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Abstract
Measurements of local and wide-area network traf�c

in the 90's established the relation between burstiness
and self-similarity of network traf�c. Several papers
demonstrated that the widely used Poisson based
models could not be applied for the past decade's
network traf�c. Recent papers have questioned the
direct applicability of these results in networks of the
new century. Some authors of these papers demand
the revision of previous assumptions on the Poisson
traf�c models. They argue that as newer and newer
network technologies are implemented and the amount
of Internet traf�c grows exponentially, the burstiness of
network traf�c might cancel out due to the huge number
of aggregated traf�c �ows. Some results are based on
analyses of high-speed Internet backbone links and other
traf�c traces. We analyzed the same traf�c traces and
applied novel methods to characterize them in terms of
packet interarrival time. We demonstrate that the series
of interarrival times in the 2003 traces is still close
to a self-similar process. Since then, new traf�c traces
have been made public, including ones captured from
OC-192 links of the Internet backbone in 2008. We also
compare the 2008 traf�c traces with the ones captured
in 2003 and apply our analytical methods to illustrate
the tendency of Internet traf�c burstiness in recent
years. We found that the burstiness of the interarrival
times decreased signi�cantly compared to earlier traces.

Index Terms�Internet traf�c; burstiness; Lévy Flights.

1. Introduction
Network congestion can be caused by several factors.

The most dangerous cause of congestion is the burstiness
of the network traf�c. Recent results make evident that
high-speed network traf�c is more bursty and its vari-
ability cannot be predicted as assumed previously. It has
been shown that network traf�c has similar statistical
properties on many time scales. Traf�c that is bursty

on many or all time scales can be described statistically
using the notion of self-similarity. Self-similar traf�c has
observable bursts on all time scales.
One of the consequences of burstiness is that combin-

ing the various �ows of data, as it happens for example
in the Internet, does not result in the smoothing of
traf�c. Measurements of local area network traf�c [20]
and wide-area network traf�c have proved [21] that the
widely used Markovian process models could not be
applied for today's network traf�c. If the traf�c were
Markovian process, the traf�c's burst length would be
smoothed by averaging over a long time scale contra-
dicting with the observations of today's traf�c character-
istics. Combining bursty data streams will also produce
bursty combined data �ow. Various papers discuss the
impact of the burstiness on network congestion [1], [3]
and [8]. Their conclusions are that congested periods can
be quite long with losses that are heavily concentrated.
The self-similarity of network traf�c was observed

in numerous papers, such as [3], [9], [22] and [25].
These and other papers showed that packet loss, buffer
utilization, and response time were totally different when
simulations used either real traf�c data or synthetic data
that included self-similarity [10], [11].
Papers, such as [16] and [31] challenge the direct

applicability of these results for today's network traf-
�c. They argue that traditional Poisson models can be
used again to characterize the aggregate traf�c �ow of
multiplexed large numbers of independent sources in
the Internet backbone [17], [30]. Their explanation is
that as the amount of Internet traf�c grows dramatically
mainly due to the implementation of �ber optic backbone
links, the burstiness of network traf�c might cancel out
as a result of the large number of multiplexed packet
�ows. The paper describes the analyses of packet traces
captured in the Internet backbone. The authors found
that packet arrivals followed the Poisson distribution at
sub-second time scales, appeared to be nonstationary
at multi-second time scales, and the same packet trace
showed evidence of long-range dependence at scales of
seconds and above.
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By the end of 90's, many previous works also analyzed
the burstiness and the correlation structure of Internet
traf�c in various time scales according to the behavior
of the Transmission Control Protocol (TCP) in terms of
timeouts, congestion avoidance, self-clocking, etc. The
paper [5] applied a wavelet-based multiresolution tool
to analyze the scaling behavior of Internet traf�c on
short time scales. This paper was one of the �rst works
showing evidence that Internet traf�c could be analyzed
by a multifractal model. Recent studies in [[7], [2],
and [24]] have also proved that Internet traf�c exhibits
not only monofractal properties, but also a multifractal
nature. Actual measurements have demonstrated that
low-aggregate network traf�c can have more complex
properties than assumed previously.
The paper [12] illustrated that short time scale bursti-

ness was independent of the TCP �ow arrival process and
showed that in networks with light traf�c, correlations
across different �ows did not have an effect on the
short scale burstiness. Internet traf�c was classi�ed in
alpha and beta �ows in the paper [28]. It was shown
that large transfers over high-capacity links, called alpha
�ows, produced non-Gaussian traf�c, while the beta
�ows, low-volume transmissions, produced Gaussian and
long-range dependent traf�c. Long sequence of back-to-
back packets can cause signi�cant correlations in short
time scales. The reasons of sending long back-to-back
packets in TCP or UDP sources were analyzed in [14],
such as UDP message segmentation, TCP slow start, lost
ACKs, etc. The same authors in [15] identi�ed the actual
protocol mechanisms that were responsible for creating
bursty traf�c in small time scales. It was shown that
TCP self-clocking could shape the packet interarrivals
of a TCP connection in a two-level ON-OFF pattern.
The pattern causes burstiness in time scales up to the
round-trip time of the TCP connection.
In our paper we analyzed the same traf�c traces as in

[16] and [35], and applied novel methods to characterize
them. The network traf�c traces are considered as a
time series of the arrival times of the packets. Due
to space limitation the analysis of the packet lengths
is omitted. The arrival times form a monotone in-
creasing series. The interarrival times are independent,
identically distributed random variables. The classical
modeling of the interarrival times goes back to Erlang,
who successfully modeled the phone calls by a Poisson
process with interarrival times distributed exponentially.
We generalize his model by changing the distribution
to a general family of in�nitely divisible distributions
and by the corresponding Lévy processes [29]. Since
a subset of these distributions�called ��stable dis-
tributions (asymmetrical in our case)� provides self-
similar processes, we can analyze not just if the packet

traces are self-similar, but we go beyond the results of
previous papers and measure how close these packet
traces are to being self-similar. The instrument of our
analysis is the so called Truncated Lévy Flights [34].
The current paper is a continuation of our research
project to investigate the tendency of the Internet's traf�c
burstiness. As part of the research project we have been
comparing traf�c traces captured from various years
covering the last and current decade. The current paper
relies on traces captured in 2003 and 2008 in terms of
burstiness of the interarrival times. In another paper [36]
we already analyzed the traces captured only in 2003 in
terms of the burtiness of both the interarrival times and
packet lengths. The current paper uses similar statistical
methods as in [36] and investigates the traces captured in
2008 and compares it to the characteristics of the traces
from 2003. In this paper we demonstrate that the 2003
traces are totally different from the 2008 traces in terms
of burstiness and we conclude that based on the sample
traces, the Internet is losing its self-similar nature that
was so prevalent for years.
The second section describes the mathematical models

applied for the analyses of the traces. The third section
discusses the types of traces used in our work. The fourth
section presents the results of the application of our
model for the data, followed by the conclusion in section
�ve.

2. Model: Smoothly Truncated Lévy
Flights
In this section we introduce a model: The Smoothly

Truncated Levy Flights (STLFs). It will be applied in
section IV for describing the distribution of the interar-
rival times of the packet traces. The time series of the
interarrival times under consideration is the sequence of
the differences between consecutive arrivals of packets
collected in the Internet backbone. The data collection
details are described in section III.
The Truncated Lévy Flights were introduced by Man-

tegna and Stanley [23] as models for random phenom-
ena, which exhibit properties at small time-scales similar
to those of self-similar Lévy processes. The Truncated
Lévy Flights have distributions with cutoffs at large
time-scales, i.e., they have �nite moments of any order.
Building on Mantegna and Stanley's ideas Koponen [19]
de�ned the Smoothly Truncated Lévy Flights (STLFs),
which had the advantage of a nice analytic form. Inde-
pendently, the same family of distributions was described
earlier by Hougaard [13] in the context of a biological
application. The concept of the more general distribution,
called tempered stable distribution, is due to Rosiński
[27] (see, e.g., [34] and [33] for a partial history of these
works).
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Since the interarrival times are positive, we consider
STLF with a totally asymmetric distribution. It is given
by the cumulant function (log of the characteristic func-
tion)

 X (u) = a� (��) [(�� iu)� � ��] ; (1)

where � 2 (0; 1) and �; a > 0. A more general
discussion of STLF is given in Appendix C. This dis-
tribution depends on three parameters: the index �, the
truncation parameter �; and the scale parameter a. These
parameters provide some information about the position
of the distribution in the following manner:
Property 1. If � and a are �xed and � tends to zero,

then the limit distribution is a totally asymmetric �-
stable distribution and the corresponding Lévy process
is self-similar.
Property 2. If � and a are �xed and � tends to zero,

then the limit distribution is Gamma with parameters
(a; �). In particular, if a is 1, then the limit is exponen-
tial, therefore the Lévy process is Poisson.
Property 3. If � and � are �xed, then for small a

the distribution is close to the �- stable distribution and
for large a the distribution is close to Gaussian. More
precisely, moments of any positive order % (including
fractional) have the following asymptotics:

logE(jXj%) �
�
min(%=�; 1) log a+ c1; as a! 0;
% log a+ c2; as a!1:

For m � 1, the cumulants, derived from the cumulant
function (1), are given in terms of the parameters �, �,
and a, namely,

cumm (X) = a���m� (m� �) : (2)

3. Traf�c traces
The traf�c traces were captured from OC-48 (2.5

Gbps) connections of the Internet backbone collected by
CAIDA [38]1 (The Cooperative Association for Inter-
net Data Analysis). CAIDA's OC-48 traf�c gathering
devices compile packet headers at large peering points
of several large Internet Service Providers (ISPs) in
the United States. We used the traces collected in both
directions of an OC-48 link at AMES Internet Exchange
(AIX) on three different times. The traces have been
divided into a collection of 5-minute �les and another
collection of 60-minute �les to allow downloading the
traces easier. These packet traces include the packet
headers of packets with IP addresses anonymized with
the pre�x-preserving Crypto-PAn library. These traces
include only IPv4 traf�c. The precision of the traces is

1Support for CAIDA's OC48 Traces is provided by the National Sci-
ence Foundation, the US Department of Homeland Security, DARPA,
Digital Envoy, and CAIDA Members.

in the order of microseconds. Table 1 includes the details
of the traces.
3.1. OC-192 traces
We also analyzed packet traces collected for four

hours by CAIDA in May, 2008. The data sets contained
anonymized traf�c traces from an Internet data collection
monitor on an OC-192 Internet backbone link (9953.28
Mbps). The Internet data collection monitor was located
in Chicago, IL, and was connected to a Tier1 ISP
between Chicago, IL and Seattle, WA. The traf�c was
captured by two network monitoring cards in both direc-
tions. A single card was connected to a single direction
of the full-duplex backbone link. The directions were
denoted by A (Seattle to Chicago) and B (Chicago to
Seattle). The anonymized trace data contains layer 3 and
layer 4 protocols: IP for layer 3, and TCP, UDP or ICMP
for layer 4. These packets are originally encapsulated
in layer 1 and layer 3 protocols. On the physical layer
the protocol is PoS (Packets over SONET), on the data
link layer the protocols are cHDLC (Cisco's version
of HDLC), or PPPoHDLC (PPP over HDLC). Between
layer 2 and 3 the service provider also inserts one or
more MPLS headers [4].
The packets were captured more then an hour resulting

in two traces direction A and B (Compressed size of
direction A is 4.1 GB, compressed size of the trace in
direction B is 14 GB).
The traces were captured by dedicated network mea-

surement cards built by Endace Measurement Systems
especially designed to provide very high quality packet
time-stamps. Since GPS transmitters broadcast the cur-
rent time based on atomic clocks, all Endace network
measurement cards are equipped with ports allowing a
GPS receiver to be connected providing clock synchro-
nization.
Endace's DAG Universal Clock Kit (DUCK) provides

per packet time-stamps that are both high resolution and
capable of accurate synchronization to the Coordinated
Universal Time (UTC). When a packet is captured, the
DUCK time-stamps the beginning of the packet arrival in
hardware unlike in NIC-based packet capture. NIC based
time-stamping occurs in the host computer sometime
after the packet has arrived estimating a time-stamp for
the end of the packet arrival. The DUCK represents
time in a single 64-bit �xed point number representing
seconds since midnight on the �rst of January 1970. The
high 32-bits store the integer number of seconds, the
lower 32-bits contain the binary fraction of the second.
This method provides a resolution of 232 seconds, or
approximately 233 picoseconds.
Since the card's output �le format was not supported

by the majority of traf�c analysis tools, CAIDA con-
verted the original traces to a format with nanosecond

102

International Journal On Advances in Networks and Services, vol 2 no 1, year 2009, http://www.iariajournals.org/networks_and_services/



Date Duration Length of the trace in bytes
Aug 14, 2002 3 hours, with 1 hour gap in one direction 108GB
Jan 15, 2003 1 hour, in both directions 30GB
Apr 24, 2003 1 hour, in both directions 13GB

Table 1. Details of the traces.

timestamp precision along with the packet lengths for
both IPv4 and IPv6 packets separately. It is noticeable
from the size of the traces that direction A had less traf�c
then direction B. A possible reason of the difference is
that many content servers were located at one end of the
link. Another interesting observation of the traf�c was
that based on a smaller sample, only a small portion
(~8.6%) of IPv4 addresses was captured as both source
and destination IP addresses in packets after merging
both directions. This could be the indication that the
network traf�c in this area of the backbone may have
been routed asymmetrically (Email communications with
Emile Aben, Data Administrator, CAIDA/SDSC/UCSD).

4. Packet interarrival times
The series of interarrival times in the OC-48 traces

are modeled as stochastic series. If the series corre-
spond to a Poisson process, then the interarrival times
have exponential distribution. In Figure 1 we �tted
the Gamma distribution to the interarrival times of the
OC-48 traces captured on April, 24, 2003 (20030424-
001000-0-anon.pcap). (The Gamma distribution is more
general than the exponential distribution. It reduces to
the exponential distribution, if the shape parameter is
1:)

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Gamma fitting (0.945761,  30.3951)

microsecond

Fig. 1. Gamma distribution of the interarrival times.

Although the estimated parameters (0.945761,
30.3951) suggest that the distribution of the interarrival

times is close to the exponential distribution, the
Kolmogorov-Smirnov test strongly rejects the hypothesis
that the series follows the Gamma distribution.
Consequently, the corresponding process cannot be a
Poisson process. Therefore we reject the hypothesis that
the packet trace follows a Poisson process.
We continue the search for a distribution that would

be suitable for characterizing the interarrival times by
applying the family of Lévy processes.
The Poisson process is one of the simplest Lévy

processes (see, e.g., [29]) with the main assumption
that the increments�the interarrival times� are inde-
pendent, homogeneous and exponential. Changing the
distribution of the increments we obtain a wide variety
of Lévy-stable processes as candidates for modeling the
interarrival times [37]. Lévy-stable processes show heavy
tail behavior making it impossible to apply them for the
measured interarrival times: Figure 1 depicts that there
are very few measurements after 200 micro second. The
heavy tail of a distribution also implies that the moments
do not exist, so these distributions are not appropriate
for modeling purposes. Other members of the family of
Lévy processes, the Smoothly Truncated Lévy Flights
(STLF), have higher order moments. Since they have
been successfully applied for �nance, biological, and
physical phenomena it is reasonable to apply it for traf�c
analysis as well. Some applications of the STLF are
demonstrated in [23], [19], [13], and [34]. The following
formula of the cumulants of STLF provides a means for
estimating the parameters by the method of moments,
i.e., calculating the empirical values from the traf�c
traces and compare them with the theoretical values
above:

cumm (X) = a���m� (m� �) ;
More precisely, for a given trace we calculate the esti-
mated cumulants \cumm, m = 1; 2; : : : 8, then we use
the least squares method for �nding the estimates ba, b�,
and b� (for the details, please see the authors).
4.1 Analysis of OC-48 traces
We carried out these calculations for the OC48

trace captured on April 24, 2003 (20030424-002500-
0-anon.pcap). Figure 2 shows the log of estimated cu-
mulants \cumm, and the log of cumulants ĉumm, m =
1; 2; : : : 8, of the Smoothly Truncated Lévy Flights when
the parameters are estimated, i.e.,

ĉumm (X) = bab�b��m� (m� b�) ;
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Fig. 2. Comparison of the cumulants and estimated cumulants
of the OC48 trace.

Trace
(Direction 000)

� � a

00_0 0.13106 0.02010 1.21465
05_0 0.17247 0.01871 1.37994
10_0 0.2162 0.0177 1.5266
15_0 0.13525 0.01828 1.23914
20_0 0.15424 0.01771 1.29506
25_0 0.15570 0.01768 1.30567
30_0 0.19040 0.01773 1.42341
35_0 0.22436 0.01802 1.56060
40_0 0.25456 0.01717 1.68368
45_0 0.19989 0.01760 1.44594
50_0 0.11637 0.01699 1.14885
55_0 0.14671 0.01818 1.26795

Table 2. The estimated parameters of the OC-48 5 minute
traces in direction '0'.

where b� = 0:15570, b� = 0:01768, ba = 1:30567. Since
the �tting is good, it implies that this trace is close to
the self-similar process because the value of � is very
small. At the same time the trace is not too far from the
exponential distribution considering that the value of �
is small and a is close to 1.
Table 2 and 3 show the estimated parameters of the

OC-48 �ve minute traces.
In general, we can conclude that the distribution of

these traces are close to � - stable distribution, since
the estimations of � are very small, hence the process is
close to a self-similar process (see Property 1 in section
II. A). It is also clear from the parameters that the traces
in direction '1' are closer to the exponential distribution
(see Property 2 in section II. A) than the ones in direction
'0', since the parameter � is small and a is close to 1
at least in these traces: 05_1, 10_1, 25_1, 45_1, and
50_1. Therefore, the traces in direction '1' are closer to

Trace
(Direction 010)

� � a

00_1 0.19944 0.02666 1.31111
05_1 0.06867 0.03078 0.99380
10_1 0.08212 0.02729 0.99712
15_1 0.17804 0.02431 1.29634
20_1 0.17372 0.02390 1.28337
25_1 0.07781 0.02525 0.98236
30_1 0.16226 0.02449 1.20388
35_1 0.11714 0.02452 1.07384
40_1 0.20719 0.02221 1.35552
45_1 0.07819 0.02307 1.00036
50_1 0.08903 0.02259 1.01705
55_1 0.16310 0.02214 1.21355

Table 3. The estimated parameters of the OC-48 5 minute
traces in direction '1'.

a Poisson process then the traces in direction '0'. The
reason for the different characteristics of the traf�c traces
in directions '0' and '1' is under investigation.

4.2 Analysis of OC-192 traces
Since the OC-192 datasets are signi�cantly larger that

the OC-48 datasets, we consider the parameters of the
model being time dependent. We analyze the behavior
of the model at every 0.1 second. The parameters of the
model are estimated for the duration of 1 second interval.
We assume that the traf�c traces are locally stationary.
The following �gures depict the characteristics of the
traf�c �ow in direction B and A. (We use the notations
direction A and direction B to clearly distinguish the
results related to the traces captured in 2003 and in
2008.) Figure 3 clearly demonstrates that � (t) is not
close to zero, therefore the traf�c �ow in direction B does
not exhibit the attributes of a self-similar or a Poisson
process (see Property 1 and 2).
We obtained a similar �gure for � (t) and a (t) as well,

see Figure 4-5.

In Direction A � is equal to zero in 43% of the
samples, while a's values are close to 1. Figure 6 shows
these values of a. The �gure demonstrates that the traf�c
trace is approaching the Poisson process in 43% of the
total samples.

5. Conclusion
We presented a novel model for analyzing the self-

similarity of Internet traf�c captured by CAIDA. The
network traf�c traces were considered as time series of
the arrival times of the packets. We characterized the
traf�c traces with three parameters of Lévy Flights and
placed a particular trace somewhere in the space gen-
erated by the Poisson and self-similar Lévy processes.
Previous papers characterized the same traces as either
self-similar or not self-similar traces. We were able to
measure how close these packet traces were to being
self-similar. We analyzed two sets of traces; one captured
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from an OC-48 link in 2003 and another from an OC-
192 trace in 2008. We concluded that the distribution of
the 2003 traces was close to ��stable distribution, since
the estimations of � were very small; hence the process
was close to a self-similar process. It was also clear
from the parameters that the traces in direction '1' were
closer to the exponential distribution than the ones in
direction '0'. Therefore, the traces in direction '1' were
closer to a Poisson process then the traces in direction
'0'. Regarding the traces from 2008 we concluded that
in Direction B the traf�c �ow can be modeled by the
Lévy Flights, but in Direction A, a large portion of the
trace shows evidence of the properties of the traditional
Poisson process.

6. Appendix
6.1. Cumulants
It is well known that there is a one to one corre-

spondence between the moments and cumulants. The
expected value is the cumulant of �rst order:

cum1(X) = EX:

The cumulants of order 2 and 3 are equal to the central
moments

cum2(X) = Cov(X;X) (3)
= E (X � EX)2 ;

cum3(X) = E (X � EX)3 ;

but this is not true for higher order cumulants. One might
easily check this for the case of cumulants of order four.
Let us denote the central moment of kth order by mk =
E (X � EX)k, then we have

cum4(X) = m4 � 3m2
2; (4)

cum5(X) = m5 � 10m3m2;

cum6(X) = m6 � 15m4m2 � 10m2
3 + 30m

3
2;

cum7(X) = m7 � 21m5m2 � 35m4m3 + 210m3m
2
2;

cum8(X) = m8 � 28m6m2 � 56m5m3 � 35m2
4

+420m4m
2
2 + 560m

2
3m2 � 630m4

2;

see [18] p.64, [32] p.10. If a sample x1; x2; : : : xn is
given, then the estimated expected value, i.e., �rst order
cumulant is the mean x, and the estimated kth order
central momentbmk = (x� x)k

=
1

n

nX
j=1

(xj � x)k :

Now, the estimated cumulants are given in terms of
estimated central moments (see formulae (4) above).

For example, the 4th order estimated cumulant dcum4
is calculated bydcum4(X) = bm4 � 3bm2

2:

6.2. STLF
Let us recall that the STLF X(t) is a Lévy process,

i.e., a process with homogeneous and independent in-
crements and X(0) = 0. The probability distribution of
X = X(1) has characteristic function of the form

'X (u) = exp ( X (u)) ;

where the cumulant function

 X (u) = a�� [p�� (�u=�) + q�� (u=�)] + iub;

and � > 0; a; p; q � 0; p + q = 1, b is a real number,
and

�� (r) =

8<: � (��) [(1� ir)� � 1] ; for 0 < � < 1;
(1� ir) log (1� ir) + ir; for � = 1;

� (��) [(1� ir)� � 1 + i�r] ; for 1 < � < 2:

(See [34] for details.)
Without loss of generality, we only consider the case

when the shift parameter b = 0. Parameters p and q de-
scribe the skewness of the probability distributions, and
p = q = 1=2 yields a symmetric distribution. Parameter
� will be referred to as the truncation parameter.
In the case of 0 < � < 1, the cumulant function is

given by the formula

 X (u) = a��� (��)
h
p
�
1 + i

u

�

��
+ q

�
1� iu

�

��
� 1
i
;

(5)
and if p = 0; the cumulant function

 X (u) = a��� (��)
h�
1� iu

�

��
� 1
i

(6)

= a� (��) [(�� iu)� � ��] ;

describes a distribution totally concentrated on the pos-
itive half-line. The distribution of X will be denoted
by STLF� (a; p; �). The index � corresponds to the
nontruncated limit when � = 0. In this case the distrib-
ution of X is the classical Lévy's ��stable probability
distribution. The scale parameter a tunes the time unit
to a, hence the distribution of X(t) is STLF� (at; p; �).
The role of the truncation parameter � is obvious

in the following particular case. For the one-sided
STLF� (a; 0; �) distribution with 0 < � < 1; the
cumulant function has the form

 X (u) = a��� (��)
h�
1� iu

�

��
� 1
i
: (7)

As � ! 0, the distribution STLF� (a; 0; �) converges
to the ��stable distribution STLF�(a; 0; 0). The para-
meter � looks appropriate for measuring the distance
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from the ��stable distribution, but it can be noticed
that scaling X will change the value of � as well. More
precisely, if X distributed as STLF� (a; 0; �) then the
distribution of cX is STLF� (ac�; 0; �=c), where c > 0.
Therefore the distance from the ��stable distribution
can be measured by the parameter � when the value a
is �xed to 1.
For a �xed �; a > 0, as � ! 0, the distribution

STLF� tends to the Gamma distribution � (a; �). In-
deed, for 0 < � < 1, the Laplace transform �� of
STLF� (a; 0; �) is

�� (u) = exp (a�
�� (��) [(1 + u=�)� � 1]) ;

and

lim
�!0

exp

�
�a� (1� �) (�+ u)

� � ��

�

�
= exp (�a log (1 + u=�)) = (1 + u=�)�a ;

by the L'Hospital rule.

6.3. Estimating the parameters of
STLF� (a; 0; �)

Take the logarithm of

cumm (X) = a���m� (m� �) :

We obtain

log cumm (X) = log a+(��m) log �+log � (m� �) :
(8)

Plug the estimated cumulants \cumm (see (4) above)
into the left side of equation (8), then we have three
unknowns a, �, and �. In order to �nd the parameter
values for the best �tting start with the system of
equations when m = 2; 3; 4, i.e.,

log [cum2 (X) = log a+ (�� 2) log � (9)
+ log � (2� �) ;

log [cum3 (X) = log a+ (�� 3) log � (10)
+ log � (3� �)

= log a+ (�� 3) log �
+ log (2� �) + log � (2� �) ;

log [cum4 (X) = log a+ (�� 4) log � (11)
+ log � (4� �)

= log a+ (�� 4) log �
+ log (3� �) + log (2� �)
+ log � (2� �) :

The difference of the �rst two equations (9-10) gives

log [cum3 (X)� log [cum2 (X) = � log �+ log (2� �)

= log
2� �
�

;

hence
� = 2� �[cum3 (X)

[cum2 (X)
:

Similarly from the last two equations (10-11)

� = 3� �[cum4 (X)
[cum3 (X)

;

therefore we obtain

b� =
[cum3 (X)[cum2 (X)

[cum4 (X)[cum2 (X)�
�
[cum3 (X)

�2 ;
b� = 2�

�
[cum3 (X)

�2
[cum4 (X)[cum2 (X)�

�
[cum3 (X)

�2 ;
ba =

[cum2 (X)b�b��2� (2� b�) :
We obtain more precise estimations for the parameters,
if we use these estimates as initial values and re�ne the
estimates using nonlinear least squares, which minimizes

8X
m=1

�
cumm (X)� a���m� (m� �)

�2
:

6.4. Gamma distribution
The Gamma pdf is

f (x ja; b ) = xa�1

ba� (a)
exp (�x=b) ; x > 0;

where a and b are positive and called as shape and scale
parameter respectively. If a = 1, then it reduces to the
exponential distribution.
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