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Abstract—Erasure-coding redundancy schemes are employed in
storage systems to cope with device and component failures. Data
durability is assessed by the Mean Time to Data Loss (MTTDL)
and the Expected Annual Fraction of Entity Loss (EAFEL)
reliability metrics. In particular, the EAFEL metric assesses losses
at an entity, say file, object, or block level. This metric is affected
by the number of codewords that entities span. The distribution of
this number is obtained analytically as a function of the size of the
entities and the frequency of their occurrence. The deterministic
and the random entity placement cases are investigated. It is
established that for certain deterministic placements of variable-
size entities, the distribution of the number of codewords that
entities span also depends on the actual entity placement. To
evaluate the durability of storage systems in the case of variable-
size entities, we introduce the Expected Annual Fraction of
Effective Data Loss (EAFEDL) reliability metric, which assesses
the fraction of stored user data that is lost by the system annually
at the entity level. The MTTDL, EAFEL, and EAFEDL metrics
are assessed analytically for erasure-coding redundancy schemes
and for the clustered, declustered, and symmetric data placement
schemes. These metrics are derived in closed-form for the case
of lazy rebuilds and in the presence of correlated latent symbol
errors. It is demonstrated that an increased variability of entity
sizes results in improved EAFEL, but degraded EAFEDL. It is
established that both reliability metrics are adversely affected by
the size of the erasure-coding symbols. The EAFEL and EAFEDL
reliability metrics are evaluated for some real-world erasure
coding schemes employed by enterprises. The analytical reliability
expressions derived can identify efficient erasure coding schemes
and can be used to dimension and provision storage systems to
provide desired levels of durability.
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I. INTRODUCTION

The durability of data storage systems and cloud offerings
is affected by device and component failures [1]. Desired
reliability levels are ensured by employing erasure-coding
redundancy schemes for recovering lost data [2-5].

The frequency of data loss events is assessed by the Mean
Time to Data Loss (MTTDL) metric that has been widely
used to assess the reliability of storage systems [4][5]. Also,
the amount of data loss is obtained by the Expected Annual
Fraction of Data Loss (EAFDL) metric that was introduced in
[6]. This metric was recently complemented by the Expected
Annual Fraction of Entity Loss (EAFEL) metric [7]. The
EAFEL metric assesses data losses at an entity, say file, object,
or block level, whereas the EAFDL metric assesses data losses
at a lower data processing unit level.

The smallest accessed unit of a storage device is a sector
in Hard-Disk Drives (HDDs), a page in flash-based Solid-State
Drives (SSDs), and a data set in Linear Tape-Open (LTO is
the trademark of HP, IBM, and Quantum in the Unites States
and other countries) tape systems [8]. A sector has a typical
size of 512 bytes or 4 KB, a page has a size that ranges
from 4 KB to 16 KB, and a data set currently has a size
of 5 MB or more. Erasure-coding redundancy schemes are
implemented by treating the units that contain user data as
symbols and complementing them with parity symbols (units)
to form codewords. In the case of HDDs and SSDs, one or
more units are allocated to an entity and the last unit may be
partially filled. Depending on the file system employed, the
remaining space of a partially-filled unit may or may not be
used to store the contents of another entity. Therefore, user
data may or may not be stored in an aligned fashion with
units (symbols), which in turn implies that entities may or
may not be aligned with codewords. The case where entities
are aligned with codewords was considered by the reliability
model presented in [7]. By contrast, in the case of tape, user
data is written sequentially such that a unit may contain data
of multiple entities. Therefore, user data and entities are not
aligned with symbols and codewords, respectively. Moreover,
the reliability model presented in [7] assumed that entities have
a fixed size, whereas in practice they have variable sizes. It
turns out that the MTTDL metric does not depend on the
placement and size of the entities, but the EAFEL metric
does. More specifically, EAFEL depends on the number of
codewords that stored entities span. Furthermore, the EAFEL
metric reflects the fraction of lost user data only when entities
have a fixed size. To evaluate system durability in the case of
variable-size entities, in this article we introduce the Expected
Annual Fraction of Effective Data Loss (EAFEDL) reliability
metric, that is, the fraction of stored user data that is expected
to be lost by the system annually at the entity level.

The key contributions of this article are the following. The
reliability model presented in [7] for the assessment of the
EAFEL metric is enhanced in two ways. First, entities are
considered to be stored such that they are not aligned with
codeword boundaries. Second, the size of entities is considered
to be variable. The objective of this article is to assess
system reliability by deriving the distribution of the number
of codewords that entities span. We address the following
question. Does this distribution only depend on the statistics
of the entities stored, that is, on their size and frequency of
occurrence, or does it also depend on their placement? In the
present work, we shed light on this issue by investigating the
cases of deterministic and of random entity placement. The
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distribution of the number of codewords that entities span is
obtained analytically as a function of the size of the entities
and the frequency of their occurrence. We also establish that
for certain deterministic placements of variable-size entities,
this distribution also depends on the actual entity placement.

The general non-Markovian methodology that was applied
in prior work to assess the EAFDL and EAFEL metrics
for erasure-coding redundancy schemes and for the clustered,
declustered, and symmetric data placement schemes, was ex-
tended to derive analytically the EAFEL and the new EAFEDL
reliability metrics for the case of variable-size entities [1]. It
was demonstrated how the erasure-coding capability as well
as the entity and symbol sizes affect system reliability in
the entire range of bit error rates. In this article, we extend
our previous work by deriving MTTDL for the case of lazy
rebuilds and in the presence of correlated latent symbol errors.
We also evaluate the EAFEL and EAFEDL reliability metrics
for some real-world erasure coding schemes employed by
enterprises. The model developed provides useful insights into
the benefits of the erasure coding schemes and yields results for
the entire parameter space, which allows a better understanding
of the design tradeoffs.

The remainder of the article is organized as follows.
Section II reviews prior relevant work and analytical models
presented in the literature for assessing the effect of latent
errors on the reliability of erasure-coded systems. Section III
describes the storage system model and the corresponding
parameters considered. In Section IV, the distribution of the
number of codewords that entities span is derived analytically
as a function of the entity size distribution when entities are
not aligned with symbols and when entity sizes are either
fixed or variable. In Section V, the MTTDL metric is derived
analytically for the case of lazy rebuilds and correlated latent
symbol errors. Also, the EAFEL and EAFEDL metrics are
derived analytically for the case of random placement of
variable-size entities. Section VI presents numerical results
demonstrating the effect of the erasure-coding capability and
of the entity sizes on system reliability, as well as the adverse
effect of an increased symbol size. The reliability of real-
world erasure coding schemes employed by enterprises to
protect their stored data is assessed in Section VII. Finally,
we conclude in Section VIII.

II. RELATED WORK

Analytical reliability expressions for MTTDL that take
into account the effect of latent errors have been obtained
predominately using Markovian models, which assume that
component failure and rebuild times are independent and expo-
nentially distributed [9][10][11][12]. The effect of latent errors
on MTTDL and EAFDL of erasure-coded storage systems for
the realistic case of non-exponential failure and rebuild time
distributions was assessed in [4][5].

Disk scrubbing has been used to mitigate the adverse
effect of latent errors on system reliability [9][13][14][15].
The scrubbing process identifies latent errors at an early stage
and attempts to correct them before disk failures occur. This
in effect reduces the probability of encountering a latent
error during the rebuild process. The resulting latent-error
probability was derived in [9] as a function of the scrubbing

and workload parameters. Subsequently, it was shown that
the reliability level achieved when scrubbing is used can be
obtained from the reliability level of a system that does not
use scrubbing by adjusting the probability of encountering a
latent error accordingly. The methodology presented in [9] for
deriving the adjusted latent error probability when scrubbing is
employed is also applicable for assessing the efficiency of other
scrubbing schemes, such as the adaptive scrubbing schemes
proposed in [14][15]. Moreover, this methodology can also be
applied in conjunction with the reliability results presented in
this article to assess the reliability of erasure-coded systems
when scrubbing is used.

The efficiency of applying erasure coding in storage sys-
tems that employ solid state disks (SSDs) was studied in [16].
It was demonstrated that the reliability improvement achieved
by erasure coding is in general greater than the reliability
degradation induced. Also, the reliability of SSD arrays using
a real-system implementation of conventional and emerging
erasure codes was investigated in [17] using realistic storage
traces.

A simulation analysis of reliability aspects of erasure-coded
data centers was presented in [18]. Various configurations were
considered and it was shown that erasure codes and redundancy
placement affect system reliability. In [19] it was recognized
that it is hard to get statistically meaningful experimental
reliability results using prototypes, because this would require
a large number of machines to run for years. This underscores
the usefulness of the analytical reliability results derived in
this article.

III. STORAGE SYSTEM MODEL

The reliability of erasure-coded storage systems was as-
sessed in [7] based on a model that considers codeword
rebuilds for reconstructing lost symbols and assess system reli-
ability when entities (files, objects, blocks) are lost. Maximum
Distance Separable (MDS) erasure codes (m, l) that map l
user-data symbols to codewords of m symbols are employed.
They have the property that any subset containing l of the
m codeword symbols can be used to reconstruct (recover) a
codeword. The MTTDL and EAFEL reliability metrics were
derived analytically for systems that employ a lazy rebuild
scheme.

The corresponding storage efficiency seff and amount U of
user data stored in the system is

seff = l/m and U = seff n c = l n c/m , (1)

where n is the number of storage devices in the system and c
is the amount of data stored on each device. The storage space
of devices is partitioned into units (symbols) of a fixed size s,
such that the number C of symbols stored in a device is

C = c/s . (2)

Our notation is summarized in Table I. The parameters are
divided according to whether they are independent or derived
and are listed in the upper and lower part of the table,
respectively.

To minimize the risk of permanent data loss, the m symbols
of each of codeword are spread and stored in m devices. This
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TABLE I. NOTATION OF SYSTEM PARAMETERS

Parameter Definition
n number of storage devices
c amount of data stored on each device
l number of user-data symbols per codeword (l ≥ 1)
m total number of symbols per codeword (m > l)
(m, l) MDS-code structure
es entity size
s symbol (sector or data set) size
k spread factor of the data placement scheme, or

group size (number of devices in a group) (m ≤ k ≤ n)
b average reserved rebuild bandwidth per device
Bmax upper limitation of the average network rebuild bandwidth
X time required to read (or write) an amount c of data at an average

rate b from (or to) a device
FX(.) cumulative distribution function of X
Fλ(.) cumulative distribution function of device lifetimes
Pb probability of an unrecoverable bit error
seff storage efficiency of redundancy scheme (seff = l/m)
U amount of user data stored in the system (U = seff n c)
r̃ MDS-code distance: minimum number of codeword symbols lost

that lead to permanent data loss
(r̃ = m − l + 1 and 2 ≤ r̃ ≤ m)

C number of symbols stored in a device (C = c/s)

µ−1 mean time to read (or write) an amount c of data at an average rate
b from (or to) a device (µ−1 = E(X) = c/b)

λ−1 mean time to failure of a storage device (λ−1 =
∫ ∞
0

[1 −
Fλ(t)]dt)

Ps probability of an unrecoverable sector (symbol) error
ss shard size (ss = es/l)
J shard size measured in symbol-size units (J = ss/s = es/(l s))
Y number of lost entities during rebuild
Q̆ amount of lost user data during rebuild

way, the system can tolerate any r̃ − 1 device failures, but r̃
device failures may lead to data loss, with

r̃ = m− l + 1 , 1 ≤ l < m and 2 ≤ r̃ ≤ m . (3)

Examples of MDS erasure codes are the following:

Replication: A replication-based system with a replication
factor r can tolerate any loss of up to r − 1 copies of some
data, such that l = 1, m = r and r̃ = r. Also, its storage
efficiency is equal to sreplication

eff = 1/r. The mirroring scheme
is the special case where r = 2. The corresponding storage
efficiency of only 50% can be improved by employing erasure
codes.
RAID-5: A RAID-5 array comprised of N devices uses an
(N,N − 1) MDS code, such that l = N − 1, m = N and
r̃ = 2. It can therefore tolerate the loss of up to one device,
and its storage efficiency is equal to sRAID-5

eff = (N − 1)/N .
RAID-6: A RAID-6 array comprised of N devices uses an
(N,N − 2) MDS code, such that l = N − 2, m = N and
r̃ = 3. It can therefore tolerate a loss of up to two devices,
and its storage efficiency is equal to sRAID-6

eff = (N − 2)/N .

In terms of encoding operations, MDS erasure codes
are either bitwise exclusive-OR (XOR) or non-XOR. The
computation complexity of the non-XOR-based codes, such
as Reed–Solomon, is much higher than that of the XOR-
based ones. Also, in the context of storage, Reed-Solomon
codes are preferable to Turbo codes owing to their simpler
implementation and the fact that they are more suitable in
environments where bit error rates are low, and errors occur
in bursts.

Two different ways (A and B) for storing user data on
devices were shown in Figure 1 of [7]. According to way
A, user data contained in entities is divided into chunks
with the contents of a chunk stored on different devices,

whereas according to way B, user data contained in entities
is divided into shards with the contents of a shard stored on
the same device. More specifically, according to way B, user
data contained in entities is divided into l shards with each
one being stored on a different device, as shown in Figure
1(a). Entities were assumed to have a fixed size es with the
corresponding shard size ss then obtained by ss = es/l.

The storage space of devices is partitioned into units
(symbols) of a fixed size s and complemented with parity
symbols to form codewords. Each shard was assumed to be
stored in an integer number of J symbols that is determined
by

J =
ss
s

=
es
l s

. (4)

Consequently, the contents of each entity, such as Entity-1
and Entity-2, are stored in J l user-data symbols with these
symbols being stored in an integer number of J codewords.
These codewords also contain J (m− l) parity symbols for a
total number of J m symbols per entity, as shown in Figure
1(a). Note that Sj,i denotes the ith symbol of the jth codeword.
Thus, S1,2, which is the second symbol of codeword C-1,
is the first symbol of the second shard. Successive symbols
of a shard are stored on the same device. To minimize the
risk of permanent data loss, the m symbols of each of the J
codewords are spread and stored successively in a set of m
devices.

The model in [7] considered shards that have a fixed size of
J symbols and are stored aligned with the symbol boundaries,
which are indicated by the horizontal black lines in Figure 1(a).
However, in practice user entities, and in turn shards, do not
have a fixed size and, in the case of tape, are not necessarily
aligned with symbols, because, as discussed in Section I, entity
data is stored in a way that is agnostic to symbol boundaries.
This is demonstrated in Figure 1(b) that shows two entities of
two different sizes, Entity-3 and Entity-4, and the way they
are stored on l devices of the system. For instance, Shard 1
of Entity-3 spans J symbols, i.e., the blue symbols S1,1, S2,1,
· · · , SJ,1, with its data partially occupying the first and last
symbol, S1,1 and SJ,1, respectively. Subsequently, Shard 1 of
Entity-4 spans three symbols, namely, the blue symbol SJ,1

and the two red symbols S1,1 and S2,1, with its data partially
occupying the first and the last symbol, that is, the blue SJ,1

and the red S2,1 symbol. Thus, symbol SJ,1 contains data from
both these entities. More generally, depending on the entity
and symbol sizes, a symbol may contain data from multiple
entities. Clearly, shard and entity sizes do not necessarily
correspond to an integer number of symbols, which implies
that the size J of a shard, expressed in number of symbols by
(4), is in general a real number, which is less than 1 when the
shard size is less than the symbol size. Codewords are formed
by combining symbols containing user-data to generate and
store parity symbols, as shown in Figure 1(b), regardless of
the entities involved.

As pointed out in [7], the MTTDL metric does not depend
on the entity size. This is due to the fact that the degree to
which permanent data losses occur depends on the capability
of the erasure-coding redundancy scheme employed and the
resulting codeword formation, which in turn is agnostic to the
entity placement and size characteristics. Note that an entity
is lost if any of the codewords that it spans is permanently
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(a) Symbol-aligned shards of integer size

(b) Non-symbol-aligned shards of arbitrary size

Figure 1. Data placement of entities and formation of codewords.

lost. Consequently, the EAFEL and EAFEDL metrics, which
consider data loss at the entity level, depend on the number of
codewords that entities span. The corresponding derivation is
performed in Section IV.

The reliability of storage systems degrades by the presence
of unrecoverable or latent errors. According to the specifica-
tions of enterprise quality HDDs, the unrecoverable bit-error
probability Pb is equal to 10−15. In practice, however, Pb
can be orders of magnitude higher, reaching Pb ≈ 10−12

[5]. On the other hand, according to Figure 13 in [20], tapes
are more reliable than HDDs with a Bit Error Rate (BER) in
the range of 10−22 to 10−19. Assuming that bit errors occur
independently over successive bits, the unrecoverable symbol
error probability Ps is determined by

Ps = 1− (1− Pb)
s , (5)

with the symbol size s expressed in bits. For a symbol size of
512 bytes, the equivalent unrecoverable sector error probability
is Ps ≈ Pb×512×8, which is 4.096×10−12 and 4.096×10−9

for Pb ≈ 10−15 and 10−12, respectively. Moreover, latent
errors are found to exhibit spatial locality and they occur in
bursts of B contiguous symbol errors. The degree to which
symbol errors are correlated is captured by the factor fcor
whose value is determined by [5, Eq. (29)]

fcor =

{
1 , for independent symbol errors
1
B̄
, for correlated symbol errors ,

(6)

where B̄ denotes the average length (in number of symbols)
of bursts of latent symbol errors. Thus, fcor ≥ 1.

IV. CODEWORDS SPANNED BY ENTITIES

Here, we obtain the distribution of the number of code-
words, K, that entities span, which also represents the number
of symbols that shards span. We proceed by considering the
cases of fixed- and variable-size entities (shards).

A. Fixed-Size Entities

Let us consider fixed-size entities, which in turn result in
fixed-size shards, such that J is fixed. Owing to periodicity, it
suffices to study the process within a window of S = J × 10k

symbols, where k represents the number of decimal digits of
J . This window corresponds in a symbol interval [ϵ, S + ϵ]
where ϵ is the starting position of the first shard within the
first symbol, such that 0 < ϵ < 1. This interval contains S
symbol boundaries and stores 10k shards. For example, for
J = 4.287, we have k = 3, and it suffices to consider the
process in a window of S = 4.287 × 103 = 4, 287 symbols
that store 1000 shards.

Let us now consider the example shown in Figure 2
whereby the shard size is 2.3. In this case, it holds that
k = 1 and therefore it suffices to consider the process within
a window of S = 2.3×101 = 23 symbols that store 10 shards
depicted between the black circles with the symbol boundaries
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Figure 2. Number of symbols that shards span. Fixed-size shards of size J = 2.3 symbols.

Figure 3. Number of symbols that shards span. Fixed-size shards of size J = 0.3 symbols.

indicated by the black vertical lines and with the first shard
aligned with the first symbol. However, given that in practice
shards are not aligned with symbols, their actual placement is
indicated between the red circles, with the first shard starting
at position ϵ, as indicated by the green circle. Figure 2 shows
the case where ϵ = 0+.

Owing to periodicity, it suffices to study the process in
the symbol interval [ϵ, 23 + ϵ]. The red integers indicate the
number of symbols spanned by the successive shards. We note
that 7 shards span 3 symbol and the remaining 3 shards span
4 symbols. Note that this holds for any ϵ ∈ (0, 1). Therefore,
the probability density function (pdf) {pj} of the number of
symbols K that an arbitrary shard spans is

P (K = i) = pi =

{
0.7 , for i = 3

0.3 , for i = 4 .
(7)

Returning to the general case, we note that each shard
can be decomposed into two components. The size of the
first components, as indicated by the horizontal blue lines
shown in Figure 2, corresponds to the number of symbols
determined by the integer part of the shard size J , which is ⌊J⌋
symbols. In the example considered, the integer part is 2. The
size of the second components, as indicated by the horizontal
red lines shown in Figure 2, corresponds to the fractional
part, which is J − ⌊J⌋ symbols. In the example considered,
the fractional part is 0.3. Clearly, to each of the first (blue)
components correspond ⌊J⌋ symbol boundaries, which implies
that each shard spans at least ⌊J⌋+1 symbols. In the example
considered, to each of the first (blue) components correspond
2 symbol boundaries, as indicated by the blue vertical dotted
lines, and, consequently, each shard spans at least 3 symbols.

As there are 10k first components, one for each shard, the
number of the corresponding symbol boundaries is ⌊J⌋×10k,
which, in the example considered, is 2 × 101 = 20, as
indicated by the blue vertical dotted lines. Consequently, there
are S − ⌊J⌋ × 10k = (J − ⌊J⌋) × 10k additional symbol
boundaries that correspond to (J − ⌊J⌋) × 10k out of the
10k second components. In the example considered, there are
23 − 20 = 3 additional symbol boundaries, as indicated by
the red vertical dotted lines at positions 9, 16, and 23, that
correspond to 3 out of the 10 red components. Consequently,
these 3 components are associated with 3 shards, each of

which spans one additional symbol for a total of 4 symbols.
In general, each of the corresponding (J − ⌊J⌋)× 10k shards
spans one additional symbol for a total of ⌊J⌋ + 2 symbols.
Therefore, the percent of shards that span ⌊J⌋+ 2 symbols is
(J − ⌊J⌋) × 10k/10k which is equal to J − ⌊J⌋, that is, the
fractional part of J denoted by fr(J). Consequently, for any
ϵ (0 < ϵ < 1), it holds that

P (K = i) = pi =


1− fr(J) , for i = ⌊J⌋+ 1

fr(J) , for i = ⌊J⌋+ 2

0 , otherwise ,

(8)

where fr(x) denotes the fractional part of the real number x,

fr(x) ≜ x− ⌊x⌋ , ∀x ∈ R . (9)

Let us also consider the case where J < 1 and the example
shown in Figure 3 whereby the shard size is 0.3. Let us
consider the first 10 shards indicated between the black circles
with the first shard aligned with the first symbol. However,
given that in practice shards are not aligned with symbols,
their actual placement is indicated between the red circles, with
the first shard starting at position ϵ, as indicated by the green
circle. Owing to periodicity, it suffices to study the process
in the symbol interval [ϵ, 3 + ϵ]. The red integers indicate the
number of symbols spanned by the successive shards. We note
that 7 shards span 1 symbol and the remaining 3 shards span
2 symbols and this holds for any ϵ ∈ (0, 1). Therefore, the
pdf {pj} of the number of codewords (symbols) K that an
arbitrary entity (shard) spans is

P (K = i) = pi =

{
0.7 , for i = 1

0.3 , for i = 2 ,
(10)

which is also the result determined by (8).

Next, we consider the case where the shard size is 2.7
symbols, as shown in Figure 4. Owing to periodicity, it suffices
to study the process in the symbol interval [ϵ, 27 + ϵ]. The
red integers indicate the number of symbols spanned by the
successive shards. We note that 7 shards span 4 symbol and
the remaining 3 shards span 3 symbols. According to (8), the
pdf {pj} of the number of codewords (symbols) K that an
arbitrary entity (shard) spans is

P (K = i) = pi =

{
0.3 , for i = 3

0.7 , for i = 4 ,
(11)
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Figure 4. Number of symbols that shards span. Fixed-size shards of size J = 2.7 symbols.

which is also the result determined by (8).

B. Variable-Size Entities

We proceed to relax the assumption that all entities have
the same size, by considering entities of Es different sizes,
es,1, es,2, · · · , es,Es . Without loss of generality, we assume that
es,1 < es,2 < · · · < es,Es . Subsequently, let {vj} denote the
corresponding pdf of the entity size, that is,

vj ≜ P (es = es,j) , for j = 1, 2, . . . , Es , (12)

such that the average entity size E(es) is determined by

E(es) =

Es∑
j=1

es,j vj . (13)

From (4), it follows that the shard size Jj corresponding
to entity es,j is determined by

Jj =
es,j
l s

for j = 1, 2, . . . , Es . (14)

Consequently, the pdf of the shard size J is determined by

P (J = Jj) = vj , for j = 1, 2, . . . , Es , (15)

such that the average shard size E(J) is determined by

E(J) =

Es∑
j=1

Jj vj
(13)(14)

=
E(es)

l s
, (16)

where the notation
(x)(y)
= implies that the final expression is

derived using Equations (x) and (y).

The preceding discussion begs the following questions. Can
the probability density function {pj} that was theoretically
obtained in (8) for the case of a single fixed shard size be
extended for the case of variable-size entities? Does it depend
on the sequence according to which the variable-size entities
are stored? Next, we address these critical questions. We
shed light on these issues by considering the following cases
regarding the placement and the way according to which the
various shards are stored.

1) Segregated Shard Placement: According to this place-
ment, shards of any given size are stored successively. One
particular realization is to first store the shards of size J1,
followed by the shards of size J2, and so on. For a large
number of shards stored, from (8) and (15) we deduce that

P (K = i) = pi =


[1− fr(Jj)] vj , for i = ⌊Jj⌋+ 1

fr(Jj) vj , for i = ⌊Jj⌋+ 2

0 , otherwise,
for j = 1, 2, . . . , Es . (17)

Let us consider the special case of a discrete bimodal
distribution for the shard size, that is, Es = 2, and let us
assume that half of the shards have a size of 0.3 symbols and
the remaining half of the shards have a size of 2.7 symbols.
In this case we have J1 = 0.3, J2 = 2.7, and v1 = v2 = 0.5.
For the particular realization where first the shards of size 0.3
are stored followed by the shards of size 2.7, (17) yields

P (K = i) = pi =



0.7× 0.5 = 0.35 , for i = 1

0.3× 0.5 = 0.15 , for i = 2

0.3× 0.5 = 0.15 , for i = 3

0.7× 0.5 = 0.35 , for i = 4

0 , otherwise.

(18)

2) Alternating Shard Placement: According to this place-
ment, shards of various sizes are stored interleaved by also
considering the vj values. One particular realization in the
case where vj = 1/Es, for j = 1, 2, . . . , Es, is to first store a
shard of size J1, followed by a shard of size J2, and so on.
The first cycle is completed by storing a shard of size JEs

and
is followed by a second cycle that begins by storing a shard
of size J1.

We proceed by investigating the special case considered in
Section IV-B1 for the discrete bimodal distribution of the shard
size, with the sizes of 0.3 and 2.7 symbols. The alternating
placement of the shards corresponding to these two sizes lead
to two possible sequence realizations, as shown in Figure 5.

The realization for the alternating sequence {0.3, 2.7,
0.3, 2.7, . . .} is depicted in Figure 5(a). Owing to periodicity,
it suffices to study the process in the symbol interval [ϵ, 3+ ϵ].
Figure 5(a) shows the case where ϵ = 0+. The red integers
indicate the number of symbols spanned by the successive
shards. We note that half of the shards span 1 symbol and the
remaining half of the shards span 4 symbols and this holds for
any ϵ ∈ (0, 0.7). Consequently, the pdf {pj} of the number of
symbols K that an arbitrary shard spans is

P (K = i) = pi =

{
0.5 , for i = 1

0.5 , for i = 4 .
(19)

On the other hand, the realization for the alternating
sequence {2.7, 0.3, 2.7, 0.3, . . .} is depicted in Figure 5(b).
Owing to periodicity, it suffices to study the process in the
symbol interval [δ, 3 + δ]. Figure 5(b) shows the case where
δ = 0+. In this case, half of the shards span 3 symbols and the
remaining half of the shards span 2 symbols and this holds for
any δ ∈ (0, 0.3). Consequently, the pdf {pj} of the number of
symbols K that an arbitrary shard spans is

P (K = i) = pi =

{
0.5 , for i = 2

0.5 , for i = 3 .
(20)
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(a) Shard sequence: {0.3, 2.7, 0.3, 2.7, . . . }

(b) Shard sequence: {2.7, 0.3, 2.7, 0.3, . . . }

Figure 5. Number of symbols spanned by shards. Alternating fixed-size shards of sizes 0.3 and 2.7 symbols, with v1 = v2 = 0.5.

(a) Shard of size J with y being the fractional part of J

(b) Random shard placement

Figure 6. Number of symbols that a randomly placed shard of size J spans.

Note that the pdf for δ ∈ (0.3, 1) is that determined by (19).
Also, the pdf for ϵ ∈ (0.7, 1) is that determined by (20).

We now observe that the pdf determined by (20) is different
from that determined by (19). Moreover, both of them, are
different from that determined by (18) for the case of a
segregated shard placement. Therefore, from the above, we
deduce that the pdf {pj} of the number of symbols K that an
arbitrary shard spans not only depends on the percentage of
the various shard sizes in a sequence, as specified in (15), but
also on their actual placement.

3) Random Shard Placement: According to this placement,
the starting position ϵ (0 < ϵ < 1) of the first shard within
the first symbol is uniformly distributed in (0, 1). Successive
shard sizes are assumed to be identically distributed, according
to the distribution given in (15), but not necessarily indepen-
dent. Note that this relaxes the assumption made in [1] of
independent and identically distributed (i.i.d) successive shard
sizes.

Let us consider a randomly chosen shard. Let also J denote
its size, as shown in Figure 6(a), and y its fractional part, that
is, y = J − ⌊J⌋. Owing to the random placement of the first
shard, the chosen shard, too, is randomly placed, such that it

spans either ⌊J⌋ + 1 or ⌊J⌋ + 2 symbols, as depicted by the
red and the blue shards shown in Figure 6(b), respectively.
Let X denote the distance between the starting position of
the shard and the left boundary z of the first symbol that the
shard spans. Owing to the random placement of the shard,
the random variable X is uniformly distributed between 0 and
1. Furthermore, when X ≤ 1 − y, the shard spans ⌊J⌋ + 1
symbols whereas when X > 1 − y, the shard spans ⌊J⌋ + 2
symbols. Consequently, the probability that the shard spans
⌊J⌋+ 1 symbols is

P (K = ⌊J⌋+ 1) =

∫ 1−y

0

dx = 1− y , (21)

which implies that the probability that the shard spans ⌊J⌋+2
symbols is

P (K = ⌊J⌋+ 2) = 1− P (K = ⌊J⌋+ 1)
(21)
= y . (22)

Therefore, and given that y = J − ⌊J⌋ = fr(J), it holds that

P (K = i) = pi =


1− fr(J) , for i = ⌊J⌋+ 1

fr(J) , for i = ⌊J⌋+ 2

0 , otherwise .

(23)
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From (23), and using (9), it follows that the mean number
E(K) of symbols that a shard of size J spans is

E(K) = (⌊J⌋+ 1)P (K = ⌊J⌋+ 1) + (⌊J⌋+ 2)P (K = ⌊J⌋+ 2)

= (⌊J⌋+ 1) [1− fr(J)] + (⌊J⌋+ 2) fr(J) = J + 1 .
(24)

From (15), (23), and (24), it follows that the pdf and the
average number of symbols K that an arbitrary shard spans
are determined by

P (K = i) = pi =


[1− fr(Jj)] vj , for i = ⌊Jj⌋+ 1

fr(Jj) vj , for i = ⌊Jj⌋+ 2

0 , otherwise,
for j = 1, 2, . . . , Es , (25)

and

E(K) =

Es∑
j=1

( Jj + 1) vj = E(J) + 1 . (26)

Remark 1: For two different shard-size values, say Jm ̸=
Jn, for which it holds that ⌊Jm⌋ = ⌊Jn⌋ = j, the
corresponding probabilities of the number of symbols K
that these shards span are determined additively, that is,
P (K = j + 1) = [1 − fr(Jm)] vm + [1 − fr(Jn)] vm and
P (K = j + 2) = fr(Jm) vm + fr(Jn) vn. Similarly, if
⌊Jm⌋ + 1 = ⌊Jn⌋ = j, then it holds that P (K = j + 1) =
fr(Jm) vm + [1− fr(Jn)] vn.

Remark 2: From (17) and (25), it follows that the pdfs of
the number of symbols K that an arbitrary shard spans in the
segregated and the random shard placement cases are the same.
This is also the pdf that corresponds to the alternating shard
placement case when the first shard is randomly placed. For
the discrete bimodal distribution considered in Section IV-B2
for the alternating shards of sizes 0.3 and 2.7 symbols, when
the first shard is randomly placed, that is, when the variables ϵ
and δ are uniformly distributed in (0, 1), combining (19) and
(20) yields a pdf that is the same as that derived in (18) for
the segregated shard placement case. Clearly, in the segregated
and alternating shard placement cases successive shard sizes
are dependent.

V. DERIVATION OF MTTDL, EAFEL, AND EAFEDL

The MTTDL, EAFEL, and EAFEDL reliability metrics
are derived using the direct-path-approximation methodology
presented in [2-6] and extend it to assess the effect of lazy
rebuilds [21] in the presence of correlated symbol errors [5].

At any point in time, the system is in one of two modes:
non-rebuild or rebuild mode. Note that part of the non-rebuild
mode is the normal mode of operation where all devices are
operational and all data in the system has the original amount
of redundancy. Upon device failures, a rebuild process attempts
to restore the lost data, which eventually leads the system
either to a Data Loss (DL) with probability PDL or back to
the original normal mode by restoring initial redundancy, with
probability 1− PDL. The MTTDL metric is then obtained by
[6, Eq. (5)]:

MTTDL ≈ E(T )

PDL
, (27)

where PDL is determined by (49) and E(T ) denotes the
expected duration, expressed in years, of a typical interval of
normal operation until the rebuild process of failed devices is
triggered, which is determined by Eq. (12) of [21] as follows:

E(T ) =

(
d∑

u=0

1

ñu

)/
λ , where ñ0 ≜ n , (28)

where 1/λ is the mean time to failure of a device and ñu

are determined by (35), (38), or (41), depending on the data
placement scheme.

The EAFEL metric is obtained by Eq. (16) of [7] as
follows:

EAFEL ≈ E(Y )

E(T ) ·NE
, (29)

that is, as the ratio of the expected number E(Y ) of lost
entities, normalized to the number NE of entities in the system,
to the expected duration E(T ) expressed in years. The number
NE of entities in the system is determined by

NE ≈ U

E(es)

(1)
=

n

m
· l c

E(es)

(16)
=

n

m
· c

E(J) s
, (30)

and E(T ) and E(Y ) are determined by (28) and (64).

Analogous to Eq. (9) of [6], the EAFEDL is obtained as
the ratio of the expected amount E(Q̆) of lost user data at the
entity level, normalized to the amount U of user data, to the
expected duration of E(T ) expressed in years:

EAFEDL ≈ E(Q̆)

E(T ) · U
(1)
=

m E(Q̆)

n l c E(T )
, (31)

where E(T ) and E(Q̆) are determined by (28) and (84).

A. Reliability Analysis

The EAFEL and EAFEDL are evaluated in parallel with
MTTDL using the theoretical framework presented in [7]. The
system is at exposure level u (0 ≤ u ≤ r̃) when there are
codewords that have lost u symbols owing to device failures,
but there are no codewords that have lost more symbols. These
codewords are referred to as the most-exposed codewords.
Transitions to higher exposure levels are caused by device
failures, whereas transitions to lower ones are caused by
successful rebuilds. We denote by Cu the number of most-
exposed codewords upon entering exposure level u, (u ≥ 1).
Upon the first device failure it holds that

C1 = C , (32)

where C is determined by (2).

A certain portion of the device bandwidth is reserved
for read/write data recovery during the rebuild process, and
the remaining bandwidth is used to serve user requests. Let
b denote the actual average reserved rebuild bandwidth per
device. Lost symbols are rebuilt in parallel using the rebuild
bandwidth b available on each surviving device. The amount of
data corresponding to the number Cu of symbols to be rebuilt
at exposure level u is written at an average rate bu (≤ b) to
selected device(s). For the time X required to read (or write)
an amount c of data from (or to) a device it holds that

E(X) = c/b . (33)
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The results in this article hold for highly reliable storage
devices, which satisfy the following condition [5][7]

µ

∫ ∞

0

Fλ(t)[1− FX(t)]dt ≪ 1, with
λ

µ
≪ 1 . (34)

This condition expresses the fact that the ratio of the mean time
1/µ to read all contents of a device (which typically is on the
order of tens of hours) to the mean time to failure of a device
1/λ (which is typically at least on the order of thousands of
hours) is very small, and in particular the fact that it is very
unlikely that a given device fails during a rebuild period.

At exposure level u, the number ñu of devices whose
failure causes an exposure level transition to level u + 1
and the fraction Vu of the Cu most-exposed codewords that
have symbols stored on any given such device depend on the
codeword placement scheme. In particular, for the symmetric
and declustered data placement, at each exposure level u, for
u = 1, · · · , r̃ − 1, it holds that [2][3]

ñsym
u = k − u , for u = 1, . . . , r̃ (35)

bsym
u =

min((k − u) b, Bmax)

l + 1
, for u = d+ 1, . . . , r̃ (36)

V sym
u =

m− u

k − u
, for u = 1, . . . , r̃ , (37)

where Bmax is the maximum network rebuild bandwidth.

The corresponding parameters ñdeclus
u , bdeclus

u , and V declus
u

for the declustered placement are derived from (35), (36), and
(37) by setting k = n as follows:

ñdeclus
u = n− u , for u = 1, . . . , r̃ (38)

bdeclus
u =

min((n− u) b, Bmax)

l + 1
, for u = d+ 1, . . . , r̃ (39)

V declus
u =

m− u

n− u
, for u = 1, . . . , r̃ . (40)

For the clustered placement, it holds that [2][3]

ñclus
u = m− u , for u = 1, . . . , r̃ (41)
bclus
u = min( b ,Bmax/l ) , for u = d+ 1, . . . , r̃ (42)

V clus
u = 1 , for u = 1, . . . , r̃ . (43)

Also, for the rebuild time Ru of the most-exposed code-
words at exposure level u and for its fraction αu still left
when another device fails, causing the exposure level transition
u → u+ 1, it holds that [21, Eq. (49)]

Rd+1 ≈

 d∏
j=1

Vj

 b

bd+1
X , (44)

with the convention that for any integer j and for any sequence
δi ,

∏0
i=j δi ≜ 1.

For u ≤ d, no rebuild is performed and therefore αu = 1.
For u > d, αu is approximately uniformly distributed in (0, 1)
such that [21, Eq. (8)],

αu ≊
{
1 , for u = 1, . . . , d

U(0, 1) , for u = d+ 1, . . . , r̃ − 1 .
(45)

TABLE II. NOTATION OF RELIABILITY METRICS AT EXPOSURE LEVELS

Parameter Definition
u exposure level
Pu probability of entering exposure level u
PUFu probability of data loss due to unrecoverable symbol errors at

exposure level u
PUF probability of data loss due to unrecoverable symbol errors
PDF probability of data loss due to r̃ successive device failures
PDL probability of data loss
qu probability that, at exposure level u, a codeword that has lost u

symbols can be restored
q̂u probability that, under instantaneous transitions from exposure level

1 to exposure level u, all of the Cu most-exposed codewords,
which have lost u symbols, can be restored

q̃u probability that, at exposure level u, an arbitrary entity is lost
q̆u expected amount of lost user data of an arbitrary entity at exposure

level u
q̃s,u(x) the probability of loss, at exposure level u, of an entity whose shard

size expressed in symbols is x

Furthermore, it holds that [21, Eq. (10)]

Cu ≈ C

u−1∏
i=1

Vi αi , for u = 1, . . . , r̃ , (46)

The reliability metrics of interest are derived using the
direct path approximation, which considers only transitions
from lower to higher exposure levels [2-6]. This implies that
each exposure level is entered only once. At any exposure level
u (u = d+ 1, . . . , r̃ − 1), data loss may occur during rebuild
owing to one or more unrecoverable failures, which is denoted
by the transition u → UF. Moreover, at exposure level r̃ − 1,
data loss occurs owing to a subsequent device failure, which
leads to the transition to exposure level r̃. Consequently, the
direct paths that lead to data loss are the following:
−−→
UFu : the direct path of successive transitions 1 → 2 →

· · · → u → UF, for u = d+ 1, . . . , r̃ − 1, and
−→
DF : the direct path of successive transitions 1 → 2 →

· · · → r̃ − 1 → r̃,

with corresponding probabilities PUFu
and PDF, respectively.

The notation for the probabilities of the events that lead to data
loss is summarized in Table II.

1) Data Loss: It holds that

PUFu
= Pu Pu→UF , for u = d+ 1, . . . , r̃ − 1 , (47)

where Pu is the probability of entering exposure level u
determined by [21, Eq. (17)]:

Pu ≈
(λ c

∏d
j=1 Vj)

u−d−1

(u− d− 1)!

E(Xu−d−1)

[E(X)]u−d−1

u−1∏
i=d+1

ñi

bi
V u−1−i
i ,

(48)
and Pu→UF is the probability of encountering an unrecoverable
failure during the rebuild process at this exposure level.

In [10], it was shown that PDL is accurately approximated
by the probability of all direct paths to data loss. Therefore,

PDL ≈ PDF +

r̃−1∑
u=d+1

PUFu
. (49)

Approximate expressions for the probabilities of data loss
PUFu

and PDF are subsequently obtained by the following
proposition.
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Proposition 1: For u = d+ 1, . . . , r̃ − 1, it holds that

PUFu

≈ −

λ c

d∏
j=1

Vj

u−d−1

E(Xu−d−1)

[E(X)]u−d−1

(
u−1∏

i=d+1

ñi

bi
V u−1−i
i

)

· log(q̂u)−(u−d−1)

(
q̂u −

u−d−1∑
i=0

log(q̂u)
i

i!

)
, (50)

where

q̂u ≜ q
fcor C

∏u−1
j=1 Vj

u , (51)

qu = 1−
m−u∑
j=r̃−u

(
m− u

j

)
P j
s (1− Ps)

m−u−j , (52)

PDF ≈
(λ c

∏d
j=1 Vj)

r̃−d−1

(r̃ − d− 1)!

E(X r̃−d−1)

[E(X)]r̃−d−1

r̃−1∏
i=d+1

ñi

bi
V r̃−1−i
i .

(53)

Proof: Immediate by combining Proposition 1 of [5] and
Proposition 1 of [21], and by also taking into account the
effect of correlated latent errors via the variable fcor, which
is determined by (6), as discussed in Appendix A.

Remark 3: For small values of Ps, and a according to
Remark 1 of [5], it holds that

qu ≈

1−
(
m− u

r̃ − u

)
P r̃−u
s , for Ps ≪

(
m−u
r̃−u

)− 1
r̃−u

0 , for Ps ≫
(
m−u
r̃−u

)− 1
r̃−u ,

(54)

q̂u ≈
{
1− Zu P

r̃−u
s , for Ps ≪ P ∗

s,u

0 , for Ps ≫ P ∗
s,u ,

(55)

where

Zu ≜ fcor C

u−1∏
j=1

Vj

(m− u

r̃ − u

)
, (56)

and P ∗
s,u = Z

− 1
r̃−u

u .

Corollary 1: For u = d+ 1, . . . , r̃ − 1, it holds that

PUFu ≈

{
Au P

r̃−u
s , for Ps ≪ P

(r̃)
s̃,u

Pu , for Ps ≫ P
(r̃)
s̃,u ,

(57)

where

Au ≜ fcor C

(
m− u

r̃ − u

)
(λ c)

u−d−1

(∏d
j=1 Vj

)u−d

(u− d)!
·

· E(Xu−d−1)

[E(X)]u−d−1

(
u−1∏

i=d+1

ñi

bi
V u−i
i

)
, (58)

Pu is determined by (48), and

P
(r̃)
s̃,u ≜

[
u− d

fcor C
(
m−u
r̃−u

)∏u−1
i=1 Vi

] 1
r̃−u

. (59)

Proof: See Appendix A.

Remark 4: It follows from (59) that P (r̃)
s̃,u is dominated by

the large value of C. Consequently, it holds that

0 = P
(r̃)
s̃,r̃ < P

(r̃)
s̃,r̃−1 < · · · < P

(r̃)
s̃,d+2 < P

(r̃)
s̃,d+1 . (60)

Remark 5: Note that PDL, as a function of Ps, exhibits
r̃ − d plateaus at levels Pu in the intervals (P

(r̃)
s̃,u , P

(r̃)
ŝ,u ),

for u = d + 1, · · · , r̃, respectively, where P
(r̃)
ŝ,d+1 ≜ 1 and

P
(r̃)
s̃,u is determined by (59). Also, [0, P

(r̃)
ŝ,u ) is the range of

values of Ps for which it holds that PUFu−1 ≪ PUFu . It
follows from approximation (57) that P

(r̃)
ŝ,u satisfies equation

Au−1 (P
(r̃)
ŝ,u )

r̃−u+1 = Pu, which, using (2) and (48), yields

P
(r̃)
ŝ,u ≜

[
λ s E(Xu−d−1) ñu−1

fcor
(
m−u+1
r̃−u+1

)
E(X)E(Xu−d−2) bu−1

] 1
r̃−u+1

.

(61)
Note also that when P

(r̃)
s̃,u > P

(r̃)
ŝ,u , the interval (P (r̃)

s̃,u , P
(r̃)
ŝ,u ) as

well as the corresponding plateau vanish.

Remark 6: From (61), and given that the term in the
bracket is quite small, it follows that

P
(r̃)
ŝ,r̃ < P

(r̃)
ŝ,r̃−1 < · · · < P

(r̃)
ŝ,d+2 < P

(r̃)
ŝ,d+1 = 1 . (62)

The methodology presented in [10] that considers the most
probable path to data loss yields an approximate function for
PDL. This function is obtained analytically by Corollary 1, and
Remarks 4, 5, and 6, and has the shape shown in a log-log
plot in Figure 7 along with the plateaus and corresponding
intervals.

Remark 7: The plateaus derived in the case where d = 0
are in agreement with those determined in [5].

Remark 8: According to Remarks 5 and 6, PDL and, by
virtue of (27), MTTDL is affected when

Ps ≫ P
(r̃)
ŝ,r̃

(3)(61)
=

λ s E(X r̃−d−1) ñr̃−1

fcor l E(X)E(X r̃−d−2) br̃−1
. (63)

2) Entity Loss: We proceed to derive the number of lost
entities during rebuild. Let Y be the number of lost entities. Let
also YDF and YUFu

denote the number of lost entities associated
with the direct paths

−→
DF and

−−→
UFu, respectively. Then, it holds

that [7, Eqs. (37), (38), (41)]

E(Y ) ≈ E(YDF) +

r̃−1∑
u=d+1

E(YUFu
) ≈ E(YDF) + E(YUF) ,

(64)
where YUF denotes the number of lost entities due to unrecov-
erable failures with its mean given by

E(YUF) ≈
r̃−1∑

u=d+1

E(YUFu) . (65)

Proposition 2: For u = d+ 1, . . . , r̃ − 1, it holds that

E(YUFu) ≈ C

E(J)

Pu

u− d

 u−1∏
j=1

Vj

 q̃u , (66)
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Figure 7. Approximate PDL vs. Ps considering the most probable path to data loss.

where q̃u, which denotes the probability that an arbitrary entity
is lost, is determined by

q̃u =

Es∑
j=1

q̃s,u

(es,j
l s

)
vj , for u = d+ 1, . . . , r̃ , (67)

with the probability q̃s,u(x) of loss, at exposure level u, of an
entity whose shard size expressed in symbols is x, determined
by

q̃s,u(x) ≜ 1− [1− fr(x)] q fcor (⌊x⌋+1)
u − fr(x) q fcor (⌊x⌋+2)

u ,
(68)

and the probability qu that a codeword that has lost u symbols
can be restored, determined by (52).

It also holds that

E(YDF) ≈ C

E(J)

PDF

r̃ − d

r̃−1∏
j=1

Vj , (69)

where C is determined by (2), Ps is determined by (5), fr(x)
is determined by (9), E(J) is determined by (16). Also, the
probability Pu of entering exposure level u is determined by
(48).

Proof: Equation (66) is obtained in Appendix B. Equation
(69) is obtained from (66) by setting u = r̃ and recognizing
that qr̃ = 0, q̃s,r̃(x) = 1, ∀x ∈ R, q̃r̃ = 1, and Pr̃ = PDF.

Remark 9: For u = d+ 1, . . . , r̃ − 1 and for small values
of Ps, it follows from (68) and (54) that

q̃s,u(x) ≈

fcor (x+ 1)

(
m− u

r̃ − u

)
P r̃−u
s , for Ps ≪ P#

s,u(x)

1 , for Ps ≫ P#
s,u(x) ,

(70)

where P#
s,u(x) is obtained from the approximation (70),

q̃s,u(x) ≈ fcor (x + 1)
(
m−u
r̃−u

)
P#
s,u(x)

r̃−u = 1, as follows:

P#
s,u(x) ≜

[
fcor (x+ 1)

(
m−u
r̃−u

)]− 1
r̃−u

. Also, for u = r̃, and
given that qr̃ = 0, it follows from (68) that

q̃s,r̃(x) = 1 , ∀x ∈ R . (71)

From (67), and using (70) and (71), it follows that

q̃u ≈ fcor

(
E(es)

l s
+ 1

)(
m− u

r̃ − u

)
P r̃−u
s , for Ps ≪ P

(r̃)
ṡ,u ,

(72)
where

P
(r̃)
ṡ,u ≜ P#

s,u

(es,Es

l s

)
=

[
fcor

(es,Es

l s
+ 1
)(m− u

r̃ − u

)]− 1
r̃−u

,

(73)
and, for u = r̃,

q̃r̃ = 1 . (74)

Remark 10: Let P (r̃)
s̈,u be the value of Ps for which it holds

that E(YUFu−1
) ≈ E(YUFu

), for u = d + 2, . . . , r̃. It follows
from (48), (66), and (72) that

P
(r̃)
s̈,u ≜

λ c (r̃ − u+ 1) ñu−1

(m− u+ 1) (u− d) bu−1
· E(Xu−d−1)

E(X)E(Xu−d−2)
·
u−1∏
i=1

Vi .

(75)

Corollary 2: For deterministic rebuild time distributions, it
holds that

P
(r̃)
s̈,r̃ < P

(r̃)
s̈,r̃−1 < · · · < P

(r̃)
s̈,d+1 . (76)
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Proof: See Appendix C.

For Weibull rebuild time distributions, including exponen-
tial ones, relation (76) does not necessarily hold. Nevertheless,
the following relation always holds.

Corollary 3: For Weibull rebuild time distributions, it
holds that

P
(r̃)
s̈,r̃ < P

(r̃)
s̈,u , for u = d+ 2, . . . , r̃ − 1 . (77)

Proof: See Appendix D.

Remark 11: Note that for d=0, the P
(r̃)
s̈,u obtained from

(75) is equal to P
(r̃)
š,u , as determined by Eq. (54) of [5]. There-

fore, by considering Remarks 8 and 9 of [5] and Corollaries 2
and 3, we deduce that for the deterministic and Weibull rebuild
time distributions and for any value of d, [0, P (r̃)

s̈,u ) is the range
of values of Ps for which it holds that E(QUFr̃

) ≪ E(QUFu
),

for u = 1, . . . , r̃− 1, where Q is the (not effective) amount of
lost user data. Consequently, EAFDL is affected when

Ps ≫ P
(r̃)
š,r̃ = P

(r̃)
s̈,r̃ (78)

Remark 12: According to (71) and given that q̃r̃ = 1,
for u = r̃, approximation (72) yields q̃r̃(approximation)
≈ fcor

(
E(es)
l s + 1

)
> 1 = q̃r̃. This in turn implies that

E(YUFr̃
)/E(YDF) ≈ fcor

(
E(es)
l s + 1

)
> 1, given that fcor ≥ 1.

Moreover, let P (r̃)
s̀,r̃ be the value of Ps for which it holds that

E(YUFr̃−1
) ≈ E(YDF). From the above, and using (48), (53),

(66), (69), (72), and (75), it follows that

P
(r̃)
s̀,r̃ ≈

P
(r̃)
s̈,r̃

fcor

(
E(es)
l s + 1

) < P
(r̃)
s̈,r̃ . (79)

Remark 13: For the deterministic and Weibull rebuild time
distributions, inequalities (76), (77), and (79) imply that

P
(r̃)
s̀,r̃ < P

(r̃)
s̈,u , for u = d+ 1, . . . , r̃ − 1 . (80)

Therefore, for values of Ps in the interval [0, P (r̃)
s̀,r̃ ), it holds that

E(YUFu) ≪ E(YDF), for u = d+ 1, . . . , r̃ − 1. Consequently,
from (64), E(Y ) and, by virtue of (29), EAFEL are affected
when

Ps ≫ P
(r̃)
s̀,r̃ , (81)

where P
(r̃)
s̀,r̃ is obtained using (3), (75) and (79) as follows:

P
(r̃)
s̀,r̃ ≜

λ c ñr̃−1 E(X r̃−d−1)

fcor

(
E(es)
l s

+ 1
)
l (r̃ − d) br̃−1 E(X)E(X r̃−d−2)

r̃−1∏
i=1

Vi .

(82)

Corollary 4: For small values of Ps such that Ps ≪
min

(
P

(r̃)
s̃,u , P

(r̃)
ṡ,u

)
, the following relation holds

E(YUFu
) ≈ E(J) + 1

E(J)
PUFu

. (83)

Proof: See Appendix E.

3) Effective Amount of Data Loss: We proceed to derive
the effective amount of lost user data during rebuild. Let Q̆ be
the amount of user data contained in the Y lost entities, which
is permanently lost, too. Let also Q̆DF and Q̆UFu

denote the
amount of lost user data associated with the direct paths

−→
DF

and
−−→
UFu, respectively.

Similar to (64), it holds that

E(Q̆) ≈ E(Q̆DF) +

r̃−1∑
u=d+1

E(Q̆UFu
) ≈ E(Q̆DF) + E(Q̆UF) ,

(84)
where Q̆UF denotes the amount of user data lost due to
unrecoverable failures with its mean given by

E(Q̆UF) ≈
r̃−1∑

u=d+1

E(Q̆UFu) . (85)

Proposition 3: For u = d+ 1, . . . , r̃ − 1, it holds that

E(Q̆UFu
) ≈ C

E(J)

Pu

u− d

 u−1∏
j=1

Vj

 q̆u , (86)

where the expected amount q̆u of lost user data of an arbitrary
entity is determined by

q̆u =

Es∑
j=1

es,j q̃s,u

(es,j
l s

)
vj . (87)

It also holds that

E(Q̆DF) ≈ C

E(J)

PDF

r̃ − d

 r̃−1∏
j=1

Vj

 q̆r̃ , (88)

where C is determined by (2), E(J) is determined by (16),
q̃s,u(x) is determined by (68), Pu is determined by (48), PDF
is determined by (53), and Vj are determined by (37), (40),
and (43).

Proof: Equations (86) and (87) are obtained in Appendix
B. Equation (88) is obtained from (86) by setting u = r̃ and
recognizing that Pr̃ = PDF.

Remark 14: For u = d+1, . . . , r̃− 1 and for small values
of Ps, it follows from (87), and using (70), that

q̆u ≈ fcor

(
E(es

2)

l s
+ E(es)

)(
m− u

r̃ − u

)
P r̃−u
s , Ps ≪ P

(r̃)
ṡ,u ,

(89)
where P

(r̃)
ṡ,u is determined by (73). Moreover, for u = r̃ and

using (13) and (71), (87) yields

q̆r̃ = E(es) . (90)

Also, from (72) and (89), it follows that

q̆u ≈ f(es)E(es) q̃u , (91)

where

f(es) ≜

E(es
2)

l s
+ E(es)(

E(es)

l s
+ 1

)
E(es)

≥ 1 , (92)
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with the inequality being deduced from the fact that for any
random variable X , it holds that E(X2) ≥ E(X)2.

Combining (66), (86), and (91) yields

E(Q̆UFu
) ≈ f(es)E(es) E(YUFu

) , (93)

Also, from (69), (88), and (90), it follows that

E(Q̆DF) ≈ E(YDF)E(es) . (94)

Remark 15: From Remark 10 and (93), it follows that
E(Q̆UFu

) ≈ E(Q̆UFu−1
) for Ps = P

(r̃)
s̈,u , which is determined

by (75).

Remark 16: According to (90) and given that q̆r̃ = E(es),
for u = r̃, approximation (89) yields q̆r̃(approximation) ≈
fcor

(
E(es

2)
l s + E(es)

)
> E(es) = q̃r̃. This in turn implies

that E(Q̆UFr̃−1
)/E(Q̆DF) ≈ fcor

(
E(es

2)
l s + E(es)

)
/E(es) >

1, given that fcor ≥ 1. Moreover, let P (r̃)
s̆,r̃ be the value of Ps for

which it holds that E(Q̆UFr̃−1
) ≈ E(Q̆DF). From the above,

and using (48), (53), (75), (79), (86), (88), (89), and (92), it
follows that

P
(r̃)
s̆,r̃ ≈

E(es) P
(r̃)
s̈,r̃

fcor

(
E(es2)

l s + E(es)
) ≈

P
(r̃)
s̀,r̃

f(es)
≤ P

(r̃)
s̀,r̃ < P

(r̃)
s̈,r̃ .

(95)

Remark 17: For the deterministic and Weibull rebuild time
distributions, inequalities (76), (77), and (98) imply that

P
(r̃)
s̆,r̃ < P

(r̃)
s̈,u , for u = d+ 1, . . . , r̃ − 1 . (96)

Therefore, for values of Ps in the interval [0, P (r̃)
s̆,r̃ ), it holds that

E(Q̆UFu
) ≪ E(Q̆DF), for u = d+1, . . . , r̃− 1. Consequently,

from (84), E(Q̆) and, by virtue of (31), EAFEDL are affected
when

Ps ≫ P
(r̃)
s̆,r̃ , (97)

where P
(r̃)
s̆,r̃ is obtained using (3), (75) and (79) as follows:

P
(r̃)
s̆,r̃ ≜

E(es) (
∏r̃−1

i=1 Vi ) λ c ñr̃−1 E(X r̃−d−1)

fcor

(
E(es2)

l s
+ E(es)

)
l (r̃ − d) br̃−1 E(X)E(X r̃−d−2)

.

(98)

Corollary 5: For small values of Ps such that Ps ≪ P
(r̃)
s̆,r̃ ,

the fraction of lost entities E(Y )/NE reflects the fraction of
lost user data E(Q̆)/U and therefore it holds that EAFEL ≈
EAFEDL, which is determined by

EAFEDL ≈ m PDF

n (r̃ − d) E(T )

 r̃−1∏
j=1

Vj

 , for Ps ≪ P
(r̃)
s̆,r̃ .

(99)
Moreover, the common value of the EAFEL and EAFEDL
reliability metrics does not depend on the entity sizes nor the
symbol size.

Proof: From (64), (84), and according to Remark 16, we
deduce that, for Ps ≪ P

(r̃)
s̆,r̃ , it holds that E(Y ) ≈ E(YDF)

and E(Q̆) ≈ E(Q̆DF). Consequently, combining (29), (30),

TABLE III. PARAMETER VALUES

Parameter Definition Values
n number of storage devices 64
c amount of data stored on each device 20 TB
s symbol (sector or data set) size 512 B, 5 MB
λ−1 mean time to failure of a storage device 876,000 h
b rebuild bandwidth per device 100 MB/s
m symbols per codeword 16
l user-data symbols per codeword 13, 14, 15
d lazy rebuild threshold (0 ≤ d < m− l) 0, 1, 2
U amount of user data stored in the system 1.04 to 1.2 PB
µ−1 time to read an amount c of data at a rate

b from a storage device
55.5 h

(31), and (94), yields E(Y )/NE ≈ E(Q̆)/U and EAFEL ≈
EAFEDL. Moreover, substituting (88) into (31), and using (2)
and (16), yields (99). From (28), (37), (40), (43), and (53), we
deduce that all variables involved in (99) are independent of
the symbol size s and the entity sizes es,1, · · · , es,Es .

VI. NUMERICAL RESULTS

Here, we assess the reliability of the clustered and declus-
tered placement schemes for the system and the parameter
values considered in [7], as listed in Table III. The system is
comprised of n = 64 devices (HDDs), it is protected by MDS
erasure codes with m = 16 and l = 13, 14, 15 and employs
a lazy rebuild scheme with a threshold d = 0, 1, and 2. Each
HDD stores an amount of c = 20 TB with a sector (symbol)
size s of 512 bytes. The value for the parameter λ−1 is chosen
to be 876, 000 h (100 years) that corresponds to an AFR of
1%. Also, for an average reserved rebuild bandwidth b of 100
MB/s, the mean rebuild time of a device is E(X) = c/b = 55.5
h, such that λ/µ = 6.3×10−5 ≪ 1, which, according to (34),
is a condition that ensures the accuracy of the reliability results
obtained. Moreover, it is assumed that the maximum network
rebuild bandwidth is sufficiently large (Bmax ≥ n b = 6.4
GB/s), that the rebuild time distribution is deterministic, such
that E(Xk) = [E(X)]k, and that sector errors are correlated
with B̄ ≈ 1. From (6), it follows that fcor ≈ 1, which implies
that the obtained results also apply to the case of independent
sector errors.

The probability of data loss PDL, which does not de-
pend on the entity size, is determined by (49) as a
function of Ps and shown in Figure 8 for the declus-
tered placement scheme (k=n=64) for various MDS-
coded configurations with m=16, l=13, and varying val-
ues of d. The probabilities PUFu

and PDF are also shown,
as obtained from (50) and (53), respectively. We observe
that PDL increases monotonically with Ps and, accord-
ing to Remark 5, exhibits a number of r̃ − d plateaus.
For d=0, the four plateaus are obtained from (59) and
(61) as follows: [0, 1.75×10−15), (1.1×10−10, 1.58×10−8),
(1.54×10−6, 3.68×10−6), and (3.83×10−5, 1]. For d=1, the
3 plateaus are [0, 1.75×10−15), (7.33×10−11, 1.58×10−8),
and (1.09×10−6, 1]. For d=2, the two plateaus are
[0, 1.75×10−15), and (3.66×10−11, 1]. In the interval
[4.096×10−12, 4.096×10−9] of practical importance for Ps,
which is indicated between the two vertical dashed lines, the
probability of data loss PDL and, by virtue of (27), the MTTDL
are degraded by one order of magnitude.

Next, we assess the reliability for the declustered place-
ment scheme (k=n=64) for the MDS-coded configurations
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(a) d = 0 (b) d = 1 (c) d = 2

Figure 8. Probability of data loss PDL vs. Ps for d = 0, 1, 2; m = 16, l = 13, (r̃ = 4), n = k = 64, λ/µ = 0.00006, c = 20 TB, and s = 512 B.

(a) k = 64 (declustered data placement scheme) (b) k = 16 (clustered data placement scheme)

Figure 9. Normalized MTTDL vs. Ps for various MDS(m, l, d) codes; n = 64, λ/µ = 0.00006, c = 20 TB, and s = 512 B.

considered in [7] with m=16 and varying values of l and
d. These configurations are denoted by MDS(m,l,d) and the
corresponding results are shown in Figures 9, 10, and 11 by
solid lines for d = 0 (no lazy rebuild employed), dashed lines
for d = 1 and dotted lines for d = 2. Six configurations
are considered: MDS(16,13,0), MDS(16,13,1), MDS(16,13,2),
MDS(16,14,0), MDS(16,14,1), and MDS(16,15,0), for each of
the declustered and clustered data placement schemes. In par-
ticular, for the clustered placement scheme, the MDS(16,15,0)
and MDS(16,14,0) configurations correspond to the RAID-5
and RAID-6 systems.

The normalized λMTTDL measure, which does not de-
pend on the entity size, is obtained from (27) as a function of
Ps and shown in Figure 9(a) for the declustered data placement
scheme. The MTTDL for the MDS(16,13,0), MDS(16,13,1),
and MDS(16,13,2) configurations is depicted by the red curves
and is obtained from the probability of data loss shown in
Figure 8. We observe that MTTDL decreases monotonically
with Ps and, according to Remark 5, exhibits r̃ − d plateaus.
In the interval of interest for Ps, MTTDL is degraded by orders
of magnitude. Increasing the number of parities (reducing
l) improves reliability by orders of magnitude. By contrast,
employing lazy rebuild degrades reliability by orders of magni-
tude. Moreover, for equivalent systems, such as MDS(16,15,0),
MDS(16,14,1) and MDS(16,13,2), MTTDL increases as d
increases. We call equivalent systems those that employ a given
codeword length m and have the same number m − l − d of

exposure levels at which the rebuild process is active.

The normalized λMTTDL measure for the clustered data
placement scheme is shown in Figure 9(b). We observe that the
declustered placement scheme achieves a significantly higher
MTTDL than the clustered one.

The normalized EAFEL/λ reliability metric corresponding
to the declustered data placement scheme is obtained from (29)
and shown in Figure 10(a) for a fixed entity size of es = 10
GB. In the interval [10−15, 10−12] of interest for Pb, EAFEL is
degraded by orders of magnitude. Note that in the case of fixed-
size entities, the values of the EAFEL and EAFEDL metrics
are the same, because the fraction of lost entities reflects the
fraction of lost user data.

Next, we consider the case of a discrete bimodal distribu-
tion for the entity size, with es,1 = 1 MB, es,2 = 1 TB, and
probabilities v1 ≊ 0.99 and v2 ≊ 0.01 chosen such that the
average entity size E(es) is v1 es,1 + v2 es,2 = 10 GB, which
is the same as the entity size es in the fixed-entity-size case
considered previously. From (16), it follows that the average
shard size E(J) remains the same, which, according to (30),
implies that the number NE of entities in the system remains
the same as in the fixed-entity-size case. The resulting EAFEL
is shown in Figure 10(b). Comparing the case of bimodal
entity sizes with that of fixed entity sizes, we observe that, for
Pb < 10−14, reliability remains essentially the same, whereas
for higher values of Pb, EAFEL is reduced. The reason for that
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is the following. For very small values of Pb, there can be at
most one codeword lost, which results in one lost entity. Thus,
the fraction of lost entities is 1/NE in both cases. However,
the lost entity in the fixed case has a size of 10 GB which
is different from that of the lost entity in the bimodal case,
which is either 1 MB or 1 TB. In fact, the size of the lost
entity in the bimodal case is almost surely 1 TB, because the
probability of this event is v2 es,2/E(es) ≈ 1. Consequently,
the size of 1 TB of the lost entity in the bimodal case is 100
times larger than that of 10 GB of the entity lost in the fixed
case. This is reflected in Figure 10(c) that shows the EAFEDL
metric. Note that for Pb = 10−15, indicated by the left vertical
dashed line, EAFEDL is about 100 times larger than EAFEL.
Consequently, in the case of variable size entities, it is more
appropriate to consider the EAFEDL rather than the EAFEL
metric, because it captures the amount of lost user data. Also,
Figures 10(b) and 10(c) confirm Corollary 5 according to
which, for small values of Pb such that Pb ≪ P

(r̃)
s̆,r̃ /s, the

EAFEL and EAFEDL metrics tend to the same value. This
holds because, when Pb = 0, the fraction of lost entities
reflects the fraction of lost user data.

Clearly, the vulnerability of entities to loss increases with
their size, which implies that lost entities are most likely
large rather than small. For the case of the bimodal entity
sizes, and for v2 ≊ 0.01, the number of the large 1-TB
entities is significantly smaller than that of the 1-MB entities.
We therefore deduce that the fraction of lost entities in the
bimodal case is smaller than that for the fixed case, and this is
more pronounced for larger values of Pb, as it is reflected
by the EAFEL metric. By contrast, EAFEDL is larger in
the bimodal case compared to the fixed case for the entire
range of bit error rates. We therefore deduce that increasing
the variability of the entity sizes, while keeping their average
constant, results in degraded EAFEDL, but improved EAFEL,
which is misleading. Clearly, the EAFEL metric that assesses
the fraction of lost entities does not account for their size and
the corresponding amount of lost user data and this led us to
introduce the EAFEDL metric.

By observing Figures 11(a), 11(b) 11(c) that show the
reliability results for the case of clustered placement, we arrive
to the same conclusions. From the above discussion, it follows
that in the case of variable size entities, it is important to
consider the EAFEDL rather than the EAFEL metric.

The expected fraction of lost entities E(Y )/NE is obtained
from (64) and shown in Figure 12 for the declustered place-
ment scheme (k = n = 64) for various MDS-coded configu-
rations with m = 16, l = 13, and varying values of d. The ex-
pected fractions of lost entities E(YUFu

)/NE and E(YDF)/NE

are also shown as determined by (65) and (69), respectively.
We observe that each of the E(YUFu

)/NE curves exhibits
two plateaus owing to the bimodal nature of the entity sizes.
According to Remark 13, E(Y ) and EAFEL degrade when Ps

is greater than P
(r̃)
s̀,r̃ , which for deterministic rebuild times and

in the absence of network rebuild bandwidth constraints, by
virtue of (82), is equal to 1.3×10−13. For a symbol size of 512
bytes, the corresponding unrecoverable bit error probability is
Pb ≈ P

(r̃)
s̀,r̃ / (512× 8) = 1.3× 10−13 / 4096 = 3.18× 10−17.

This is depicted by the red curves in Figures 12 and 10(b).

The expected fraction of the effective amount of lost user

data E(Q̆)/U is obtained from (84) and shown in Figure 13.
The expected fractions of the effective amounts of lost user
data E(Q̆UF)/U and E(Q̆DF)/U are also shown as determined
by (85) and (88), respectively. Despite the bimodal nature
of the entity sizes, we observe that in this case each of the
E(Q̆UF)/U curves exhibits only a single plateau. According
to Remark 17, E(Q̆) and EAFEDL degrade when Ps is
greater than P

(r̃)
s̆,r̃ , which for deterministic rebuild times and

in the absence of network rebuild bandwidth constraints, by
virtue of (98), is equal to 1.3 × 10−15. For a symbol size
of 512 bytes, this degradation occurs when the unrecoverable
bit error probability Pb is greater than P

(r̃)
s̆,r̃ / (512 × 8) =

1.3 × 10−15 / 4096 = 3.18 × 10−19. This is depicted by the
red curves in Figures 13 and 10(c). Note also that for extremely
small values of Pb, such that Pb ≪ 3.18×10−19, and according
to Corollary 5, it holds that E(Q̆)/U ≈ E(Y )/NE . This also
holds when Pb → 1.

The effect of symbol size on reliability is assessed by
considering the case of a large 5-MB symbol size. The
corresponding normalized EAFEL/λ and EAFEDL/λ relia-
bility metrics are shown in Figures 14 and 15. As expected,
comparing these results with those shown in Figures 10 and 11,
system reliability degrades compared to the case of a smaller
symbol size. This degradation applies to both the EAFEL and
EAFEDL reliability metrics.

Next, we assess the system reliability for the CERN file
size distribution [22] that was considered in [23] and listed in
Table IV shown in Appendix B. For the file sizes uniformly
distributed within the bins, the mean is 843 MB, the standard
deviation is 2.8 GB, the second moment is 8.9 GB2 and
the coefficient of variation is equal to 3.39. It turns out that
the reliability metrics are extremely well approximated by
considering the file sizes es,j to be the bin mean sizes, such
that Es = 38. In this case, the mean is 843 MB, the standard
deviation is 2.8 GB, the second moment is 8.5 GB2 and the
coefficient of variation is 3.37. The corresponding reliability
results are shown in Figures 16 and 17. In all cases considered,
the reliability level achieved by the declustered data placement
scheme is higher than that of the clustered one.

VII. REAL-WORLD ERASURE CODING SCHEMES

Here we assess the reliability of systems that store files
whose size is distributed according to the CERN distribution
listed in Table IV and shown in Figure 24(a). In particular,
we assess the reliability of the practical systems considered
in [4] that store an amount of U = 1.2 PB user data on
devices (disks) whose capacity is c = 20 TB. This amount
of user data can therefore be stored on U/c = 60 devices. The
system comprises n devices, where n is determined using (1)
as follows:

n =
U

c

m

l
= 60

m

l
. (100)

Subsequently, we consider the following real-world erasure
coding schemes:

1) the 3-way replication (triplication) scheme that was ini-
tially used by Google’s GFS, Microsoft® Azure1, and

1Microsoft is a trademark of Microsoft Corporation in the United States,
other countries, or both.
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(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 10. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, declustered data placement.

(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 11. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, clustered data placement.

(a) d = 0 (b) d = 1 (c) d = 2

Figure 12. Normalized E(Y ) vs. Ps for d = 0, 1, 2; m = 16, l = 13, (r̃ = 4), n = k = 64, c = 20 TB, and s = 512 B, bimodal entity sizes.

(a) d = 0 (b) d = 1 (c) d = 2

Figure 13. Normalized E(Q̆) vs. Ps for d = 0, 1, 2; m = 16, l = 13, (r̃ = 4), n = k = 64, c = 20 TB, and s = 512 B, bimodal entity sizes.
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(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 14. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 5 MB, declustered data placement.

(a) Fixed Entity Size: es = 10 GB (b) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB (c) Bimodal Entity Sizes: es,1=1 MB, es,2=1 TB

Figure 15. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 5 MB, clustered data placement.

(a) Fixed File Size: es = 843 MB (b) CERN File Sizes; E(es) = 843 MB (c) CERN File Sizes; E(es) = 843 MB

Figure 16. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, declustered data placement.

(a) Fixed File Size: es = 843 MB (b) CERN File Sizes; E(es) = 843 MB (c) CERN File Sizes; E(es) = 843 MB

Figure 17. Normalized EAFEL and EAFEDL vs. Pb for various MDS(m, l, d) codes; symbol size s = 512 B, clustered data placement.
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Facebook. In this case, m = 3, l = 1, with a correspond-
ing storage efficiency of seff = 33%. According to (100),
this scheme requires the employment of n = 180 devices.

2) the RS(9,6) erasure coding scheme employed by Google’s
GFS as well as QFS [24][25], which for m = 9 and l = 6
achieves a storage efficiency of seff = 66% and requires
a number of n = 90 devices.

3) the MDS(16,12) erasure coding scheme akin to the
LRC(16,12) code used by Microsoft® Azure [26], which
for m = 16 and l = 12 achieves a storage efficiency of
seff = 75% and requires a number of n = 80 devices.

4) the RS(14,10) erasure coding scheme employed by Face-
book [27], which for m = 14 and l = 10 achieves a
storage efficiency of seff = 71% and requires a number
of n = 84 devices.

We proceed to assess the reliability of the four erasure
coding schemes assuming a 512-B symbol size and for the
declustered data placement scheme, which achieves a superior
data reliability. The results for the EAFEL and EAFEDL
reliability metrics are shown in Figures 18 and 19, respectively.
We observe that, in all cases, EAFEDL is larger than EAFEL.

First, we assess the reliability of the 3-way replication
(triplication) scheme. Figure 19(a) shows that, in the interval
of interest for Pb, EAFEDL ranges between 10−12 and 10−9.
In particular, when Pb is larger than 10−14, EAFEDL is larger
than 10−11, the durability of eleven nines (11 9s) targeted by
the Amazon S3 [28]. Employing the MDS(9,6) coding scheme,
improves reliability by orders of magnitude. Figure 19(b)
shows that, in the interval of interest for Pb, EAFEDL ranges
between 10−16 and 10−13. Further reliability improvement
is achieved by employing the MDS(16,12) coding scheme.
According to Figure 19(c), in the interval of interest for
Pb, EAFEDL ranges between 10−20 and 10−17. Superior
reliability is achieved by employing the MDS(14,10) coding
scheme. Figure 19(d) shows that, in the interval of interest for
Pb, EAFEDL ranges between 10−21 and 10−18.

Also, Figures 18 and 19 confirm Corollary 5 according
to which, for small values of Pb such that Pb ≪ P

(r̃)
s̆,r̃ /s,

the EAFEL and EAFEDL metrics tend to the same value.
However, in the interval of interest for Pb, by employing the 3-
way replication, MDS(9,6), and MDS(16,12) coding schemes,
both EAFEL and EAFEDL improve by four orders of mag-
nitude, successively. By contrast, employing the MDS(14,10)
coding scheme results in a reliability improvement of only one
order of magnitude of that achieved by the MDS(16,12) coding
scheme.

We proceed to assess the reliability of the four erasure
coding schemes for the declustered data placement scheme by
considering the case of a large 5-MB symbol size. The results
for the EAFEL and EAFEDL reliability metrics are shown in
Figures 20 and 21, respectively. We observe that, in all cases,
EAFEDL is larger than EAFEL.

First, we assess the reliability of the 3-way replication
scheme. Figure 21(a) shows that, in the interval of interest for
Pb, EAFEDL ranges between 10−12 and 10−7. In particular,
when Pb is larger than 10−14, EAFEDL is larger than 10−11,
the durability of eleven nines (11 9s) targeted by the Amazon
S3. Comparing Figures 18(a) and 20(a) as well as Figures
19(a) and 21(a), we observe that the increased symbol size

affects EAFEL and EAFEDL only for Pb values in the interval
(10−14, 10−7).

Employing the MDS(9,6) coding scheme, improves relia-
bility by orders of magnitude. Figure 21(b) shows that, in the
interval of interest for Pb, EAFEDL ranges between 10−16

and 10−10. In particular, when Pb is larger than 8 × 10−13,
EAFEDL is larger than 10−11, the durability of eleven nines
(11 9s) targeted by the Amazon S3 [28]. Comparing Figures
18(b) and 20(b) as well as Figures 19(b) and 21(b), we
observe that the increased symbol size affects EAFEL and
EAFEDL only for Pb values in the intervals (10−15, 10−5)
and (10−15, 10−6), respectively.

Further reliability improvement is achieved by employing
the MDS(16,12) coding scheme. According to Figure 19(c), in
the interval of interest for Pb, EAFEDL ranges between 10−20

and 10−13. Comparing Figures 18(c) and 20(c) as well as
Figures 19(c) and 21(c), we observe that the increased symbol
size affects EAFEL and EAFEDL only for Pb values in the
intervals (10−15, 10−5) and (10−15, 10−6), respectively.

Superior reliability is achieved by employing the
MDS(14,10) coding scheme. Figure 21(d) shows that, in the
interval of interest for Pb, EAFEDL ranges between 10−21 and
10−13. Comparing Figures 18(d) and 20(d) as well as Figures
19(d) and 21(d), we observe that the increased symbol size
affects EAFEL and EAFEDL only for Pb values in the interval
(10−15, 10−5).

Figures 20 and 21 confirm Corollary 5 according to
which, for small values of Pb such that Pb ≪ P

(r̃)
s̆,r̃ /s,

the EAFEL and EAFEDL metrics tend to the same value.
However, for Pb = 10−15, by employing the 3-way repli-
cation, MDS(9,6), and MDS(16,12) coding schemes, both
EAFEL and EAFEDL improve by four orders of magnitude,
successively. By contrast, employing the MDS(14,10) coding
scheme results in a reliability improvement of only one order
of magnitude of that achieved by the MDS(16,12) coding
scheme. Also, for Pb = 10−12, by employing the 3-way
replication, MDS(9,6), and MDS(16,12) coding schemes, both
EAFEL and EAFEDL improve by three orders of magnitude,
successively. By contrast, employing the MDS(14,10) coding
scheme does not achieve any reliability improvement compared
to the MDS(16,12) coding scheme.

A. Reliability Improvement

The improvement of the EAFEL and EAFEDL reliability
metrics achieved by the erasure coding schemes considered
over the initial 3-way replication is shown in Figures 22 and
23.

For the declustered data placement and for a symbol size of
512 B, Figure 22 demonstrates that in the interval of interest,
the MDS(9,6) erasure coding scheme improves reliability by
four orders of magnitude, the MDS(16,12) erasure coding
scheme improves reliability by eight orders of magnitude,
whereas the MDS(14,10) erasure coding scheme improves
reliability by nine orders of magnitude.

For the declustered data placement and for a symbol size of
5 MB, Figure 23 demonstrates that in the interval of interest,
the reliability improvement achieved by the erasure coding
schemes considered varies. In particular, for Pb = 10−15, the
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(a) MDS(3,1) (b) MDS(9,6) (c) MDS(16,12) (d) MDS(14,10)

Figure 18. EAFEL vs. Ps for various MDS coding schemes; symbol size s = 512 B, declustered data placement.

(a) MDS(3,1) (b) MDS(9,6) (c) MDS(16,12) (d) MDS(14,10)

Figure 19. EAFEDL vs. Ps for various MDS coding schemes; symbol size s = 512 B, declustered data placement.

(a) MDS(3,1) (b) MDS(9,6) (c) MDS(16,12) (d) MDS(14,10)

Figure 20. EAFEL vs. Ps for various MDS coding schemes; symbol size s = 5 MB, declustered data placement.

(a) MDS(3,1) (b) MDS(9,6) (c) MDS(16,12) (d) MDS(14,10)

Figure 21. EAFEDL vs. Ps for various MDS coding schemes; symbol size s = 5 MB, declustered data placement.

MDS(9,6) erasure coding scheme improves reliability by four
orders of magnitude, the MDS(16,12) erasure coding scheme
improves reliability by eight orders of magnitude, whereas
the MDS(14,10) erasure coding scheme improves reliability
by nine orders of magnitude. However, for Pb = 10−12,
the MDS(9,6) erasure coding scheme improves reliability
by three orders of magnitude, whereas the MDS(16,12) and
MDS(14,10) erasure coding scheme improve reliability by six
orders of magnitude.

VIII. CONCLUSIONS

The Expected Annual Fraction of Entity Loss EAFEL
metric assesses the durability of data storage systems at an
entity, say file, object, or block level. Contrary to the Mean
Time to Data Loss (MTTDL) metric, EAFEL is affected by the
distribution of the number of codewords that entities span. The
distribution of this number was obtained analytically in closed
form for the segregated and the random entity placement cases
as a function of the size of the entities and the frequency of
their occurrence. It was also demonstrated that, in certain cases
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(a) EAFEL ratios (b) EAFEDL ratios

Figure 22. Ratios of the EAFEL and EAFEDL metrics for the MDS(9,6), MDS(16,12), and MDS(14,10) schemes to those corresponding to the 3-way replication
scheme; symbol size s = 512 B, declustered data placement.

(a) EAFEL ratios (b) EAFEDL ratios

Figure 23. Ratios of the EAFEL and EAFEDL metrics for the MDS(9,6), MDS(16,12), and MDS(14,10) schemes to those corresponding to the 3-way replication
scheme; symbol size s = 5 MB, declustered data placement.

of deterministic entity placements of variable-size entities, this
distribution also depends on their actual placement.

To evaluate the durability of storage systems in the case
of variable-size entities, a new reliability metric was in-
troduced, the Expected Annual Fraction of Effective Data
Loss (EAFEDL), which assesses the fraction of lost user
data annually at the entity level. The MTTDL, EAFEL,
and EAFEDL metrics were obtained analytically for erasure-
coding redundancy schemes and for the clustered, declustered,
and symmetric data placement schemes. Closed-form expres-
sions capturing the effect of unrecoverable latent errors and
lazy rebuilds were derived. We established that the reliability of
storage systems is adversely affected by the presence of latent
errors and that the declustered data placement scheme offers
superior reliability. We demonstrated that an increased variabil-
ity of entity sizes results in improved EAFEL, but degraded
EAFEDL. We also established that EAFEL and EAFEDL are
adversely affected by the symbol size. We considered several
real-world erasure coding schemes and demonstrated their
efficiency. The analytical reliability results obtained enable the
identification of erasure-coded redundancy schemes that ensure
a desired level of reliability.

This work has the potential to be applied for further studies
of data storage reliability and it is particularly relevant for tape
storage reliability, which is a subject of further investigation
[29].

APPENDIX A

Proof of Corollary 1.

From Eqs. (57) and (65) of [21], (61) of [21] yields

PUFu(Rd+1) ≈ − (λbd+1Rd+1)
u−d−1

(
u−1∏

i=d+1

ñi

bi
V u−1−i
i

)
·

·

(
∞∑
j=1

log(q̂u)
j

(u− d− 1 + j)!

)
.

(101)

From (55) and for Ps ≪ P ∗
s,u, it follows that q̂u ≈ 1.

Furthermore, log(q̂u) = −(1−q̂u)+O((1−q̂u)
2) ≈ −(1−q̂u).

Consequently, by virtue of (55), it holds that log(q̂u) ≈
−Zu P

r̃−u
s . For small values of Ps, all the terms of the

summation in (101) are negligible compared with the first one.
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Therefore, from the above, it follows that

PUFu(Rd+1) ≈ (λbd+1Rd+1)
u−d−1

(
u−1∏

i=d+1

ñi

bi
V u−1−i
i

)
·

· Zu P r̃−u
s

(u− d)!
.

(102)

Unconditioning (102) on Rd+1, and using (33) and (44), yields

PUFu ≈
(λ c

∏d
j=1 Vj)

u−d−1

(u− d)!

(
u−1∏

i=d+1

ñi

bi
V u−1−i
i

)
·

· E(X r̃−d−1)

[E(X)]r̃−d−1
Zu P r̃−u

s .

(103)

Consider the direct path
−−→
UFu = 1 → 2 → · · · → u → UF.

Then the probability PUFu(Rd+1, α⃗u−1) of entering exposure
level u through vector α⃗u−1 ≜ (α1, . . . , αu−1) and encounter-
ing an unrecoverable failure during the rebuild process at this
exposure level, given a rebuild time Rd+1, is determined by
[21, Eq. (46)]

PUFu(Rd+1, α⃗u−1) = Pu(Rd+1, α⃗u−2) ·Pu→UF(Rd+1, α⃗u−1) .
(104)

where Pu is the probability of entering exposure level u and
Pu→UF is the probability of encountering an unrecoverable
failure during the rebuild process at this exposure level. We
now proceed to calculate Pu→UF(Rd+1, α⃗u−1). Upon entering
exposure level u, the rebuild process attempts to restore the Cu

most-exposed codewords, each of which has m−u remaining
symbols. The probability qu that a codeword can be restored
is determined by (52). Note that, if a codeword is corrupted,
then at least one of its l user-data symbols is lost. When
symbol errors are independent, codewords are independently
corrupted. Consequently, the conditional probability PUF|Cu

of encountering an unrecoverable failure during the rebuild
process of the Cu codewords is determined by 1 − qCu

u [21,
Eq. (58)]. In the case of correlated symbol errors, PUF|Cu

is
determined by 1−q fcor Cu

u [5, Eq. (98)]. Consequently, it holds
that

PUF|Cu
= 1− q fcor Cu

u , for u = d+ 1, . . . , r̃ . (105)

Substituting (46) into (105) and using (51) yields

Pu→UF(Rd+1, α⃗u−1) ≈ 1− q
C

∏u−1
j=1 Vj αj

u = 1− q̂
∏u−1

j=1 αj
u . (106)

Substituting (106) into (104) yields

PUFu(Rd+1, α⃗u−1) ≈ Pu(Rd+1, α⃗u−2)

[
1− q̂

∏u−1
j=1 αj

u

]
. (107)

From (55) and for Ps ≫ P ∗
s,u, it follows that q̂u ≈ 0,

which by virtue of (106) implies that Pu→UF(R1, α⃗u−1) ≈ 1.
Consequently, it follows from (104) that PUFu ≈ Pu. Also,
substituting (56) into (103) yields (57), with the variable Au

determined by (58). In particular, P (r̃)
s̃,u is obtained from the

approximation (57) PUFu
≈ Au (P

(r̃)
s̃,u )

r̃−u = Pu and using
(2), (48), and (58).

□

APPENDIX B

Proof of Proposition 2.

Upon entering exposure level u (u ≥ d+ 1), there are Cu

most-exposed codewords to be recovered. As a shard size of
ss corresponds to J symbols, an entity size es corresponds
to J codewords. Therefore, the average entity of size E(es)
determined by (13) corresponds to E(J) codewords, with
E(J) determined by (16). Consequently, for the number Eu

of entities to be recovered it holds that

Eu ≈ Cu

E(J)
, for u = d+ 1, . . . , r̃ − 1 . (108)

Let K (K ≥ 1) denote the number of codewords that
an entity of size es spans or, equivalently, the number of
symbols that a shard of size ss spans. The entity is lost if
any of these K codewords is permanently lost. Therefore,
according to Eq. (98) of [5], the probability of recovering the
entity is q fcor K

u , where qu is the probability of restoring a
codeword and is determined by (52), and fcor accounts for the
correlation of latent errors and is determined by Eq. (29) of
[5]. Consequently, the probability q̃u|K of loss of an entity
that spans K codewords is determined by

q̃u|K = 1− q fcor K
u . (109)

Unconditioning (109) on K using (23) yields the probability
q̃s,u(J) that the entity (for the shard size J) is lost, where
q̃s,u(x) is determined by (68). Thus, using (4), the probability
q̃u(es) that the entity is lost is determined by

q̃u(es) = q̃s,u

( es
l s

)
. (110)

For this entity, the expected amount q̆u(es) of lost user data is

q̆u(es) = es q̃u(es) . (111)

From (12), the probability q̃u that an arbitrary entity is lost is

q̃u =

Es∑
j=1

q̃u(es,j) vj , (112)

which, using (110), yields (67).

Similarly, from (12), it follows that the expected amount
q̆u of lost user data of an arbitrary entity is determined by

q̆u =

Es∑
j=1

q̆u(es,j) vj , (113)

which, using (110) and (111), yields (87).

Remark 18: Note that (108) holds when Cu ≫ E(J). In
the case where Cu ≪ E(J), it holds that Eu = 1, that is, a
single entity is to be recovered. Let ês denote its size. From
the pdf of the lifetime of sampled intervals [30], we deduce
that the pdf {v̂j} of the size ês of the sampled entity is no
longer the typical {vj} pdf, but is determined by

v̂j = P (ês = es,j) =
es,j vj
E(es)

, for j = 1, 2, . . . , Es .

(114)
The {v̂j} pdf of ês is listed in Table IV and shown in Figure
24(b). For the file sizes uniformly distributed within the bins,
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TABLE IV. CERN FILE SIZE es AND SAMPLED FILE SIZE ês DISTRIBUTIONS

j Bins Bin Mean Size es,j pdf vj pdf v̂j

1 1 B – 2 B 2 B 0.00004559 0.000000000000081
2 2 B – 5 B 4 B 0.00001275 0.000000000000053
3 5 B – 10 B 8 B 0.00005533 0.000000000000492
4 10 B – 22 B 16.0 B 0.00060401 0.000000000011464
5 22 B – 46 B 34.0 B 0.00018569 0.000000000007489
6 46 B – 100 B 73.0 B 0.00121244 0.000000000104989
7 100 B – 215 B 157.5 B 0.00093013 0.000000000173774
8 215 B – 464 B 339.5 B 0.00174431 0.000000000702464
9 464 B – 1 KB 732.0 B 0.00675513 0.000000005865509

10 1 KB – 2.154 KB 1.577 KB 0.00530524 0.000000009924249
11 2.154 KB – 4.642 KB 3.398 KB 0.00496005 0.000000019992649
12 4.642 KB – 10 KB 7.321 KB 0.00800625 0.000000069528117
13 10 KB – 21.544 KB 15.772 KB 0.01174913 0.000000219813008
14 21.544 KB – 46.416 KB 33.980 KB 0.01738480 0.000000700735281
15 46.416 KB – 100 KB 73.208 KB 0.01359001 0.000001180155486
16 100 KB – 215.443 KB 157.721 KB 0.01471745 0.000002753495549
17 215.443 KB – 464.159 KB 339.801 KB 0.02018806 0.000008137296681
18 464.159 KB – 1 MB 732.079 KB 0.02566358 0.000022286219101
19 1 MB – 2.154 MB 1.577 MB 0.06221012 0.000116389428894
20 2.154 MB – 4.642 MB 3.398 MB 0.07519022 0.000303072948937
21 4.642 MB – 10 MB 7.321 MB 0.07654035 0.000664675346806
22 10 MB – 21.544 MB 15.772 MB 0.09501620 0.001777665788444
23 21.544 MB – 46.416 MB 33.980 MB 0.07847651 0.003163191377566
24 46.416 MB – 100 MB 73.208 MB 0.07416942 0.006440862144930
25 100 MB – 215.443 MB 157.721 MB 0.09371673 0.017533538933119
26 215.443 MB – 464.159 MB 339.801 MB 0.08093624 0.032623369369260
27 464.159 MB – 1 GB 732.079 MB 0.05399279 0.046887264039909
28 1 GB – 2.154 GB 1.577 GB 0.04992384 0.093402916675691
29 2.154 GB – 4.642 GB 3.398 GB 0.08871583 0.357591270942897
30 4.642 GB – 10 GB 7.321 GB 0.03182476 0.276365775047813
31 10 GB – 21.544 GB 15.772 GB 0.00452804 0.084715467164424
32 21.544 GB – 46.416 GB 33.980 GB 0.00146156 0.058911819675084
33 46.416 GB – 100 GB 73.208 GB 0.00017060 0.014814880370463
34 100 GB – 215.443 GB 157.721 GB 0.00001375 0.002568882068470
35 215.443 GB – 464.159 GB 339.801 GB 0.00000206 0.000829598407954
36 464.159 GB – 1 TB 732.079 GB 0.00000069 0.000599130022577
37 1 TB – 2.154 TB 1.577 TB 0.00000033 0.000616531696433
38 2.154 TB – 4.310 TB 3.230 TB 0.00000001 0.000038314523896

(a) CERN file size distribution (b) CERN sampled file size distribution

Figure 24. CERN file size distributions vj and v̂j .

the mean E(ês) is equal to 10.5 GB, the standard deviation is
53.1 GB, the second moment is 2,935 GB2, and the coefficient
of variation is equal to 5.05. By considering the file sizes es,j
to be the bin mean sizes, the mean E(ês) is equal to 10.4 GB,
the standard deviation is 52.6 GB, the second moment is 2,873
GB2, and the coefficient of variation is equal to 5.03.

From the above discussion, and analogous to (112), it
follows that the probability q̃û that the single entity is lost

is determined by

q̃û =

Es∑
j=1

q̃u(es,j) v̂j . (115)

Similarly, and analogous to (113), the expected amount q̆û of
lost user data of the single entity is determined by

q̆û =

Es∑
j=1

q̆u(es,j) v̂j . (116)

Let YU be the number of lost entities and Q̆U the amount
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of lost user data at exposure level u during the rebuild process
of the Cu codewords. Then it holds that

E(YU|Cu) = Eu q̃u
(108)
≈ Cu

E(J)
q̃u , (117)

and

E(Q̆U|Cu) = Eu q̆u
(108)
≈ Cu

E(J)
q̆u . (118)

Note that E(YU|Cu), as determined by (117), can be
obtained from Eq. (71) of [7] by replacing the shard size J
with its average value E(J). Consequently, (66) and (69) are
obtained from the corresponding Eqs. (42) and (44) of [7] by
replacing the shard size J with its average value E(J).

Note also that E(Q̆U|Cu), as determined by (118), can be
obtained from (117) by replacing the probability q̃u that an
arbitrary entity is lost with its expected amount q̆u of lost user
data. Consequently, (86) is obtained from (66) by replacing q̃u
with q̆u.

Remark 19: According to Remark 18, in the case where
Cu ≪ E(J), it holds that Eu = 1, that is, a single entity is to
be recovered. In this case, and considering (115), (116), (117),
and (118), we have

E(YU|Cu) = q̃û , for Cu ≪ E(J) . (119)

and

E(Q̆U|Cu) = q̆û , for Cu ≪ E(J) . (120)

According to (46), it holds that Cu ≈ C
∏u−1

i=1 Vi αi.
Consequently, condition Cu ≪ E(J) holds when the αi

variables take very small values. Note that, according to (45),
these variables are approximately either equal to 1 or uniformly
distributed in (0, 1). Therefore, the region that corresponds
to very small values of these variables is negligible. Conse-
quently, Eqs. (66) and (69), which are obtained exclusively
based on (117) and (118) without taking into consideration
(119) and (120), are good approximations.

□

APPENDIX C

Proof of Corollary 2.

For a deterministic rebuild time distribution, it holds that
E(Xk) = [E(X)]k. Consequently, for u = d + 2, . . . , r̃, and
from (75), it follows that

fu ≜
P

(r̃)
s̈,u+1

P
(r̃)
s̈,u

=
(r̃ − u)(m− u+ 1) (u− d) ñu bu−1 Vu

(r̃ − u+ 1)(m− u)(u− d+ 1) ñu−1 bu
.

(121)
We shall now show that fu < 1.

For the symmetric placement scheme, and using (36), (121)

yields

fu

=
(r̃ − u)(m− u+ 1) (u− d) (k − u)min((k−u+1) b,Bmax)

l+1
m−u
k−u

(r̃ − u+ 1)(m− u)(u− d+ 1) (k − u+ 1)min((k−u) b,Bmax)
l+1

=
(r̃ − u)(m− u+ 1) (u− d) min((k − u+ 1) b, Bmax)

(r̃ − u+ 1)(k − u+ 1)(u− d+ 1) min((k − u) b, Bmax)

=
r̃ − u

r̃ − u+ 1

u− d

u− d+ 1

m+ 1− u

k − u

min(b, Bmax
k+1−u )

min(b, Bmax
k−u )

.

(122)

The fact that Bmax
k+1−u < Bmax

k−u implies that min(b, Bmax
k+1−u ) ≤

min(b, Bmax
k−u ) and therefore the last fraction is less than or equal

to 1. Also, given that k ≥ m+1, the third fraction is less than
or equal to 1. Moreover, each of the first two fractions is less
than 1. Consequently, fu < 1.

For the clustered placement scheme, and using (42), (121)
yields

fu

=
(r̃ − u)(m− u+ 1) (u− d) (m− u) min(b , Bmax

l )

(r̃ − u+ 1)(m− u)(u− d+ 1) (m− u+ 1) min(b , Bmax
l )

=
r̃ − u

r̃ − u+ 1

u− d

u− d+ 1
< 1 . (123)

□

APPENDIX D

Proof of Corollary 3.

For u = d+ 2, . . . , r̃, and from (75), it follows that

gu ≜
P

(r̃)
s̈,r̃

P
(r̃)
s̈,u

=
(m− u+ 1) (u− d) ñr̃−1 bu−1

(r̃ − u+ 1) (m− r̃ + 1) (r̃ − d) ñu−1 br̃−1

· E(Xu−d−2)E(X r̃−d−1)

E(Xu−d−1)E(X r̃−d−2)
·
r̃−1∏
i=u

Vi . (124)

For a Weibull rebuild time distribution, with probability
density and cumulative distribution functions

fX(x; η,Λ) =
η

Λ

( x
Λ

)η−1

e−(x/Λ)η

FX(x; η,Λ) = 1− e−(x/Λ)η , (125)

it holds that
E(Xk) = Λk Γ(1 + k/η) . (126)

Note that this distribution provides a continuous spectrum
between the deterministic distribution (for η → ∞) and the
exponential distribution (for η = 1). Let us introduce the
variable hu defined as follows:

hu ≜
E(Xu−d−2)E(X r̃−d−1)

E(Xu−d−1)E(X r̃−d−2)
. (127)
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Figure 25. Number of shards that symbols span.

By virtue of (126), (127) yields

hu ≜
Λu−d−2 Γ

(
1 + u−d−2

η

)
Λr̃−d−1 Γ

(
1 + r̃−d−1

η

)
Λu−d−1 Γ

(
1 + u−d−1

η

)
Λr̃−d−2 Γ

(
1 + r̃−d−2

η

)
=

Γ
(
1 + u−d−2

η

)
Γ
(
1 + r̃−d−1

η

)
Γ
(
1 + u−d−1

η

)
Γ
(
1 + r̃−d−2

η

) . (128)

From (126) and for n → ∞, it holds that E(Xk) =
Λk = [E(X)]k and consequently hu = 1. For n = 1, it
holds that E(Xk) = Λk Γ(1 + k) = k! Λk = k! [E(X)]k and
consequently hu = (r̃ − d − 1)/(u − d − 1). As the function
Γ(x) is convex, it holds that hu decreases with increasing η,
such that

1 ≤ hu ≤ r̃ − d− 1

u− d− 1
, for 1 ≤ η < ∞ . (129)

For the symmetric placement scheme, and using (37) and
the fact that k ≥ m+ 1, it holds that

n2∏
i=n1

Vi =

n2∏
i=n1

m− u

k − u
<

n2∏
i=n1

m− u

m+ 1− u
=

m− n2

m+ 1− n1
.

(130)

For the symmetric placement scheme, and using (35), (36)
and (127), (124) yields

gu

=
(m− u+ 1) (u− d) (k − r̃ + 1) min((k−u+1) b,Bmax)

l+1

(r̃ − u+ 1)(m− r̃ + 1) (r̃ − d) (k − u+ 1) min((k−r̃+1) b,Bmax)
l+1

· E(Xu−2)E(X r̃−1)

E(Xu−1)E(X r̃−2)
·
r̃−1∏
i=u

Vi

=
(m− u+ 1) (u− d) min(b, Bmax

k−u+1
)

(r̃ − u+ 1)(m− r̃ + 1) (r̃ − d) min(b, Bmax
k−r̃+1

)
hu

r̃−1∏
i=u

Vi .

(131)

Given that u ≤ r̃ − 1 < r̃, it holds that Bmax
k−u+1 < Bmax

k−r̃+1

and therefore min(b, Bmax
k−u+1 ) < min(b, Bmax

k−r̃+1 ). Consequently,
using (129) and (130), (131) yields

gu <
(m− u+ 1) (u− d)

(r̃ − u+ 1)(m− r̃ + 1) (r̃ − d)

r̃ − d− 1

u− d− 1

m− r̃ + 1

m+ 1− u

=
u− d

r̃ − d

r̃ − d− 1

(r̃ − u+ 1)(u− d− 1)
<

r̃ − d− 1

(r̃ − u+ 1)(u− d− 1)
.

(132)

Given that d+2 ≤ u < r̃, it holds that [u−(d+2)](u− r̃) ≤ 0
or, equivalently, r̃−d−1 ≤ (r̃−u+1)(u−d−1). Consequently,
it follows from (132) that gu < 1.

For the clustered placement scheme, and using (41), (42),
(43), and (127), (131) yields

gu =
(m− u+ 1) (u− d) (m− r̃ + 1) hu min(b , Bmax

l
)

(r̃ − u+ 1)(m− r̃ + 1) (r̃ − d) (m− u+ 1) min(b , Bmax
l

)

(129)

≤ u− d

r̃ − d

r̃ − d− 1

(r̃ − u+ 1)(u− d− 1)
<

r̃ − d− 1

(r̃ − u+ 1)(u− d− 1)
.

(133)

As the last term of (133) is the same as the last term of (132),
which is less or equal to 1, it follows that gu < 1.

□

APPENDIX E

Proof of Corollary 4.

Immediate from Corrolary 1, (16), (66), and (72).

Relation (83) can alternatively be obtained as follows. At
exposure level u and for very small values of Ps, an entity
failure is most likely caused by a single corrupted codeword
that loses r̃ symbols. Let I be the number of shards that have
parts stored in a symbol of this codeword. Then the expected
number E(YUFu) of lost entities associated with the direct path−−→
UFu is determined by

E(YUFu
) ≈ E(I) PUFu

, (134)

where PUFu is the probability of data loss due to unrecoverable
symbol errors at exposure level u.

We proceed to show that

E(I) = 1 +
1

E(J)
. (135)

Let us consider m successive shards stored in n symbols, as
depicted in Figure 25, with the shard boundaries indicated by
the circles and the symbol boundaries indicated by the vertical
lines. Let Ji denote their size (i = 1, . . . ,m) and let Ik (k =
1, . . . , n) denote the number of shards that have parts stored
in the k-th symbol. For large values of m and n, it holds that

m∑
i=1

Ji ≈ n , (136)

such that

lim
m→∞

∑m
i=1 Ji
n

= 1 . (137)

It also holds that

E(J) =

∑m
i=1 Ji
m

, (138)
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and
E(I) =

∑n
k=1 Ik
n

, (139)

Combining (137) and (138) yields

lim
m→∞

m

n
=

1

E(J)
. (140)

Note that the number of shards that have parts stored in
a symbol decreased by one is equal to the number of shard
boundaries within the symbol. For instance, regarding the kth
symbol, there are three shards that have parts stored in this
symbol, namely the (i − 1)th, ith, and (i + 1)th shard, such
that Ik = 3, which decreased by one yields the two shard
boundaries within this symbol. Consequently, considering the
n symbols and the corresponding m boundaries, we have

n∑
k=1

(Ik − 1) = m (141)

or
n∑

k=1

Ik = n+m (142)

Substituting (142) into (139), and using (140), yields (135).

An alternative proof for the case where Jj ≥ 1, for
j = 1, 2, . . . , Es, is the following. Let us consider an arbitrary
symbol and let Ĵ be the size of the shard that is stored at the
beginning of the symbol. As this shard is a sampled shard, the
pdf of its size Ĵ is determined by (114), that is,

P (Ĵ = Jj) = P (ês = es,j) = v̂j , for j = 1, 2, . . . , Es .
(143)

Let y be the size from the beginning of the sampled shard
to the beginning of the symbol. Then y is uniformly distributed
in the interval (0, Ĵ). For y in the interval (0, Ĵ−1), the symbol
only contains a part of the sampled shard, that is, it contains
a part of a single shard. The probability p of this event is

p =

∫ Ĵ−1

0

1

Ĵ
dx =

Ĵ − 1

Ĵ
. (144)

On the other hand, for y in the interval (Ĵ − 1, 1), the
symbol contains parts of the sampled shard, as well as of the
subsequent shard, that is, the symbol contains parts of two
shards. The probability of this event is 1 − p. Consequently,
the expected number E(I|Ĵ) of shards that have parts stored
in the symbol is

E(I|Ĵ) = 1 · p + 2 · (1− p) = 2− p
(144)
=

Ĵ + 1

Ĵ
. (145)

Unconditioning (145) on Ĵ and using (143) yields

E(I) =

Es∑
j=1

E(I|Jj)P (Ĵ = Jj)
(145)
=

Es∑
j=1

Jj + 1

Jj
v̂j

(14)(16)(114)
=

Es∑
j=1

Jj + 1

Jj
· Jj vj
E(J)

=
E(J) + 1

E(J)
= 1 +

1

E(J)
,

(146)

which is relation (135).

Substituting (135) into (134) yields (83).

□
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