, in 
the field of Bayesian filtering, distributed data fusion methods 
have been actively discussed [19][20]. 

Distributed data fusion methods are classified into consensus 
and diffusion strategies. In the consensus strategy, sensor nodes 
iteratively exchange data to reach a consensus. Therefore, this 
method requires high computation and communication costs due 
to iterations. In contrast, consensus iteration is not required in 
the diffusion strategy. For this reason, we are interested in the 
application of diffusion strategies to LiDAR-based cooperative 
people tracking. To the best of our knowledge, no studies have 
been conducted on LiDAR-based cooperative tracking of people 
moving in various behaviors using distributed fusion methods. 

Thus, in our previous study [21], cooperative people tracking 
was presented using a DIMM-based estimator of a distributed 
data fusion method [15]. However, cooperative people tracking 
was performed for only two linked LiDARs, rendering the 
effectiveness of the tracking method using three or more 
LiDARs in various network topologies, such as ring and line 
network topologies, unclear. In this paper, a DIMM-based 
cooperative people tracking method is presented using four 
LiDARs in ring and line network topologies.  

In addition to tracking algorithms, many studies have used 
machine learning methods, such as PointNet, VoxelNet, 
Pointpillars, and CenterPoint, to accurately detect people and 
objects in various environments [19][20].  

In the field of ITS, mechanical 3D LiDARs, which spin laser 
beams in the horizontal direction to achieve a 360 degree 
horizontal field of view, are commonly used because of their  
higher accuracy and reliability compares to those of  solid-state 
3D LiDARs [22]. 

Kunisada et al. [18] presented a people detection method for 
mechanical LiDAR based on 1D-CNN [23]. The 1D-CNN-
based method considers all measurements captured from 
mechanical LiDAR as 1D waveform data to perform a 
convolution processing. As a result, the time from obtaining 
LiDAR measurements to the output of detection results has a 
shorter delay than other machine learning-based methods. For 
this reason, our study implements a 1D-CNN-based method to 
accurately detect people. 

The contributions of this paper are as follows: 
 A DIMM-based cooperative people tracking method using 

four LiDARs is designed in typical network topologies (ring and 
line network topologies). The tracking method can then be 
applicable to many LiDAR systems operating in any network 
topology. 
 The performance of DIMM-based cooperative people 

tracking in conjunction with 1D-CNN-based people detection is 

quantitatively evaluated through simulation experiments in an 
intersection environment where people and cars coexist. 

III. EXPERIMENTAL SYSTEM 
In this paper, a system with four networked LiDARs is 

considered, as shown in Figure 1. Each LiDAR consists of a 
mechanical LiDAR (Velodyne HDL-32E) and a computer. The 
LiDAR emits 32 laser beams in the vertical direction, and its 
maximum range is 50 m. The horizontal viewing angle is 360° 
with a resolution of 0.16°, and the vertical viewing angle is 41.3° 
with a resolution of 1.33°. The spinning period is 0.1 s. 
Approximately 70,000 measurements are acquired during the 
spinning period. 

Two network topologies are considered for exchanging 
information among LiDARs: a ring network topology (referred 
to as a ring network) and a line network topology (referred to as 
a line network). As shown in Figure 1, each LiDAR is connected 
to two other adjacent LiDARs in a ring network, while LiDARs 
1 and 2, LiDARs 2 and 3, and LiDARs 1 and 4 are connected in 
a line network. 

In the case of three or more than five LiDARs, as in the case 
of four LiDARs, each LiDAR can be connected to two other 
LiDARs on both sides in a ring network. In a line network, only 
the LiDARs at both ends of the line can be connected to one 
adjacent LiDAR, while the other LiDARs can be connected to 
the two LiDARs. 

IV. OVERVIEW OF PEOPLE DETECTION AND TRACKING 
Figure 2 shows the flow of people detection and tracking 

method. Each LiDAR captures its own measurements and 
detects people using a 1D-CNN-based method, which, however, 
requires a high density of LiDAR measurements to accurately 
recognize people. Our preliminary experiments revealed that 
the maximum range of people detection could be set to 25 m 
from the LiDAR, and that the 1D-CNN-based method often 
failed to detect people located within 1 m from the LiDAR (a 
reason will be discussed later on). As a result, in the range of 
1–25 m from the LiDAR, people can be accurately detected by 
the 1D-CNN-based method. 

Each LiDAR communicates with its neighboring LiDARs 
and exchanges information on people’s positions, including the 
time stamp, number, and coordinates of their positions. 
Thereafter, each LiDAR fuses the information. 

Based on the DIMM estimator, each LiDAR estimates the 
positions, moving directions, velocities, and behaviors of 
people from information regarding their respective positions.  

 

 
Figure 1.  Overview of the network of four LiDARs. The red and blue dotted 
lines indicate the ring and line network topologies, respectively. 
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Figure 2.  Flow of people detection and tracking. 

 
Their estimates are exchanged among neighboring LiDARs and 
fused. In this study, three motion modes are considered as 
people behaviors: stopping, walking/running at an almost 
constant velocity, and significant acceleration/deceleration, 
such as suddenly running or suddenly stopping.  

V. PEOPLE DETECTION METHOD 
Our LiDAR has 32 laser beams in the vertical direction, 

which are designated as laser IDs 1–32. Because the 32 laser 
beams are rotated in the horizontal direction, as shown in Figure 
3, the distance measurements obtained from the LiDAR are 
regarded as 1D waveform data for each laser ID. 

Outliers (false measurements) of LiDAR obtained from 
mirror objects or the sky significantly degrade the performance 
of detection using 1D-CNN. Such outliers are corrected as 
follows [18]: Outliers captured from a laser beam with a vertical 
viewing angle of 0° or greater are assigned large values. For 
outliers captured by a laser beam with a vertical viewing angle 
of less than 0°, distance measurements to the ground are 
estimated and set. 

Figure 4 shows the structure of people detection using 1D-
CNN, which consists of three convolution layers (green and 
orange blocks) and a fully connected layer (yellow block) [24]. 
In all convolution layers, the convolution process is performed 
by moving the 1D convolution filter only in the horizontal 
direction, and people are then recognized from the feature map 
for every laser ID. 

The 1D waveform data to the input layer are distance 
measurements obtained by horizontally spinning the 32 laser 
beams using a 7° window (LiDAR measurements of 32 × 41). 
This window is moved simultaneously with the LiDAR spinning 
process, allowing us to identify whether or not a person is 
present within one scan for the LiDAR measurements. 

In the first convolution layer, 32 convolution filters with a 
size of 1 × 4 are composed, and max spooling with a size of 2 × 
2 is performed to obtain feature maps. In the second convolution 
layer, 32 convolution filters with a size 1 × 3 are convolved with 
the feature maps obtained in the first layer to obtain new feature 
maps. In the third convolution layer, 32 convolution filters with 
a size 1 × 3 are convolved with the feature maps obtained in the 
second layer to obtain new feature maps. Here, Rectified Linear 
unit (ReLu) is used as the activation function for all three 
convolution layers.  

The feature maps obtained in the third convolution layer are 
transformed to feature vectors, which are then provided to a fully 
connected layer with 1024 units, where the drop-out rate is set 
to 0.5. The output layer with two units then determines whether 
or not the LiDAR measurement belongs to a person using the 
softmax function.  

The LiDAR measurements judged to belong to a person are 
clustered, as shown in Figure 5, and the geometric center of the 
clustered measurements is obtained. The position of the 

 

 
Figure 3.  1D waveform data from LiDAR. Different colored lines indicate 
different laser IDs. 

 

 
Figure 4.  Structure of 1D-CNN. 

 

                                    
(a) LiDAR measurements                             (b) Detection result   

 
Figure 5.  Person detection using 1D-CNN. In (b), the blue dots indicate the 
measurements determined to be taken by a person. The red mark indicates the 
geometric center of the person (GCP). 
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geometric center is used as the person’s position in people 
tracking. To accurately cluster LiDAR measurements related to 
people in the vicinity, Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) method [25] is used.  

When a person is within 1 m from the LiDAR, detection fails 
because the LiDAR measurements related to a person do not 
always fall within the 7° window. Therefore, people are detected 
whithin 1–25 m from the LiDAR.  

VI. PEOPLE TRACKING METHOD  
In this section, people’s motions in an intersection 

environment are firstly modeled. Thereafter, a people tracker is 
designed based on DIMM estimator in conjunction with the 
Global-Nearest-Neighbor (GNN)-based data association. 

A. Motion Model of People 
To accurately estimate people’s motions and behaviors in an 

intersection environment, the following motion modes of a 
person are used: 

a) Stop mode (mode 1): Mode for a person stopping at a red 
light. 

b) Constant velocity mode (mode 2): Mode for a person 
walking or running at an almost constant translational or 
rotational velocity under a green light. 

c) Sudden motion mode (mode 3): Mode for a person who 
suddenly runs or stops when a green light turns into a yellow 
light. 

As shown in Figure 6, the position and moving direction of 
the person are denoted by (x, y) and  , respectively, in the 
world coordinate system. The translational and rotational 
velocities of the person are denoted by v  and , respectively. 
The three motion modes are then modeled using the following 
state equations:  

 Mode 1 
1 1

1 1

t t t

t t t

x x x
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Figure 6.  Person state (top view). 

where t and t–1 indicate time steps. v  and  are the 
translational and rotational acceleration of a person, 
respectively. Furthermore, y , v , v , , and  
represent the plant disturbances.  (= 100 ms) is the spinning 
period of the LiDAR. 

The state equation of the m-th mode, where m = 1, 2, 3, is 
represented by the following vector form: 

1 1( , )m m m m
t t tx f x v                             (4) 

where mx  indicates the state vector of the m-th mode, and 
mv  indicates the disturbance vector, which is assumed to have 

a white noise sequence with the covariance matrix mQ .  
The LiDAR measurement relating to the person gives the 

following measurement equation: 

m m
t t tz H x z                               (5) 

where T
yx zz ),(z   is the position of the person, more 

specifically, the position of the Geometric Center of the Person 
(GCP) obtained by the people detection method, and z  is the 
measurement noise, which is assumed to have a white noise 
sequence with the covariance matrix R. Hm is the measurement 
matrix given by 
 

1 1 0
0 1

H ， 2 3 1 0 0 0 0
0 1 0 0 0

H H  

 

B. People Tracking using DIMM Estimator 
The main notations used in this subsection are listed in 

Appendix A. 
It is assumed that any change in the three motion modes is 

governed by the first-order homogeneous Markov chain as 
follows: 

1Prob n m
mn t tT                           (6) 

3

1
1mn

n
T                                     (7) 

where 1
m
t  and n

t  are events that the m-th and n-th modes, 
where m, n = 1, 2, 3, are in effect at times t–1 and t, respectively. 

mnT  is the transition probability that the m-th mode jumps into 
the n-th mode. In our simulation, the transition probability 
matrix is set to mnT  = 0.9 for m n  and mnT  = 0.05 for m n  
(see Figure 7). 
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Figure 7.  Mode transition. 

The k-th LiDAR (k = 1–4) estimates people’s states in the 
following five steps: 

Step 1) Filter initialization 
The probability that the m-th mode occurs at time t–1 is 

denoted by , 1ˆ m
k t . The m-th mode conditional estimate and its 

related covariance are denoted by , 1ˆ m
k tx  and , 1

m
k tP , respectively. 

These three quantities are mixed as follows: 

, 1
, 3

, 1
1

ˆ

ˆ

m
mn k t

k mn
m

mn k t
m

T
c

T
                            (8) 

3

, 1 , , 1
1

ˆm n
k t k mn k t

n
cx x                            (9) 

      
3

, 1 , 1 , 1 , 1 , 1 , 1
1

ˆ ˆ[ ( )( ) ]m n m n m n T
k t k mn t k t k t k t k t

n
cP P x x x x   (10) 

Step 2) Calculation of state estimate and likelihood 
The single-model-based Kalman filters for the three modes 

run, and the prediction and related covariance for each mode at 
time t are given by 

, / 1 , 1

, / 1 1 , 1 1 1 1

ˆ ( )m m m
k t t k t

m m T m T
k t t t k t t t t

x f x
P F P F G Q G

       (11) 

where F and G  are the Jacobian matrices of mf  (Eq. (4)) 
related to , 1

m
k tx and 1

m
tv , respectively. 

The people’s positions lz  from neighboring LiDARs are 
combined, and the quantities related to the measurement ,k tq  
and its error covariance ,k tS  are given as follows: 

1
, ,

1
,

( )

( )

k

k

m m T
k t l l t

l N

m m T m
k t l l

l N

q H R z

S H R H
                       (12) 

where Nk is the set of neighboring LiDARs, including itself (i.e., 
k-th LiDAR), given in Table I. 

From the quantities in Eqs. (11) and (12), the information 
filter determines the state estimate ,

m
k tγ  and its related error 

covariance ,
m
k tΓ  at time t as follows: 

 

TABLE I.   NK RELATED TO NETWORK TOPOLOGY 

k Ring network Line network 
LiDAR 1: N1 {1, 2, 4} {1, 2, 4} 
LiDAR 2: N2 {1, 2, 3} {1, 2, 3} 
LiDAR 3: N3 {2, 3, 4} {2, 3} 
LiDAR 4: N4 {1, 3, 4} {1, 4} 

1
, , , / 1 , / 1 ,

1 1
, , / 1 ,

ˆ{( ) }

{( ) }

m m m m m
k t k t k t t k t t k t

m m m
k t k t t k t

γ Γ P x q

Γ P S
                 (13) 

In addition, the mode conditional likelihood is calculated by 

1
, , / 1 , / 1 , / 1

, / 1

1 1 exp[ ( ) ( ) ]
22k

m m T m m
k t k t t k t t k t tm

l N k t t

z L z
L

 

                       (14) 

where , / 1
m
k t tz  and , / 1

m
k t tL  indicate the predicted measurement 

error and its associated covariance, respectively, as follows: 

, / 1 , , / 1

, / 1 , / 1

ˆ
( )

m m m
k t t l t l k t t
m m m m T
k t t l k t t l

z z H x
L H P H R

                (15) 

In a crowded environment where many people coexist, a 
data association (one-to-one matching of tracked people and 
positions of GCPs) is required to ensure the accurate process of 
people tracking. For the data association, a GNN-based method 
is used (see Appendix B). 

Step 3) Exchange of tracking information and likelihood 
 Each LiDAR communicates with its neighboring LiDARs 
and exchanges information about the state estimate ,

m
k tγ , its 

related error covariance ,
m
k tΓ , and mode conditional likelihood 

,
m
k t . 

Step 4) Combination of tracking information 
 By fusing the tracking information exchanged among the 
LiDARs in Step 3, the m-th mode conditional estimate ,ˆ m

k tx  and 
related covariance ,

m
k tP  at time t are given by 

1
, , , , ,

1 1
, , ,

ˆ { ( ) }

{ ( ) }

k

k

m m m m m
k t k t lk t k t k t

l N

m m m
k t lk t k t

l N

x P Γ γ

P Γ
                    (16) 

where the weight ,
m
lk t  is set so that the smaller the error 

covariance ,
m
l tΓ  of the state estimate is, the larger the weight as 

follows: 

,

,

,

1
Tr( )

for  
1

Tr( )
0 for  

k

m
k t

km
lk t

m
l N l t

k

l N

l N

Γ

Γ
                 (17) 
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When fusing the tracking information, it is necessary to 
match the tracking information calculated by Eq. (9) with that 
obtained from other LiDARs. Matching is performed based on 
the GNN method by setting a validation region with a certain 
radius around the tracking information, while treating the 
tracking information from other LiDARs as measurements. If 
the tracking information from other LiDARs cannot be matched 
with individual tracking information, it is assumed that this 
information is related to person(s) outside the sensing area of 
the individual LiDAR, which it is subsequently used as it is. 

Step 5) Calculation of mode probability and state 
estimate 
 Based on the likelihood ,

m
k t  exchanged among LiDARs in 

step 3, the likelihood function of the m-th mode, ,
m
k t , is fused 

by 

, ,exp( log )
k

m m m
k t lk k t

l N
                      (18) 

The weight m
lk  is given by [26] 

,

1  for  ,
max ,

1 for  

0 for  
k

k
l k

m m
lk lk

l N l k

k

l N l k
N N

l k

l N

        (19) 

where lN  and kN  are the dimensions of lN  and kN , 
respectively. From Table I, because 1 2 3N N N 4N
3 in the ring network, and 1 4N N 2 and 2 3N N = 3 in 
the line network, the weight m

lk  is set to 0.33 and to values 
shown in Table II in the ring and line networks, respectively.  

The mode probability is therefore calculated as follows: 

, / 1
, 3

, / 1 ,
1

ˆ
ˆ

ˆ

m m
k t t tm

k t
m m
k t t k t

m

                          (20) 

People behavior can be recognized as the mode in which the 
value of mode probability is maximized. 

The state estimate and its related error covariance for 
tracked people are finally given by 

3

, , ,
1

3

, , , , , , ,
1

ˆ ˆˆ

ˆ ˆ ˆ ˆˆ [ ( )( ) ]

m m
k t k t k t

m

m m m m T
k t k t k t k t k t k t k t

m

x x

P P x x x x

     

(21) 

The number of people in the sensing areas of LiDARs 
changes over time, as people continuously enter and leave the 
sensing area. In addition, people often encounter occlusions in 
the sensing area. To handle such conditions, a rule-based data-
handling method that employs the following track initiation and  

TABLE II.  m
lk  RELATED TO THE LINE NETWORK 

 l = 1  l = 2  l = 3 l = 4 
k = 1 0.33 0.33 0 0.33 
k = 2 0.33 0.33 0.33 0 
k = 3 0 0.33 0.67 0 
k = 4 0.33 0 0 0.67 

 
termination [12] is implemented.  

a) Track initiation: If a person measurement (position of 
GCP) cannot be matched with the person being tracked by 
GNN-based data association, it is assumed that the 
measurement comes from a new person. As a result, tracking 
begins. However, the measurement may be an outlier. In that 
case, it is unlikely that measurements will be obtained 
continuously. Therefore, if the measurement is not obtained 
within a threshold of 0.2 s (set in this study) after the tracking 
start, then the tracking process is terminated; otherwise, the 
measurement is considered to represent a new person, and 
tracking is continued. 

b) Track termination: If measurements (positions of GCPs) 
cannot be obtained to associate them with the person being 
tracked, person tracking is continued using the state prediction 
(Eq. (11)), and if no measurements are detected after a threshold 
of 1 s (set in this study), tracking is terminated. 

VII. SIMULATION EXPERIMENTS 
In this section, the performance of the people detection and 

tracking method is evaluated through simulation experiments in 
which people and cars move at the same time. First, the 
experimental conditions are described, and our results are 
subsequently shown. 

A. Experimental Condition 
Simulation experiments in an intersection environment are 

conducted to evaluate the proposed methods. To generate the 
motions of both cars and people, and thus the related LiDAR 
measurements, the Simcenter Prescan (Siemens) [27] is used as 
a simulator.  

As shown in Figure 8 (a), four LiDARs are set at a height 
of 1.95 m on signal light posts that are 15 m apart from one 
another in an intersection environment. The sensing areas of the 
four LiDARs are shown in Figure 8 (b). Eight people move on 
crosswalks, and Figures 9 (a) and (b) show the movement paths 
and motion profiles of these eight people, respectively.  

As shown in Figure 10, cars also move in some of our 
environments. More specifically, there are no cars in 
environment 1. In environment 2, cars move on two inside lanes 
at 40 km/h, and their time-headway is 3 s. In environment 3, 
cars move on four lanes at 40 km/h, and the time-headways in 
the inside and overtaking lanes are 1.5 s and 3 s, respectively. 
In environment 4, cars move on four lanes at 40 km/h, and the 
time-headway is 1.5 s. In our simulation, the tracking duration 
of eight people is 15 s, in which duration, the total number of 
cars moving in environments 2, 3, and 4 is 12, 34, and 45, 
respectively. 

Figure 11 shows the people and cars used in the experiments. 
A person (a-1) and cars (b-1 through 4) are used to generate the  
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(a) Intersection environment (bird’s-eye view) 

 
(b) Sensing area of the LiDARs (top view) 

Figure 8.  Simulation environment. 

 

 
(a) Movement path 

 

 
(b) Velocity profile. Persons 1, 5, and 8 (red), persons 2, 4, and 6 (blue), and 
persons 3 and 7 (purple). 

 
Figure 9.  Movement path and velocity profile of the eight people. 

   
(a) Environment 1                                 (b) Environment 2 

(No car)                                       (Small number of cars) 
 

   
(c) Environment 3                                (d) Environment 4 

(Middle number of cars)                        (Large number of cars) 
 

Figure 10.   Simulation environment (top view). The yellow arrow indicates the 
movement path and direction of the car. 

 

                       
a-1                       a-2                          a-3                        a-4 

(a) People 
 

     
b-1                 b-2                  b-3                  b-4                  b-5 

(b) Car 
 

Figure 11.  People and cars moving in the environment. 
 

test data set, whereas people (a-2 through 4) and a car (b-5) are 
used to generate the training data set for 1D-CNN-based people 
detection. Figure 12 illustrates some examples of the LiDAR 
measurements generated by the simulator. It is clear from these 
figures that the simulator can generate good LiDAR 
measurements. 

B. Evaluation of People Detection 
The dataset used to train the 1D-CNN consists of 8808 

background data and 22764 people data. People data are  
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(a) Environment 

 

     
(b) People                                                   (c) Car 

 
Figure 12.  Example of LiDAR measurements generated from Simcenter 
Prescan (bird’s-eye view). 

 
generated from three groups of people (a-2 through 4) in Figure 
11(a). Background data are generated from the environment 
and car (b-5) shown in Figure 11 (b). The 1D-CNN is trained 
using a mini-batch learning method with a batch size of 20, in 
which Nadam and binary cross entropy are used as the 
optimizer and error function, respectively. 

To evaluate the performance of people detection, precision, 
recall, and Intersection over Union (IoU) are obtained. Its 
accuracy is not evaluated because the difference in the number 
of LiDAR measurements for people and backgrounds is 
numerous. Higher precision indicates fewer misdetections, 
while higher recall indicates fewer undetections. The larger the 
IoU value, the higher the detection accuracy for all LiDAR 
measurements. 

The results of people detection are shown in Table III. 
Compared to environment 1, where there are no cars, both 
precision and IoU decrease with increasing car congestion. This 
means that in this case car-related LiDAR measurements are 
often misdetected as person-related measurements. However, 
since recall is independent of the respective environment, the 
degree of car congestion would not affect the performance of 
people detection. 

C. Evaluation of People Tracking 
The tracking performance is evaluated for the following 

three cases. 
• Case 1: DIMM-based tracking in a ring network 
• Case 2: DIMM-based tracking in a line network 
• Case 3: Centralized IMM (CIMM)-based tracking. 

In case 3, LiDAR measurements of people (positions of 
GCPs) detected by the four LiDARs are collected on a central 
server, where people are then tracked using a conventional 
IMM estimator [10][12]. 

TABLE III.  PERFORMANCE OF PEOPLE DETECTION (%) 

 Precision Recall IoU 
Environment 1 92.57 85.58 80.10 
Environment 2 83.77 85.58 73.34 
Environment 3 73.12 85.57 64.98 
Environment 4 70.13 85.60 62.67 

 

 
(a) Error of position                       (b) Error of translation velocity 

 
(c) Error of rotational velocity                        (d) Mode estimate 

 
Figure 13.  Tracking error and mode estimate of person 1 in cases 1 (black) and 
2 (red). The blue dashed line in (d) indicates the true mode.  

 

  
(a) Error of position                      (b) Error of translation velocity 

 
(c) Error of rotational velocity                       (d) Mode estimate 

 
Figure 14.  Tracking error and mode estimate of person 1 in cases 1 (black) and 
3 (red). The blue dashed line in (d) indicates the true mode.  

Figure 13 shows the tracking results for person 1 in cases 1 
and 2 in environment 1, while Figure 14 shows the tracking 
results for person 1 in cases 1 and 3 in environment 1. Table IV 
lists the tracking errors for the eight people, which are defined 
by the following root-mean-squared (RMS) error: 

8
2 2 2 2

1 0

1 ˆˆ ˆ ˆ( )
8

N

it it it it
i t

J x y v
N

        (22) 
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where ( ˆitx , ˆity ), îtv , and ˆ
it  are the estimate errors in the 

position, translational velocity, and rotational velocity, 
respectively, of the i-th person. N is the tracking duration.  

Note that since the tracking error using the DIMM estimator 
is slightly different for each LiDAR, cases 1 and 2 in Table IV 
show the average values of the tracking errors from the four 
LiDARs. In addition, the ratios of tracking errors in cases 1 and 
2 to that in case 3 are shown in brackets in Table IV.  

Table IV shows that the tracking error in case 2 (line 
network) is larger than that in case 1 (ring network). This is 
because each LiDAR exchanges detection and tracking 
information with two neighboring LiDARs in case 1, whereas, 
in case 2, LiDARs 3 and 4 exchange information only with one 
LiDAR, as shown in Figure 1.  

Tables V and VI show the number of falsely tracked cars 
and untracked people, respectively. As shown in Table V, cars 
are often tracked as people. However, measurements related to 
cars were not obtained continuously; thus, the track handing 
method described in subsection 5.2 terminates the false tracking 
within 0.2 s (threshold in track initialization). As shown in 
Table VI, a person is untracked only in case 2 in environment 
2. Initially, persons 2 and 3, which were close to each other 
were tracked as a single person for the first five seconds; 
subsequently, they were correctly tracked as two people. This 
is why a person was untracked in case 2 in environment 2. 
Furthermore, as shown in Table IV, a large tracking error 
occurs because a person is untracked in the first five seconds in 
case 2 in environment 2. 

 
TABLE IV.   RMS VALUE AND RATIO OF THE TRACKING ERROR 

 Case 1 Case 2 Case 3 

Environment 1 
0.142 

(3.65 %) 
0.158 

(15.26 %) 
0.137 

 

Environment 2 
0.142 

(3.58 %) 
0.183 

(33.75 %) 
0.137 

 

Environment 3 
0.142 

(0.28 %) 
0.164 

(16.78 %) 
0.142 

 

Environment 4 
0.143 

(2.80 %) 
0.161 

(15.57 %) 
0.139 

 

 
TABLE V.  THE NUMBER OF FALSELY TRACKED CARS 

 Case 1 Case 2 Case 3 
Environment 1 0 0 0 
Environment 2 9 7 6 
Environment 3 11 12 10 
Environment 4 11 11 10 

 
TABLE VI.  THE NUMBER OF UNTRACKED PEOPLE 

 Case 1 Case 2 Case 3 
Environment 1 0 0 0 
Environment 2 0 1 0 
Environment 3 0 0 0 
Environment 4 0 0 0 

 

VIII. CONCLUSION AND FUTURE WORK  
This paper presented a people detection and tracking method 

using a distributed LiDAR network. People were detected using 
the 1D-CNN-based method, and the detected people were 
tracked using the DIMM-based estimator. Simulation 
experiments of tracking eight people were conducted using four 
LiDARs allocated in an intersection environment. The 
performance of people detection was evaluated in an 
intersection environment in which people and cars moved 
simultaneously. The tracking performance was also evaluated in 
two different network topologies, namely ring and line networks, 
and compared with the tracking performance of the conventional 
CIMM-based estimator. 

A mechanical 32-layer LiDAR (Velodyne HDL-32E) was 
used in this paper. In future works, we will evaluate the proposed 
method through testbed/real-world experiments using the 
Velodyne HDL-32E LiDAR.  

In this paper, a small-scale system (eight people and four 
LiDARs) was evaluated through simulation experiments. To 
better validate the performance of the proposed method, we plan 
to evaluate it on large-scale systems. In addition, we will 
compare the proposed method with other state-of-the-art 
methods for people detection and tracking. 

APPENDIX A: NOTATION 

mnT : transition probability matrix that the m-th mode jumps 
into the n-th mode 

1
m
tx : true state of the m-th mode at time t–1 

, 1ˆ m
k t : m-th mode probability estimate obtained by the k-th 

LiDAR at time t–1 
, 1ˆm

k tx , , 1
m

k tP : m-th mode conditional estimate of 1
m
tx  and its 

estimation error covariance obtained by the k-th LiDAR at time 
t–1 

,k mnc : mixing probability obtained by the k-th LiDAR 
, 1

m
k tx , , 1

m
k tP : mixing state estimate and its estimation error 

covariance of the m-th mode obtained by the k-th LiDAR at 
time t–1 

, / 1ˆ m
k t tx , , / 1

m
k t tP : m-th mode conditional prediction of m

tx and 
its prediction error covariance obtained by the k-th LiDAR at 
time t 

,
m
k tγ , ,

m
k tΓ : updated conditional estimate and its estimation 

error covariance of the m-th mode obtained by the k-th LiDAR 
at time t  

,ˆ m
k tx  , ,

m
k tP  : combined conditional estimate of m

tx   and its 
estimation error covariance of the m-th mode obtained by the k-
th LiDAR at time t  

,ˆ m
k t : updated probability of the m-th mode obtained by the 

k-th LiDAR at time t 
,

m
k t : m-th mode conditional likelihood obtained by the k-th 

LiDAR at time t 
,

m
k t : combined likelihood of the m-th mode conditional 

likelihood obtained by the k-th LiDAR at time t 
,

m
lk t : nonnegative scalar weight for combination of the m-

th mode conditional estimate and its estimation error at time t 
m
lk : nonnegative scalar weight for combination of the m-th 

mode conditional likelihood at time t 
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APPENDIX B: DATA ASSOCIATION 
To briefly explain data association, the case of tracking two 

people is considered. As shown in Figure A(a), a validation 
region (black dashed line) is set around the predicted position 
of the tracked person (red circle). A measurement (GCP, black 
triangle) obtained within the validation region is considered to 
originate from person 1 being tracked, and the state of the 
tracked person 1 is updated using this measurement. In contrast, 
the GCP obtained outside the validation region is considered to 
originate from another person, and person 2 is tracked using the 
prediction.  

The validation region is set as follows: Based on the m-th 
mode (m = 1, 2, 3) of the person, the position of the tracked 
person is predicted by 

, / 1ˆ ˆm m m
t k t tp H x                                 (A) 

where , / 1ˆ m
k t tx  is the prediction of the m-th mode shown in Eq. 

(11), and mH  is the measurement matrix shown in Eq. (5). 
As shown in Figure B, three circular regions with constant 

radii r (0.5 m in this study) are set around the predicted 
positions, 1

t̂P  , 2
t̂P  , and 3

t̂P  , of the tracked person, and their 
union is set as the validation region. 

The method of state update mentioned above is effective 
when a GCP exists within the validation region, as shown in 
Figure A(a). However, in an environment where two people are 
in close proximity, as shown in Figure A (b), multiple GCPs are 
often obtained within the validation region or the validation 
regions for two people overlap. 

 
 

   
(a) Case 1                                                         (b) Case 2 

 
Figure A.  Data association between tracked people and LiDAR measurements 
(GCPs). The red circles and black triangles indicate the tracked people and 
GCPs, respectively. The black dashed lines indicate the validation region. 
 

 
 
Figure B.  Validation region. The red circles indicate the positions of the tracked 
person predicted by the three motion modes. The orange dotted circles indicate 
the regions with a constant radius around the predicted positions. The black 
dashed lines indicate the validation region for data association. 

To accurately track people in such situations, data 
association (one-to-one matching of multiple GCPs and tracked 
people) is performed using the GNN method. 

As shown in Figure A (b), the entire validation region where 
the validation regions for two people overlap is called the 
overlapping validation region. In such a case, we consider that 
I people exist and J GCPs are received, where I is not 
necessarily equal to J. Here, the one-to-one matching of I 
people and J GCP s is considered. 

The m-th mode-based predicted position of the i-th tracked 
person is denoted by m

itp̂ , where m = 1, 2, 3, and i = 1, 2,･･･I. 
The j-th GCP is denoted by jtz  , where Jj ,,2,1  . The 
Mahalanobis distance related to m

itp̂  and jtz  is then defined as 
follows:  

1ˆ ˆ( ) ( ) ( )m m T m m
ij jt it it jt itz p L z p                   (B) 

where m
itL  is the covariance of the prediction error ( jtz - m

itp̂ ).   
The cost function is defined by ),,min( 321

ijijijijd , where 
i= 1, 2,･･･I，and j= 1, 2,･･･J, and the following cost matrix D 
is defined: 

11 12 1

21 22 2

1 2

J

J

I I IJ

d d d
d d d

d d d

D                        (C) 

As shown in Figure A (b), of the two GCPs within the 
validation region of person 2, the GCP on the right side is not 
considered to be that of person 1 because it does not lie within 
the validation region of person 1. Thus, if the GCP jtz  is not in 
the validation region of the i-th tracked person, the cost function 
is set to ijd . 

Let a(i) be the number of GCPs corresponding to the i-th 
person being tracked. Then, the data association can be 
performed by finding a(i) that minimizes 

1

I

i ( )ia id  [28][29]. 
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