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Abstract 
 

Remote process control and supervision 
applications developed over the TCP/IP networks 
require special communication models and techniques, 
which can guarantee the real-time and safety 
restrictions inherent to automation systems. This paper 
presents a reservation-based communication system 
architecture and a communication model based on 
data flow analysis that offer a good control over the 
transmission time of critical data.  As part of the 
model, an analytical method is proposed that allows a-
priory evaluation of the required minimum bandwidth 
necessary to assure the satisfaction of real-time 
transmission restrictions.  
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1. Introduction 
 

Remote process supervision and control systems 
require a communication infrastructure that supports 
reliable and safe real-time data transmission. These 
requirements are usually solved by using dedicated 
networks and industrial protocols, as presented in [1] 
and [2]. But these special purpose protocols are 
incompatible with general-purpose protocols used in 
local area networks and company intranets. If there are 
interoperability requirements between distributed 
control applications and organizational software, the 
incompatibility of industrial protocols and the TCP/IP 
stack may be a problem. Local computer networks and 
TCP/IP protocols, on the other hand, fail to satisfy 
real-time requirements because they apply the best-
effort principle in supplying communication services, 
and it is quite difficult to use them as infrastructure for 
real-time applications. 

During the last years, a significant research trend 
emerged for using best-effort (non-deterministic) 
networks for real-time communication. This trend was 
caused by technical developments such as the 
increasing network bandwidth (Gbps) and the 
development of new Quality of Service (QoS) 
mechanisms. The need for the integration of 
distributed control systems with other information 
systems that do not require special communication 
services was another cause.  

To satisfy real-time communication requirements 
on TCP/IP networks, solutions that enable a 
predictable network behavior and that also provide 
end-to-end delivery time guarantees have to be 
developed. 

In this paper we propose a reservation-based 
communication system architecture for distributed 
control applications on TCP/IP networks. As part of 
the solution, we define a control traffic model and a 
network bandwidth estimation method. 
 
1.1 Related work 
 

Several authors investigated the problem of 
accommodating real-time traffic on TCP/IP networks 
and proposed some solutions. 

Wijnants and Lamotte present in [3] a method for 
managing the network bandwidth for multiple client 
applications. Their communication middleware, the 
NIProxy, is able to partition available client bandwidth 
between real-time and non real-time traffic flows by 
arranging them in a stream hierarchy. This solution 
gives good results in improving client Quality of 
Experience, but it does not guarantee any end-to-end 
timing requirements for real-time traffic.  

Another approach is presented in [4], where the 
authors propose introducing a prioritization 
mechanism in the TCP/UDP/IP protocol stack, a 
mechanism which complies with the IEEE 802.1D 
standard. They evaluate the solution through 
simulation, using the OPNET simulator, by measuring 
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end-to-end latency of real-time packets in the presence 
of FTP traffic on the same network. Their conclusion 
is that a large part of the end-to-end message latency 
occurs at the end nodes, assuming that the network 
bandwidth is large enough to support all the traffic. In 
the referred paper the authors do not provide a solution 
for evaluating network bandwidth requirements, they 
just assume that the bandwidth is large enough.  

In [5], Martinez et al. present Earliest Deadline First 
(EDF) communication scheduler implementation 
adapted for high-performance networks. The 
characteristics of high-performance networks enabled 
them to simplify the calculus of packet deadline, taking 
into consideration only the previous packet’s deadline, 
packet size and average bandwidth.  

A good technique which enables the provision of 
real-time guarantees is the reservation of resources for 
each task, in accordance to its requirements. In [6] and 
[7] reservation techniques are combined with feedback 
techniques to provide delay and execution time 
guarantees for tasks that coexists in a shared 
environment.  

Schantz et al. describe two approaches, priority-
based and reservation-based, in developing distributed 
real-time middleware [8]. For both solutions, the 
communication infrastructure is an IP network. In the 
priority-based middleware the standard Differentiated 
Services (DiffServ) mechanism is implemented for 
network resource management. In the reservation-
based middleware the Integrated Services (IntServ) 
mechanism is implemented. Their main contribution is 
in the area of middleware implementation. But there 
are two quite important issues not addressed by this 
paper: (1) the provision of instruments for evaluating 
the resource requirements of real-time tasks and (2) the 
differentiation between hard and soft tasks. 

IntServ [9] [10] provides end-to-end per-flow QoS 
by means of hop-by-hop resource reservation within 
the IP network but impose a significant burden on the 
core routers. To reduce the complexity within each 
core router, alternative schemes, referred to as 
Measurement Based Admission Control Schemes 
(MBAC) have been proposed [11]. These schemes 
replace per-flow states with run-time link load 
estimates performed in each router. However, MBAC 
solutions still require significant modification of the 
existing Internet architecture, as core routers must 
support load estimation algorithms, and still need to be 
explicitly involved in per flow signaling exchange.  

A completely different approach is provided by 
DiffServ [12]. In DiffServ, core routers are stateless 
and unaware of any signaling. While DiffServ easily 
enables resource provisioning performed in a 
management plane for permanent connections, their 

widely recognized limit is the lack of support per-flow 
resource management and admission control, resulting 
in the lack of strict per flow QoS guarantees. A 
number of proposals, presented in the literature, have 
shown that per flow Distributed Admission Control 
schemes can be deployed over DiffServ architectures 
[13] [14]. Although significantly different in 
implementation, they share the common idea that 
accept/reject decisions are taken by the network 
endpoints and are based on the processing of 
“probing” packets, injected in the network at setup to 
verify the network congestion status. A “pure” 
Extended Admission Control (EAC) scheme, called 
Phantom Circuit Protocol-Delay Variation (PCP-DV) 
is proposed in [15]. The scheme determines whether a 
new connection request can be accepted based on 
delay variation measurements taken on the probing 
packet at the edge nodes. 

Reinemo et al. [16] propose and evaluate three 
different admission control schemes for virtual cut-
through networks, each one suitable for use in 
combination with DiffServ based QoS scheme to 
deliver soft real-time guarantees. Two of the schemes 
assume pre-knowledge of the network’s performance 
behavior without admission control and are both 
implemented with bandwidth broker. The third is 
based on endpoint/egress admission control and relies 
on measurements to assess the load situation. Due to 
the way the flow control affects latency and the nature 
of cut-through networks, latency and jitter properties 
are hard to achieve.  

An approach to quantify the impact of end-to-end 
QoS provisioning through a combination of both intra 
and inter-autonomous system (AS) traffic engineering 
(TE) is proposed in [17]. Two offline QoS-aware 
systems are deployed for this and a direct relationship 
between intra-AS and inter-AS TE is then established. 
The interaction between them is analyzed and both the 
decoupled and integrated approaches are presented.  

In [18], several possible algorithms for routing and 
scheduling which allow coexistence of QoS and best- 
effort flows are presented. The network algorithm 
takes into account state imprecision in routers, maxmin 
bandwidth allocation, and existing link state 
information. 

 
1.2 Our contribution 

 
This paper introduces a communication model, 

which is based on control data flow analysis and 
communication scheduling that uses a rate-monotonic 
algorithm. The communication model solves efficient 
delivery for short control messages over TCP/IP 
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networks and facilitates a-priori estimation of required 
network bandwidth for the reservation mechanism.  

A reservation-based communication system 
architecture is also proposed. Our solution uses 
Integrated Services/RSVP and the facilities of IPv6 
protocol as support for real-time communication. The 
implemented middleware translates real-time 
requirements to existing network services and is used 
to validate both the communication model and the 
system architecture. 

The remainder of the paper is organized as follows: 
Section 2 presents some specific communication-
related issues about distributed industrial control 
systems. In section 3 we discuss the details of the 
proposed system architecture. A new data flow-based 
traffic model is introduced in Section 4. Section 5 
describes the method for bandwidth estimation, based 
on communication scheduling. Section 6 covers some 
important implementation aspects. The experiments 
and results analysis are described in Section 7. Section 
8 concludes the paper.  
 
2. Problem description 
 

Distributed control systems are an integral part of 
the industrial automation domain. Their functionalities 
include data acquisition, monitoring and control of 
industrial processes. While the majority of the control 
systems are usually located within more confined area 
(e.g. plant area, company local network) and 
communications are usually performed using local area 
network (LAN) technologies that are typically reliable 
and high-speed, other are geographically distributed 
(e.g. SCADA systems) and need long-distance 
communication systems such as the Internet. 

Our research has the objective of solving the 
communication issues of distributed control systems 
which are deployed in the companies’ local TCP/IP 
networks. Usually, these networks are managed by the 
companies and the nodes (hosts, switches, routers, 
servers) are configured and administered by a 
company internal authority. Such a network has to 
accommodate two broad categories of traffic: non-real-
time and real-time. Non-real-time traffic can adjust to 
changes in delay and throughput and is generated by 
applications that include common Internet-based 
applications, such as file transfer, electronic email, 
remote logon, network management, and Web access. 
Real-time traffic does not easily adapt, if at all, to 
changes in delay and throughput and have 
requirements that include beside delay and throughput, 
delay variation and packet loss.   

In addition, these corporate networks may be 
connected to strategic partner networks and to the 

Internet, thus, making more use of Wide Area 
Networks (WANs) and Internet to transmit their data 
to remote stations. 

Most control applications must satisfy real-time and 
safety constraints. A very important parameter in real-
time environments is the system response time, defined 
as the time between the occurrence of an event and the 
corresponding response. In distributed systems, 
message delivery time, has a large influence on the 
system’s response time. Network protocols must 
incorporate message delivery time control mechanisms 
in order to guarantee maximum delivery time for 
control messages. These mechanisms assume a 
deterministic network behavior, which permit a-priori 
evaluation of maximum message delivery time. 

 When measuring the performance of a real-time 
communication system, the following parameters are 
taken into consideration [19]: 

• Deadline miss rate (fraction of all messages that 
are delivered to late at the destination) 

• Delay jitter (the variation of message delays) 

• Loss rate (fraction of all messages that are 
dropped on the route from source to 
destination) 

For hard real-time applications deadline misses are 
not acceptable, moreover message response time must 
be guaranteed a-priori. But delay jitter may not cause 
serious problems as long as deadlines are satisfied. In 
the case of soft real-time applications deadline misses 
are tolerable to some extent, but, under some particular 
conditions, delay jitter may have negative effects. In 
the case of distributed control systems traffic, one has 
to deal with both hard and soft real-time requirements. 
For these reasons, the goal is to minimize both 
message response time (end-to-end delay) and delay 
jitter. 

In the case of using a TCP/IP network for real-time 
communication, some important issues may arise. First 
of all, a maximum response time for packets has to be 
guaranteed. This can be a serious problem knowing 
that TCP/IP networks function on a best-effort basis.  

Another communication issue is message delivery 
efficiency. Data transmitted through the network in 
distributed control systems are quite different 
compared to data transmitted by usual applications 
which generate traffic in TCP/IP networks. Control 
applications use short, unstructured data (e.g. digital 
signal values). Process control data is generated, 
mostly, at well determined periods of time. The 
majority of supervision and control functions involve 
data acquisition, processing and storage, visualization 
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of process status and command issuing, which require 
a short reaction time.  

Control applications include different automation 
and computing devices, which are interconnected. In 
order to assure interoperability, the communication 
protocol must allow uniform and transparent access to 
system’s resources and it must be simple enough to 
allow implementation on devices with limited 
computing resources. 

Last but not least is the issue of real-time and non-
real-time traffic coexistence. In the case of remote 
process control it is quite possible to have both traffic 
(real-time) generated by the control system and traffic 
(best-effort) generated by other applications (e.g. 
office automation) that run in the same network. 
Network bandwidth has to be managed in order to 
assure real-time requirements for control traffic and 
also to assure fair treatment for the best-effort traffic. 

The objective of this paper is to take a new 
approach in solving some of the following 
communication issues: 

• Guarantee packet delivery time in TCP/IP 
networks in the presence of both real-time and 
non-real-time traffic 

• Assure predictability of  network behavior   

• Assure transmission efficiency of process 
control data   

• Provide device interoperability and uniform 
access to process control data 

 
3. System architecture 
 

In order to provide a comprehensive communication 
system architecture based on IP infrastructure so that 
to meet the challenges of quality of service 
provisioning for industrial control application we 
integrate in three major components: (1) industrial 
control applications and processes; (2) a middleware 
system (service manager) between the application and 
the protocol driver; this middleware closely interacts 
with Internet protocol stack; (3) network infrastructure 
based on IPv4 or IPv6 protocol. 

The first component of the system architecture 
represents quality of service demanding applications 
that use a QoS API to send requests to the service 
manager. These applications generate periodic and 
aperiodic traffic. The traffic is characterized by packet 
size, transmitting data rates, priority, and accepted 
latency. 

The middleware bridges the industrial applications 
and the underlying network systems by dispatching the 

application requests and returning status and feedback 
from the underlying system to the application. 
Examining the application requests and the available 
network resources, the middleware selects a 
provisioning service or service level, maps the 
application QoS to network-specific quality of service, 
and initiates resource allocation or renegotiates the 
parameters with the application before the flows’ 
source starts to generate any packets. 

The following components were integrated in the 
proposed middleware: 

• Traffic QoS specification 

• QoS negotiation 

• Traffic and QoS monitoring 

• Resource reservation 

• Data transfer 

 
3.1 Traffic QoS Specification and QoS 
Negotiation modules 
 

An application which wants to set up a connection 
in order to transmit packets to another application in 
the network uses the means of the traffic QoS 
specification to set up a reservation request first. This 
module is a generic API so that an application 
demanding quality of service is isolated from the 
complexity of the provisioning services. 

The application defines its generic QoS specification 
in terms of traffic profile which is composed of 
parameters that characterize the traffic stream or 
session (source IP address and port number, 
destination address, transport protocol) and parameters 
that define quantitatively the network performance 
requirements (transmitting rates, message size, 
transmission deadlines, latency), which can be 
specified using maximal, average and minimal values.  

The traffic QoS specification module contains a set 
of rules for converting the traffic characteristics to 
parameters in the underlying message model. 

Based on the input from the QoS specification 
module, the QoS negotiation module is responsible for 
authorizing the request and check if the network is able 
to support the new connection interacting with the 
resource reservation module for resource allocation. 
The goal of this module is to provide optimal quality 
of service with respect to critical parameters and 
previous requests. 

Application’s requests for quality of service 
parameters can be solved in two ways: positive, in case 



81

International Journal On Advances in Networks and Services, vol 1 no 1, year 2008, http://www.iariajournals.org/networks_and_services/

the resource reservation module sends a positive 
acknowledge to the QoS negotiation module that there 
are enough resources in the network to satisfy the 
request and the reservation is set along the path, and 
negative. In case of a negative notification, the 
application may invoke the QoS negotiation module in 
order to find what resources and services are available 
in the network and to adjust the quality of service 
requirements and start a new negotiating procedure. 

 
3.2 Traffic and QoS Monitoring module 
 

In this module components are included for 
monitoring network resources (available bandwidth, 
average utilization of a link, delay, jitter) and quality 
of service related statistics from routers (queue length, 
number of conforming/exceeding packets in bytes, 
number of dropped packets, CPU utilization). It also 
signals significant changes in resource availability.  

When an application establishes a network traffic 
stream, this module starts collecting its performance. It 
collects data from traffic stream, including quality of 
service specification, connection times, transmission 
rates and delays, and communicate the quality of 
service parameters to the QoS negotiation module in 
order to determine if there is any quality of service 
violation. All collected data is stored into a 
management information base. 

 
3.3 Resource Reservation module 
 

The resource reservation module is the ultimate 
authority for the resource handling in the proposed 
architecture (Fig. 1). Its main building blocks are 
admission control and reservation setup. Admission 
control implements request authorization by checking 
if the network is able to support the flow and the 
decision algorithm that nodes use to determine whether 
a new flow can be granted the requested quality of 
service with/without impacting earlier guarantees. For 
these tasks it closely interacts with the main entity, the 
resource reservation protocol. 

Resource ReSerVation Protocol (RSVP) [9] is used 
for resource reservation signaling. It is designed to 
enable the senders, receivers and routers of 
communications sessions to communicate with each 
other to reserve resources for new flows at a given 
level of QoS. On the other hand, the reservation 
protocol is responsible for maintaining flow specific 
state information at the end nodes and at the nodes 
along the path of the flow. 

Traffic QoS 
Specification

QoS 
Negotiation

Resource 
Reservation

Data Transfer

Traffic QoS 
Monitoring

Network

Industrial 
control 

application

 
Figure 1. System architecture – components 
 
RSVP requests result in resources being reserved in 

each node along the data path. Given below are the 
main attributes of this protocol: it requests resources in 
only one direction (it treats a sender separately from a 
receiver, although the same application might be 
running at both the sender and the receiver); is 
receiver-oriented (the receiver of a data flow initiates 
and maintains the resource reservation used for that 
flow); RSVP itself is not a routing protocol, but it is 
designed to work with the existing routing protocols; 
RSVP supports both IPv4 and IPv6. 

To make a resource reservation at a node [20], our 
RSVP daemon uses the admission control mechanism. 
If check fails, the RSVP returns an error notification to 
the QoS negotiation module that originated the request. 
If checks succeed, the RSVP daemon sets the 
parameters.  
 
4. The data flow model 
 

In order to make an analytical evaluation of the 
traffic generated by the distributed control system, it is 
required to classify this traffic and then, based on the 
identified types, to define the traffic model. 
 
4.1 Traffic classification 
 

Control traffic is generated by data exchanged 
between the control applications and industrial 
devices, such as: 

• Values obtained through data acquisition, with 
a well defined frequency (e.g. temperature in an 
oven, liquid level in a tank, engine state – 
started/stopped, etc.) 

• Commands generated at known periods of time 



82

International Journal On Advances in Networks and Services, vol 1 no 1, year 2008, http://www.iariajournals.org/networks_and_services/

• Operator commands (e.g. start/stop engine, 
increase oven temperature to 200 degrees, etc.) 

• Process events, alarms, alerts, etc.  

The previous categories of data generate periodic 
and aperiodic network traffic, with real-time 
constraints.   
 
4.2 Model definition 
 

To model the control traffic, we introduce data 
flows [21]. A data flow is the sum of all packets sent 
through the network that have the same source, 
destination, content and periodicity. Traffic between 
control applications and devices connected to the 
process is a sum of periodic and aperiodic data flows. 
As an example, consider an application that monitors 
the temperature in a room. Temperature sensors 
measure the temperature in the room at the same time, 
with the periodicity of five minutes and send the data 
to the process computer. This computer packs the 
temperature values into packets and sends them to the 
monitoring application. All these packets containing 
temperature values create a data flow. 

Fig. 2 shows the data flows established between 
two control applications connected to remote industrial 
processes, through a TCP/IP network. 

Periodic data flows include values obtained through 
data acquisition, control commands, which occur at 
well defined periods of time. Aperiodic data flows 
include commands issued by the application operator, 
high priority alerts and event signals. A number of 
parameters are identified for each data flow type. The 
parameters for periodic data flows are: inter-release 
period, priority (importance), content (process control 
data included in the flow), required packet delay (or 
response time), transmission deadline, source, 
destination and packet size. The parameters for 
aperiodic data flows are: priority, content, required 
packet delay, transmission deadline, source, 
destination and packet size.  

In real-time task modeling, it is a common practice 
to assume that aperiodic tasks have a minimum inter-
release period, which is given by process related 
parameters. Because all tasks are considered periodic, 
scheduling and feasibility analysis are simplified. For 
the same reasons, we choose to make the same 
assumption (minimum inter-release period) for 
aperiodic data flows. 

A data flow is formally defined as an n-tuple: 
 

),,,,,,,( cDestSrclDrPTDF =                           (1)                                    
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Figure 2. Data flows between control 

applications 
 
The components of the n-tuple are the data flow 

parameters. T is the inter-release period for periodic 
data flows and the minimum inter-release period for 
aperiodic data flows.  P is the priority, r is the required 
packet delay or response time, D is the transmission 
deadline and l is the size of a data flow packet. The last 
three components are the source (Src), destination 
(Dest) and content (c) of the data flow.  
 
4.3 Communication optimization 
 

The protocols from the TCP/IP stack are optimized 
to deliver large packets of data in a best-effort manner. 
Process control messages, on the other hand, are very 
short (from a few bytes to hundreds of bytes); they 
have periodic occurrence and real-time constraints. If 
very short periodic messages are packed and released 
in a TCP/IP network, the protocol overhead is very 
large compared with the payload data. Because, 
messages with short period of occurrence (e.g. 
seconds, milliseconds) can create large amount of 
traffic although few effective data is transmitted, it can 
be said that the network is inefficiently utilized for data 
transmission. 
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Figure 3. The algorithm pseudocode for the 

aggregation of data flows 
 
To optimize the transmission of control packets, we 

can adopt the strategy of aggregating control data from 
different process devices into the same data flow. 

To organize control data into larger data flows, the 
following parameters must be considered:  

• Data acquisition periodicity, assuming that 
devices which perform data acquisition with the 
same period read the sensor values virtually at 
the same time 

• Data priority  

• Data source and destination  

By performing data aggregation, the data flow 
packets contain larger amounts of effective data, hence 
increasing the efficiency of control data transmission. 

The specification of data flows for a control system 
is obtained using the algorithm presented in Fig. 3. 
First, an array of data flows (DF) is created by 
defining a data flow for each piece of process data. 
The parameters are set for each data flow. The array of 
data flows is then sorted by data flow period. To 
aggregate data flows that have similar characteristics, 
each periodic data flow is compared to all other 
periodic data flows that have the same period 
(DF[i].period == DF[j].period). If the data flows 
have the same source (DF[i].src == DF[j].src) and 
destination (DF[i].dest == DF[j].dest), they are put 
together in the same data flow. The aggregated data 
flow will contain data from both initial data flows, will 
have the highest priority 
(max(DF[i].priority,DF[j].priority)) and the smallest 
deadline (min(DF[i].deadline,DF[j].deadline)) of the 
two data flows. The first data flow will be substituted 
by the aggregated data flow and the second data flow 
will be deleted.  

For aperiodic data flows, which cannot merge with 
other flows, transmission efficiency is reduced. A 
solution for these flows, if their frequency of 
occurrence is high, is to reserve space for aperiodic 
data in periodic flows. This space (e.g. a few bytes) is 
used only if the aperiodic event takes place right 
before a periodic data flow packet is sent. 
 
5. Communication scheduling 
 

Solving the issue of message transmission time 
control is critical in a distributed control system. The 
system architecture proposed in this paper uses a 
TCP/IP network as a communication infrastructure. 
The main challenge in this case is guaranteeing real-
time constraints on a best-effort communication 
infrastructure. For solving this problem, a bandwidth 
reservation mechanism is used. 

The bandwidth reservation mechanism requires the 
estimation of network bandwidth for all traffic 
generated in the system. For this purpose we adopted a 
method commonly used in the case of real-time tasks, 
the worst case scenario analysis using the rate-
monotonic scheduling algorithm [22].  

In our approach, each data flow is a “task” and the 
network is the “processor”, which has to be shared 
between all “tasks” in the system. Priorities are 
assigned to all data flows in a rate-monotonic manner. 
This way, a data flow which has a lower period will 
have a higher priority. Periodic and aperiodic data 
flows are taken into consideration for scheduling. 

count = 0; 
Foreach process_data _value 
{ 
     DF[count] = Create_data_flow (); 
     Set_data_flow_parameters ( DF[count] ); 
     count++; 
} 
Sort_data_flows_by_period (); 
For ( i=0; i < count-1; i++ )  
{ 
     If ( Periodic ( DF[i] ) &&  

! Marked_for_delete ( DF [i])) 
     {  
          j = i+1; 
          While ( DF[i].period == DF[j].period )  
          {     
               If ( Periodic ( DF[j] ) ) 
               { 
                    If ( DF[i].src == DF[j].src )  
                        and ( DF[i].dest == DF[j].dest ) 
                    { 
                          Aggregate ( DF[i], DF[j] ); 
            Mark_for_delete ( DF[j] ) 
                     } 
               } 
               j++; 
          } 
     } 
}   
Foreach DF  
{ 
     If (Marked_for_delete ( DF ))  
     { 
      Delete ( DF ); 
     } 
} 
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Aperiodic data flows are considered to have a 
minimum inter-release period. The next step is to 
compute the response time for each data flow. The data 
flow system is feasible if, for each data flow, the 
response time is less than its transmission deadline (r < 
D). In this work we consider that transmission deadline 
for a data flow is equal to its inter-release period (T = 
D). By obtaining the appropriate values for the 
response time of all data flows, in the worst case, a 
maximum value for the required network bandwidth 
can be derived. The maximum bandwidth value 
obtained is used to make resource reservations. In this 
way, it can be guaranteed that actual response time for 
each data flow will be less or equal than the computed 
response times.  

It is considered that the worst case response time 
for a data flow happens when a packet has to wait for 
the transmission of packets that belong to all data 
flows with higher priority and for one packet with 
lower priority, but with the largest transmission time. It 
is also assumed that all data flows start at the same 
time.  

In order to compute the data flow response time (ri) 
the following variables are taken into consideration:  

• The delay caused by the devices found on the 
network path (tdelay) 

• The transmission time of packets that belong to 
the data flow (Ci) 

• The data flow’s inter-release period (Ti) 

• The data flow’s priority (Pi) 

• The transmission time of packets that belong to 
data flows with higher priority  

• Maximum transmission time of packets that 
belong to data flows with lower priority 

• The number of hops from source to destination 
(nHops) 

Response time for each data flow is computed using 
the following set of equations:  
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The response time is obtained through iteration, 
until t

i
t

i rr =+1 . There are two important conditions 
which have to be imposed: 

• All response times have to be less than the 
corresponding deadlines 

• Network utilization has to be less than 100%  

The bandwidth value is gradually increased (with 
10%) while the response time and utilization are 
computed, until these requirements are met.   

In the first iteration, the response time of a data 
flow is computed by summing up the transmission 
time, the delay caused by the network devices such as 
switches and routers, and the transmission time of all 
other data flows which have higher priority. In 
subsequent iterations, the response time equation has 
two new components, the maximum transmission time 
of data flows which have lower priority 
( { }iPkPkCMax < ) and the sum of transmission time 

of all packets of higher priority that are likely to be 
released while the packet is being transmitted through 
the network. The number of packets with higher 
priority that influence the response time of the data 
flow equals the number of packets that are released in 
the response time of a packet from the data flow. To 
decrease the number of iterations, the time interval 
when the actual packet is being transmitted (Ci) is 
subtracted from the response time, as in that time 
interval packets from other data flows can not be 
transmitted.  

The transmission time for packets which are 
included in a data flow is computed as follows:   

 

Bandwidth
lengthPacketC _

=                                 (3)         

 
The delay caused by network devices can be 

approximated by using a mean round-trip time of a 
probe packet sent on the same route on which the 
bandwidth reservation will be made. 

As the response time is computed recursively, the 
computation time could be a problem. In our case, 
because bandwidth requirements are assessed and 
reservations are made before starting the control 
system, a larger computation time is not an issue.  
 
6. Implementation details 
 

To validate the proposed system architecture, the 
data flow model and the method of estimating network 
bandwidth, a prototype of a distributed control system, 
was developed. The prototype includes the 
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communication middleware, the industrial application 
and the industrial device simulator (for the provision of 
industrial process data).  

The communication middleware runs on a network 
infrastructure based on TCP/IP stack, with IPv6 as a 
network protocol. The solution adopted [23] is to use 
the IPv6 Traffic Class and Flow Label fields. The 
Traffic Class field enables a source to identify desired 
traffic-handling characteristics of each packet relative 
to other packet from the same source. The intent is to 
support various forms of services. In case of IPv6 
standard [24], a flow is defined as a sequence of 
packets sent from a particular source to a particular 
destination for which the source desires some special 
handling by the intervening routers. From the source’s 
point of view, a flow is just a sequence of packets that 
are generated from a single application instance at that 
source and have the same transfer service 
requirements. From the router’s point of view, a flow 
is a sequence of packets that share attributes that affect 
how these packets are handled by the router. In 
principle, all of a user’s requirements for a particular 
flow could be defined in an extension header and 
included in each packet, but for our implementation, 
we leave the concept of flow open to include a wide 
variety of requirements and adopt the flow label, in 
which the flow requirements are defined before traffic 
generation and a unique flow label is assigned to the 
flow. 

The RSVP module is designed as a state machine. 
The objects defined in this module represent: 

• RSVP sessions 

• State information extracted from PATH 
message and information from RESV message 

• Reservations installed in an outgoing interface 

• Information about a previous hop in a session, 
i.e. the last reservation that has been sent to this 
hop 

For each RSVP session all relevant information is 
bundled and the destination address and port is saved. 
From each PATH message all relevant information is 
held, i.e., the sender’s address and traffic specification, 
routing information. For each reservation requested 
from a next hop, reservation specification is held, i.e., 
the FlowSpec, which determines the amount of 
resources that are requested, depending on the service 
class. 

The industrial control application uses all the 
facilities offered by the communication middleware 
and implements the following functionalities:  

• Remote process control and visualization  

• Input and output data flow definitions for 
devices participating in the industrial process  

• Control data flow through commands sent to 
devices connected to processes  

• Specification and negotiation of resources 
needed for communication with other devices  

• Receive and process data flows from industrial 
devices 

• Register data flow delay time  

The operator can visually create the diagram of the 
industrial process, by dragging the symbols of different 
types of devices on the control board. Next, the 
operator has to specify input data flows (data received 
from devices connected to the process) and output data 
flows (commands sent to devices) in order to establish 
communication parameters.  

After the definition of data flows, the negotiation 
process for resources starts. Input and output data 
flows are analyzed and, as a result, bandwidth needed 
to satisfy real-time communication constraints is 
computed. The application sends a query asking for the 
available bandwidth and round-trip time to destination 
process. The response time can be guaranteed only for 
the data flows having the period less than the delay 
caused by the network devices (e.g. switches, routers). 
If the available bandwidth is insufficient, data flows 
having the smallest period are deleted, data is 
recomputed and application begins the resource 
reservation process. After the negotiation and 
reservation process, the application can start to send 
and receive data flows.   

The industrial device simulator sends periodical 
data flows (requested by the control application) 
containing process values randomly generated from a 
predetermined range and receives periodical data flows 
representing commands from the control application 
for devices connected to the process. Devices cannot 
negotiate resource reservations for generated data 
flows nor to specify quality of service parameters. The 
control application connected to these devices is 
responsible for the negotiation and bandwidth 
reservation. 

An important issue encountered during the 
implementation of both the industrial control 
application and the device simulator is the 
specification of data flows. In order to assure the 
device and application interoperability, data flow 
parameters and content are specified using XML. In 
this way messages between applications and devices 
are interpreted easier and the access to process and 
control data is uniform.  
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Figure 4. Data flow specification in XML 

 
Fig. 4 shows an example of a periodic data flow 

specification in XML. 
 
7. Experiments 
 

We conducted two sets of experiments. First, we 
used a simulator to validate the proposed method for 
network bandwidth estimation. Second, we performed 
some tests using the implemented control system 
prototype, which was deployed on our experimental 
infrastructure. 

 
7.1 Estimation of network bandwidth 
 

For the first set of experiments we measured the 
response time, jitter and packet loss for multiple 
periodic real-time data flows, which were released in a 
simulated TCP/IP network. The main objective of 
these experiments was to check if the computed 
network bandwidth value guarantees the required 
response time and low jitter for all data flows. 

The simulation study was performed on Network 
Simulator (NS-2) [25], version 2.33. The simulation 
results were evaluated for different scenarios using the 
topology depicted in Fig. 5. 

 

 
 

Figure 5. The topology used for simulations 
 

Table 1. Parameter settings for periodic real-
time data flows 

Flow Period (ms) Packet size (B) 

F1 10 300 
F2 120 300 
F3 50 300 
F4 75 300 
F5 520 300 

Table 2. Response times (1st scenario) 
Response time (ms) 

Flow Measured 
maximum 

Measured 
average 

Measured 
minimum 

F1 50.66 28.87 25.33 
F2 50.66 33.01 25.33 
F3 50.66 32.98 25.33 
F4 50.66 30.48 25.33 
F5 50.66 33.03 25.33 

 
The topology consists of 5 nodes. These nodes are 

connected with full-duplex bidirectional links. All 
links have the same available bandwidth and 
propagation delay. In this paper it is assumed that per 
link delay is negligible. Constant-Bit-Rate (CBR) 
agents were attached to the source node (S) and used 
to generate periodic, fixed size packet traffic in the 
network. User Datagram Protocol (UDP) was used as 
transport layer protocol to minimize the overhead of 
establishing a connection. Five periodic data flows 
were defined, having the same source (S) and 
destination (D). The parameter settings are 
summarized in Table 1. 

Two scenarios were simulated. Measurements were 
made to compare data flows’ response times with the 
corresponding deadlines and to observe to what extent 
the jitter affects the response time of packets. 

In the first scenario the network bandwidth was set 
to the minimum value which can accommodate all 
defined data flows (379 Kbps). Results analysis 
revealed that the average measured response times 
were acceptable in the case of data flows which had 
larger periods, but for the other data flows response 
times were very often greater than the corresponding 
deadlines. Jitter measurements showed that even if the 
average value was quite small, the maximum value 
was very large, approximately equal to the measured 
minimum response time. For this scenario no packets 
were lost.  

For the second scenario, equations (2) were used to 
derive the maximum bandwidth needed by the set of 
data flows in order to satisfy the deadlines. The 
computed maximum bandwidth was 2106 Kbps. As 
expected, a considerable difference can be observed 
between the measured maximum response time and the 
maximum computed response time. This difference is 
due to the fact that the worst-case scenario does not 
occur during simulation time, thus the resulting 
network utilization is low. All the deadlines were 
satisfied and the average delay jitter is very small for 
the flow with the largest period. There was no packet 
loss.  

For both scenarios, measured values can be found 
in Tables 2-5 and the comparison between data flows 

<Flow> 
      <ID> data_flow_ID </ID> 
      <SrcIP> source_IP </SrcIP> 
      <DestIP> destination_IP </DestIP> 
      <Per> data_flow_period </Per> 
      <Pri> data_flow_priority </Pri> 
      <Name> data_flow_symbolic_name </Name> 
     <Content>  

XML_content_specification  
     </Content> 
 </Flow> 
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in terms of response time and jitter are shown in Fig. 
6-9.    

 
7.2 Tests performed using the prototype 
 

To test the distributed control system prototype, two 
PCs connected in a local network were configured as 
traffic source and destination. A static route consisting 
of another two PCs which played the role of routers 
was established between these nodes. The network 
infrastructure was based on IPv6 protocol. The 
communication middleware, the control application 
and the device simulators were deployed on the test 
infrastructure.  

A process schema containing monitoring elements 
connected to two data flows was specified in the 
control application. The first data flow (Flow 1) has a 
2 seconds period and 270 byte packet size. The second 
data flow (Flow 2) has a 0.5 second period and the 
same packet size. After starting the remote control 
application and the device simulators, response time 
for all packets was measured.  

  
Table 3. Response times jitter (1st scenario) 

Response time jitter (ms) 
Flow Measured 

maximum 
Measured 
average 

Measured 
minimum 

F1 25.33 3.22 0 
F2 18.68 3.58 0 
F3 19 4.33 0 
F4 24 4.41 0 
F5 25.33 3.59 0 

 
Table 4. Response times (2nd scenario) 

Response time (ms) 
Flow Measured 

maximum 
Measured 
average 

Measured 
minimum 

Computed 

F1 6.078 3.103 3.039 9.12 
F2 6.078 3.839 3.039 68.4 
F3 6.078 3.870 3.039 27.36 
F4 6.078 3.447 3.039 41.04 
F5 6.078 3.724 3.039 86.64 

 
Table 5. Response times jitter (2nd scenario) 

Response time jitter (ms) 
Flow Measured 

maximum 
Measured 
average 

Measured 
minimum 

F1 3.039 0.114 0 
F2 2.279 0.547 0 
F3 2.279 0.484 0 
F4 3.039 0.815 0 
F5 3.039 0.002 0 

 
 

Measurements were made in two cases. In the first 
case, the communication middleware was used to make 
network bandwidth reservations before starting the 
traffic. In the second case, no reservations were made 
for the real-time traffic. For both data flows, response 
time measured during tests was less than the maximum 
allowed response time, in the case of reservations, 
presented in Table 6.  

The measurements showed that the proposed 
system architecture, traffic model and method of data 
flow scheduling are able to satisfy the control system's 
requirements and guarantee a maximum delivery time.  
They also showed that the analytical evaluation of the 
response time is an upper limit to the measured time 
parameters.  

If no reservations were made, for both data flows, 
measured response time fluctuated between a 
minimum of 0.367 seconds and a maximum of 0.617 
seconds, as can be observed in Table 7. Packets of 
Flow 1 have the same priority on the network as 
packets of Flow 2, even though Flow 2 requires a 
better response time. Real-time requirements were not 
satisfied, because for Flow 2 the maximum measured 
response time was greater than the computed 
maximum response time.  

Fig.10 and Fig. 11 show charts that compare the 
computed response time for the two data flows with 
the measured response time, on both test scenarios.  

 
Table 6. Measured response time for 

experimental data flows with reservations 
 Flow 1 Flow 2 Flow 1 Flow 2 

Computed 
bandwidth 9 kbps 

Available 
bandwidth 100 kbps 64 Mbps 

Measured RTT 1.5 ms 0.65 ms 
Computed 
maximum 

response time 
0.745 s 0.497 s 0.744 s 0.496 s 

Measured 
response time 0.685 s 0.372 s 0.677 s 0.367 s 

 
Table 7. Measured response time for 

experimental data flows without reservations 
 Flow 1 Flow2 

Computed bandwidth 9 kbps 

Available bandwidth 100 Mbps 
Measured RTT 0.4 ms 0.4 ms 

Computed maximum response 
time 0.744 s 0.496 s 

Maximum measured response 
time 

0.617 s 
 

0.617 s 
 

Minimum measured response 
time 0.367 s 0.367 s 
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Figure 6. Response times (1st scenario) 
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Figure 7. Response times jitter (1st scenario) 
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Figure 8. Response times (2nd scenario) 
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Figure 9. Response times jitter (2nd scenario) 
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Figure 10. Response time measurements 
using reservations 
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Figure 11. Response time measurements 
without using reservations 

 
8. Conclusion 
 

This paper presents a new approach in solving 
network delivery time control and data delivery 
efficiency in distributed control systems, on TCP/IP 
infrastructures. We introduce the data flow traffic 
model which provides the basis for communication 
scheduling, and a reservation-based communication 
system architecture. Our solution uses Integrated 
Services/RSVP and the facilities of IPv6 protocol as 
support for real-time communication. 

The experimental results show that the implemented 
prototype satisfies the real-time constraints. This 
proves the validity of the proposed communication 
model and the method for computing the required 
network bandwidth. Moreover, the analytical 
evaluation of response time demonstrated to be an 
upper limit for measured delivery time. 
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