
A Novel Fault Diagnosis Technique in Wireless Sensor Networks

Anas Abu Taleb, J. Mathew and D.K. Pradhan
Department of Computer Science

University of Bristol
Bristol, UK

{ abutaleb, jimson, pardhan} @cs.bris.ac.uk

Taskin Kocak
Department of Computer Engineering

Bahcesehir University
Istanbul, Turkey

taskin.kocak@bahcesehir.edu.tr

Abstract—In sensor networks, per formance and reliability
depend on the fault tolerance scheme used in the system. With
increased network size traditional fault tolerant techniques
have proven inadequate. Fur ther , identifying and isolating the
fault is one of the key steps towards reliable network design.
Towards this, we propose two new algor ithms to detect and
substitute faulty nodes at different levels in the network. In the
proposed approach, the network is divided into zones which
are having a master for each zone. Moreover , the masters of
the zones are connected in a De Bruijn graph based network.
When a fault occurs, the masters are checked, tested. After
that, the sensor nodes in the suspected zone are tested. Our
fault model assumes communication, processing and sensing
faults caused by hardware failures in a node. We analyzed the
per formance of the first algor ithm according to the number of
messages it needs to diagnose faulty nodes. In addition, the
per formance of a 4-node De Bruijn graph was also studied by
measur ing the end-to-end delay. Finally, the per formance of
the second algor ithm was studied by measur ing the fault
detection accuracy.

Keywords- Wireless Sensor Networks, Fault Tolerance, Fault
Diagnosis, De Bruijin Graph

I. INTRODUCTION

The advances in wireless communication and electronics
made it possible to develop low-cost sensor nodes, which
can be deployed easily in specific areas in order to
accomplish a specific mission by forming a wireless sensor
network (WSN). It might be difficult or dangerous for
humans to enter these areas because nodes in this type of
networks are expected to operate in inhospitable
environments [2]. Therefore, sensor nodes are expected to
operate for periods ranging from days to years without any
human intervention. There is a tremendous need for fault
tolerant WSNs because, sensor nodes are subject to various
types of failures and faults such as communication,
processing and sensing faults.

A sensor network must be capable of identifying and
replacing the faulty nodes in order to make sure that the
network’s quality-of-service (QoS) is maintained. Identifying
faulty sensor nodes is not an easy task as it is difficult and
time consuming for the base station to keep the information
about all the sensor nodes in the network. When addressing
fault tolerance in WSNs, three types of node failures must be
taken into account. First, when the sensor node is faulty and

not providing data. Second, when the node processes data
erroneously. Third, occurs when we have an active node that
is providing incorrect data.

In this paper, we propose a new technique consisting of
two algorithms to identify faults occurring at different levels
or places in the network, i.e. faults that occur at the zones
masters and the sensor nodes associated with the zones
masters. The proposed technique divides the network into
disjoint zones while having a master for each zone. When a
fault occurs, the first algorithm is triggered to test the
masters. The technique will not trigger the second algorithm
unless all the masters are diagnosed fault free by the first
algorithm. Thus, when the second algorithm is triggered, the
master of the suspected zone is responsible for identifying
the suspected faulty nodes. As a result, the master will start
searching for sleeping nodes to wake up and depending on
the reading it gets from the suspected and awakened nodes,
the master can decide whether the suspected nodes are faulty
or not, moreover, it can decide on which node to switch off.
A preliminary version of this paper is published in [1], in
which a technique to detect faulty sensor nodes was
presented.

The paper is organized as follows. In section II the
related work is reviewed. Then the concept of De Bruijn
graph is discussed and explained in section III. In section IV,
the network architecture and the fault model are defined. In
section V the proposed technique is described. Section VI
describes the simulator used and illustrates the simulated
scenarios. Also, we use an example of a potential chemical
spill to describe various concepts. The simulation results are
also reported in this section. Finally the paper is concluded in
section VII.

II. RELATED WORK

Several works have addressed the problem of how to deal
with faults occurring in wireless sensor networks in order to
achieve fault tolerance [3][4][5]. These researches consider
the faults that result from sensor nodes failures, which affect
the network connectivity and coverage. The research
proposed in [3], makes use of redundancy and uses a
technique to decide on which nodes to keep active and on
which to put in a sleep mode. The technique aims to provide
the sensor field with the best possible coverage. In addition,
it maintains network connectivity to route information.
When an active node fails it is substituted by one of the
sleeping nodes. However, other researchers have addressed

230

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

the problem of having active nodes that provide incorrect
data which results in making inappropriate decisions. The
research proposed in [4] focused on such issues and
proposed a mechanism to detect and diagnose data in
consistency failures in wireless sensor networks.

The mechanism proposed in [4] uses two disjoint paths to
send the sensed data to a static sink. After the sink receives
both copies, it will compare them to check if they match. If
the two copies match, both the data and the paths are
considered to be fault free otherwise, a third disjoint path
will be established. Then, the sensor node will send three
copies on the three disjoint paths to the sink. The sink will
compare these copies and decides on the faulty path. Finally,
a diagnosis routine will be executed to identify the faulty
node within the faulty path.

Another research has taken fault tolerance in account, so
that to achieve fault tolerance the sensor network is
partitioned into distinct clusters and the node that has the
highest energy level is selected to be the cluster head where
only cluster heads are allowed to communicate with the base
station [5]. Therefore, they introduced a two-phase fault
tolerant approach which consists of detection and recovery
where the status of the cluster heads is checked periodically.
Sensors associated with a faulty cluster head are recovered
by joining them to another cluster [5].

The research described in [6] proposed a scheme based
on multi-path routing combined with channel coding to
achieve fault tolerance. It uses a fuzzy logic based algorithm
that is energy and mobility aware to select multiple paths.
When selecting the paths, the algorithm takes the remaining
energy, mobility and the distance to the destination into
account. Another research has proposed a design for a
system to diagnose the roots of faults occurring in wireless
sensor networks. The authors have proposed an algorithm to
diagnose the cause of faults in which the behavior of sensor
nodes in monitored locally. The diagnosis procedure will be
triggered when a node detects a strange behavior [7]. In [8],
a general framework to achieve fault tolerance in wireless
sensor networks was proposed. The framework is based on a
learning and refinement module which provides adaptive and
self-configurable solutions.

A localized algorithm for fault detection to identify faulty
sensors that is based on having neighbor sensor nodes testing
each other was proposed in [9]. In [10], an efficient
algorithm to trace failed nodes in sensor networks was
proposed. In addition, they demonstrate that if the network
topology is conveyed efficiently to the base station, it allows
tracing the failed entities quickly with moderate
communication overhead.

In [11], the authors proposed fault tolerant algorithms to
detect the region of an event in wireless sensor networks.
Also, they assume that nodes report a binary decision to
indicate the presence of an event or not and considered a
byzantine behavior for the faulty nodes, which means that
the faulty nodes will be providing arbitrary values. Hence,
they proposed a randomized decision scheme and a threshold
decision scheme which a sensor node can use to decide on
which binary decision to send by comparing the decision it
has with the decisions of its neighbors

In [12], a fault map was constructed using a fault
estimation model. In order to build the fault map, sensor
nodes are required to send additional information that can be
used by the fault estimation model. Furthermore, a cluster
based algorithm to estimate faults in wireless sensor
networks was proposed. In [13], a target detection model for
sensor networks was proposed. In addition, two algorithms
to facilitate fault tolerant decision making were presented.
The first algorithm is based on collecting the actual readings
from the neighboring nodes. In the second algorithm, the
sensor node obtains the decisions made by the other
neighboring nodes to take a final decision.

A distributed cluster based fault tolerant algorithm was
proposed in [14]. The cluster head sends a small packet to
indicate that it is still alive. Hence, a sensor node in the same
cluster listens to the transmissions of its neighbors and to that
of the cluster head. When a sensor node does not receive the
short packets sent by the cluster head, it will trigger fault
detection. Depending on the number of nodes that have not
heard from the cluster head, it can be decided whether the
cluster head is faulty, as the faulty node can be a member of
the cluster and not the cluster head itself. If the cluster head
was faulty, the cluster members will select a new cluster
head. The authors in [15] apply error correcting codes to
achieve fault tolerance. As a result, a distributed fault
tolerant classification approach was proposed. The approach
proposed is base of fault tolerant fusion rules that are used to
obtain local decision rules at every sensor. In addition, the
authors proposed two algorithms that can be used to find
good code matrices to be used by the classification approach.

The work proposed in this paper differs from that
presented by other researches in two aspects. First, the
mechanism according to which sleeping nodes are activated
to test active node. Second, the reading of neighboring nodes
i.e. nodes covering the same terrain, are needed and
compared only when the network is suspected to contain
faulty nodes.

Moreover, we compare the performance of our work to
the performance of the work presented in [11] because both
techniques make use of neighboring nodes to detect a fault.
In addition, no restriction on the number of neighboring
nodes is imposed. Also, both techniques make use of
threshold in their operation.

III. DE BRUIJN GRAPH

Part of the work proposed in this paper is based on
constructing a De Bruijn graph based network at the zones
masters level. This graph has interesting properties that make
it important to investigate its use in WSNs. The degree of
this graph is bounded, which means the degree of the
network remains fixed even when the network size increases.
In addition, this graph has interesting properties such as
small diameter, high connectivity and easy routing.
Furthermore, De Bruijn graph contains some important
networks such as ring. Regarding fault tolerance and
extensibility, these graphs maintain a good level of fault
tolerance and self-diagnosability. For instance, in the
presence of a single fault in the network, it takes four
additional hops to detour around the faulty node and the

231

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

control information needed to do so can be integrated locally
between the faulty node’s neighbors. Also, De Bruijn graph
is extensible in two methods that are described in [18].

As a result, it will be interesting to investigate the used of
De Bruijn graphs in sensor networks in order to increase the
fault tolerance capabilities. In other words, if some nodes in
the network were deployed according to De Bruijn graph, the
network will have the ability to tolerate the presence of
faulty nodes in the network and remain functional. In this
work, the zone masters are assumed to be connected
according a De Bruijn graph. The network assumed to be
working if a zone master fails and the rest of the nodes in
network will remain functional and the fault free zone master
are capable of communicating with each other. Thus,
accomplishing the network mission until the problem in the
network is resolved.

The De Bruijn graph denoted as DB(r, k) has krN =
nodes with diameter k and degree 2r. This corresponds to the
state graph of a shift register of length k using r-ary digits. A
shift register changes a state by shifting in a digit in the state
number in one side, and then shifting out one digit from the
other side. If we represent a node by

)...,,(0121 iiiiI KK −−= where)1(,...,1,0 −∈ ri ,

()10 −≤≤ kj , then its neighbors are represented by

piii kk 032 ...,,−− and 121 ,...,iipi kk −− , where

()1,...,1,0 −= rp . The DB(2, k), which is called binary
De Bruijn graph, can be obtained as follows. If we represent

a node I by a k-bit binary number, say, 0121 ...,, iiiiI kk −−= ,

then its neighbors can be presented as 0...,, 012 iiik− ,

1...,, 012 iiik− , 121 ...,,0 iii kk −− , and 021 ...,,1 iii kk −− .

IV. NETWORK ARCHITECTURE AND FAULT MODEL

We assume that the network is densely deployed and
consists of heterogeneous nodes; which means that in
addition to the ordinary sensor nodes, the network consists of
some nodes that are more energy rich than others. The
energy rich nodes are placed or deployed in a way that
guarantees them to form a De Bruijn based network, while
the rest of the nodes are deployed randomly. Also, the
network has most of the nodes awake and a small number of
nodes are in a sleep status. The nodes are fully static and the
network is divided into four zones. In each zone the active
node with the highest energy level will be chosen to be the
zone master, for example in the shaded zone in Fig.1 the
zone master is node 9, where the dark dots are the active
nodes. After that, the master acts as a data sink and will be
responsible for identifying faulty nodes in its zone while the
remaining nodes in a zone can only send the sensed data to
their master.

After being elected as zones maters for their zones, the
zone masters communicate among themselves. In other
words, each zone master knows the neighboring zone
masters in the neighboring zones. Hence, a De Bruijn graph
based network, consisting of the zone masters only, is

constructed. This graph has interesting properties that assist
in increasing fault tolerance capabilities of the network.
Figure 2 shows the DB(2,2) De Bruijn Graph.

Figure 1. The Network Architecture.

After constructing the De Bruijn based network, when a

zone is suspected to contain faulty nodes, the master of that
zone will be tested and diagnosed using the distributed fault
diagnosis algorithm described in section V. If the zone
master is faulty, it will be substituted by one of its
neighboring sleeping nodes, as a result, the De Bruijn based
network will not need to be constructed again. On the other
hand, if the master was fault free, the technique proceeds to
test the nodes in that zone, as described before, until the
faulty node is identified. When a sensor node is suspected to
be faulty, the master activates some of the sleeping nodes to
check the correctness of that node and to substitute it when
the suspected node is identified as faulty. Figure 1 illustrates
the network architecture where the main zones are the big
squares denoted by N1, N2, N3 and N4. Also, the division
process is illustrated in Fig.1 where N2 is divided into four
subzones denoted by n1, n2, n3 and n4. Furthermore, n2 is
divided into n2.1, n2.2, n2.3 and n2.4, thus node 19 is suspected
to be faulty which is in n1.1.

Figure 2. DB(2,2) Binary De Bruijn Graph.

N1 N2

N3 N4

n1 n2

n3 n4

n1. 1 n1. .2

n1. .3 n1.4

232

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

A sensor node is considered to be faulty, if it reports a
value that deviates from the expected one [16]. In this work,
we restrict our attention to permanent faults, resulting from
sensing and communication faults caused by hardware
failures are considered at the sensor nodes level. At the zone
master level, permanent faults caused by communication and
processing fault are considered. Processing faults are taken
into account at the zone master level because, the zone
masters have to calculate their zones throughput periodically.
As a result, if a master is suffering from processing failure
the calculation acquired will be misleading.

For communication faults, we propose to measure the
throughput (T) of a zone or a subzone and compare the
calculated value of throughput to predefined thresholds of
the tested zone (�) or subzone (�

sub). As a result, the presence
of a communication fault is detected if T < �

sub. On the other
hand, we detect the presence of a sensing fault by measuring
the discrepancy between the readings reported by the sensor
nodes involved in the test. Discrepancy between sensors
readings is used because we consider that the sensor nodes
report the actual values rather than binary decisions [17].

V. PROPOSED IDENTIFICATION TECHNIQUE

Because WSNs are deployed in inhospitable
environments, sensor nodes are prone to faults such as
communication, sensing and processing faults. As a result,
the node that suffers from a communication fault will not be
reporting data to its zone master in the same rate as a non-
faulty one does. This will result in the throughput of that
zone to decrease. On the other hand, nodes that suffer from a
sensing fault will be providing data frequently to the zone
master, but the data reported will be erroneous. Also, the
nodes may suffer from processing faults at the zone master
level. Hence, the aggregated or fused data at the faulty
master will be erroneous and affects the decision made to
detect the faulty nodes. Thus, there is a need to detect these
faults and eliminate their effect.

Therefore, we consider dividing the network into zones,
to allow faster identification and location of faults occurring
in a zone since the master is responsible for a small number
of nodes. In addition, the master can keep track of the data
sent to it by the members of its zone more efficiently. In
addition, the approach starts by testing the master nodes in
the first stage to avoid testing individual nodes in the zones
when the master is faulty.

A. Overview of The Proposed Approach

The technique is based on periodically calculating the
throughput of the four zones. Each zone master will calculate
the throughput of its zone and will compare it to a predefined
threshold; if it is less than the threshold, the distributed
diagnosis algorithm will be triggered to test the masters. If a
zone master was diagnosed as faulty, it will be replaced and
the technique will not proceed to test the sensor nodes in that
zone. However, if all the masters were diagnosed as fault
free, the technique proceeds to test the sensor nodes in the
zone that has provided low throughput.

As a result, the zone master will start dividing its zone
virtually into quadrants. After that, the zone master will

calculate the throughput of each quadrant and will compare it
to another threshold. If the throughput of one of the
quadrants is less than a threshold, the zone master will divide
that quadrant for another four quadrants. The zone master
will keep dividing the zone virtually and calculating the
throughput until it reaches a quadrant that contains only one
node. As a result, it can identify that the node enclosed in
that quadrant is the suspect that is causing the throughput to
be low. After identifying the suspect node, the zone master
will start searching for sleeping nodes that are near to the
suspect to wake them up to test the suspect node. Note that a
zone or a subzone is divided by calculating its center, after
that, it will be divided into four subzones that have equal
size.

In addition, when a sensor node reports data to the zone
master, the data will be compared to the node status and the
data ranges values stored in the master. If the data reported
deviates from the stored values, the master will start dividing
the zone virtually until a suspect is identified. After that, it
will start searching for neighboring sleeping nodes to
activate in order to test the suspect.

The proposed technique has the following distinctive
feature; first the distributed fault diagnosis algorithm that is
used to diagnose faults at the zones masters level does not
use a central node to trigger and carry out the diagnosis
process. The second feature is the way in which faulty nodes
associated with the zone master are identified or pinpointed
by dividing the zone into quadrants. The third feature is the
mechanism used to make sure that the suspect node is faulty
which is conceptually similar to our previous work on the
multi-processor environment [19]. In the Roll-forward
Checkpointing Scheme, two copies of the same task will be
run on two different processing modules while having a pool
of spare processing modules. At every checkpoint, the state
of the two processing modules is compared, if they
mismatch, the state of the last checkpoint on which the state
of the two processing modules has matched will be loaded
into a spare processing module, while the other two
processing modules continue the execution of the task
beyond the checkpoint where a mismatch occurred. At the
next checkpoint, the state of the spare processing module
will be compared to the stored state of the other two
processing modules. As a result, the processing module
whose state disagrees with that of the spare will be the faulty
one. After identifying the faulty processing module, the state
of the non faulty processing module is copied to the faulty
one to restore its state [19]. A similar scheme was applied in
this work by activating one of the sleeping neighbors of the
suspected node. Both nodes will sense their region
simultaneously. After receiving the data, the sink compares
the data sent by both nodes. If they match or were similar,
the suspect node will be considered fault free and the
activated neighbor goes to sleeping mode again. Otherwise,
another sleeping neighbor is activated, and after the three
nodes sense their region and send data to the sink, the sink
can identify the faulty node using the mechanism mentioned
above. If the faulty node was the originally active one, it is
deactivated and one of the activated neighbors is selected to
substitute it. On the other hand, if the faulty node was the

233

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

first activated neighbor, it is flagged as faulty and is suspend
from the network.

B. Design and Implementation

The technique is divided into the following phases:
1) Initialization Phase
The nodes are grouped into four zones depending on their

positions and the active node with the highest energy level in
each zone is chosen as the zone master. The zone master
keeps track of the data sent to it from the other nodes in its
zone. Also, it acts as a data sink for the nodes. This means
that the ordinary nodes in the zone can only send data to the
zone master which is responsible to forward it to the base
station. After that, the zones masters will communicate with
each other. Hence, each zone master knows its neighboring
zone masters. As a result, a De Bruijn graph based network
consisting of the masters only is constructed.

The zone master will be able to keep track of the data it
received and of the nodes belonging to its zone by
maintaining an information table and a registration table.

In the information table the zone master records the
sender’s ID of the received message, the packet length and
the time stamp to indicate when the message was received.
As a result, this table gives the master the ability to keep
track of the data sent in its zone. An example is given in
Table 1.

The registration table is used by the master to keep track
of the nodes inside its zone and their positions. In addition, it
contains some entries that will give the master node the
ability to divide the zone into quadrants or subzones when
needed. In other words, XMax and YMax entries are used to
know the coordinates of the zone. In addition, they are used
by the master when there is a need to divide the zone into
subzone. The Center attribute is calculated because it is used
as a reference point when dividing a zone or a subzone. An
example is given in Table 2.

In order to be able to detect the presence of a sensing
fault, a third table, which is called Grid table, is maintained
by each zone master. The zone master divides its zone
virtually to a grid and stores the information in the grid table.
Note that three binary values are used to indicate the status
of a node because a node reports the value that corresponds
to its original reading which depends on the node’s
proximity from an event. An example is given in Table 3.

In the initialization phase, all the nodes will be providing
low data values to indicate that no event was detected. After
that, when an event occurs the value can be changed to
medium or high based on the position of the node. A sensor
node has three different values to choose from when it is
about to send data to the master which are low, medium and
high. For example, if the sensor node is in a place where
there is a very high concentration of a chemical spill, it will
send the value stored in the high field of the grid table to
indicate that there is a high chemical spill in its region. As a
result, the other nodes will choose to send low, medium or
high data values depending on their positions and distance
from that node.

In Fig.3, the pseudo code used in the initialization phase
is illustrated. It can be observed that after the nodes are
deployed, the network is divided into four zones and the
nodes are allocated to the zones as mentioned before. In
addition, each zone master will initialize its registration
table, mentioned above, and will store the needed
information about the nodes belonging to its zone. Finally,
the grid table will be initialized, i.e. the zone will be virtually
divided into a grid, and the node or nodes belonging to every
square in the grid are identified.

Table 1. Information table

NodeID
Message_length

Time_Stamp

8 4 0.501

1 4 0.504

6 4 1.002

2 4 1.003

Table 2. Registration Table

NodeID

XPosition YPosition XMax YMax Center

1 23 5 30 30 15

2 16 13 30 30 15

10 7 7 30 30 15

11 16 17 30 30 15

 Table 3. Grid Table

Square-
Number

Enclosed_nodes Low

Medium High

1 [9, 10] 0 0 1

4 3 0 1 0

7 [4, 13] 1 0 0

9 5 1 0 0

For each zone
 Find the node with the highest energy level to be the
 zone_master
 Initialize Registration table for zone_master
 Set the ID of the new entry to the ID of the current node
 Get node position

234

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

Figure 3. Initialization Pseudo Code.

2) Failure Detection Phase

The zone master is responsible for checking the
throughput of its zone periodically. This is done by
calculating the throughput of the zone since the last time the
throughput was checked until the current time. This process
can be described as taking a snapshot of the information
table depending on the specified period of time.
Subsequently, the master compares the calculated value of
the throughput to a threshold “ � ” . If the value of the
calculated throughput is greater than � , the master concludes
that there is no communication fault in the zone. However, if
the value of the calculated throughput is less than � , the
master assumes that there is a communication fault in the
zone and initiates the failure detection phase.

The failure detection phase starts by testing the masters
first because, the zone master might be suffering from a
processing fault. The distributed De Bruijn based fault
diagnosis algorithm is used to test the masters. The number
of nodes in a De Bruijn based network is assumed to be
equal to rm, where r is a parameter that bounds the number of
faults that can be diagnosed in each cluster and will be
referred to as base parameter in this paper. The variable m is
the radix-r representation of the node address e.g.

021 ...,, yyy mm −− is the radix-r representation of node y.

Also, the number of faults that can be diagnosed is equal to r
-1 [20]. In addition, we assume that nodes can test their
neighbors only.

The algorithm is based on building directed tree structure
for the De Bruijn based network. According to our previous
work in [20], r different tree structures can be built where
each one of them has a different root. In this paper, the base
variable r is equal to 2 which mean we can diagnose only
one fault and we can build two tree structures for the De
Bruijn based network. Figures 4 and 5 illustrate two trees
that can be built for a 4-node De Bruijn based network.

Consider Fig. 4, the following conditions are satisfied:

• The test tree must contain all the nodes in the
cluster.

• The number of non leaf nodes is equal to rm-1.
• The number of leaf nodes is (r – 1)rm-1.

• Any combination of r – 1 nodes must appear in at
least one tree.

The algorithm is triggered at the zones masters level. As

a result the first tree is built to test the zones masters. The
test tree is traversed in an inorder fashion. According to Fig.
4 the root node, 0, initiates the process by sending a test
packet to node 2. Then, node 2 checks if it is a leaf node. In
this case, node 2 in a non leaf node, thus a test packet will be
sent to its left child, node 1. This process continues until we
reach a leaf node. When a leaf node, for example node 1,
receives a test packet, it will execute the required
computation for the test and send the result back to its parent,
node 2. Node 2 compares the result received from node 1
with the expected or the predefined one. If a miss match
occurs node 1 will be considered faulty and its status will be
reported back to the root node that is responsible for sending
it to the base station.

Note that, the algorithm will stop after finding the faulty
node. Also, the faulty node can be detected only if it is a leaf
node in the test tree shown in Fig. 4. However, if the faulty
node is a non leaf node in the first tree, the algorithm cannot
diagnose whether the non leaf node is faulty or there is a
communication problem between that node and one of its
children. As a result, when a non leaf node is suspected to be
faulty, the algorithm will stop searching the tree shown in
Fig. 4 and will construct the second test tree shown in Fig. 5.
After constructing the second tree, the test packets will be
passed in the same manner as mentioned before. The faulty
node can be detected because; it is a leaf node in the second
tree. After diagnosing the nodes at one level, the algorithm
proceeds to test the nodes in the subsequent level.

The test packet sent to diagnose the nodes triggers the
tested node to perform a specific computation whose result is
known in advance. Therefore, if the tested node provides a
value that deviates from the expected one it will be
diagnosed as faulty.

Figure 4.Diagnosis algor ithm Tree A.

 Calculate zone center
 Update zone registration table
 Initialize Grid table for zone_master
End Loop
For each zone Grid table
 Locate nodes to the grid squares according to their positions
End Loop
 For each zone_master
 Find the neighboring zone_masters
End Loop

235

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

Figure 5.Diagnosis algor ithm tree B.

If all master nodes were diagnosed fault free, our

approach proceeds to test the sensor nodes associated with
the zone master that has calculated low throughput.

Based on the information maintained in the registration
table, the master, that has calculated a low value of
throughput, starts dividing its zone into quadrants. In the first
stage the zone master divides its zone into four quadrants or
subzones. After that, it will calculate the throughput of each
of the quadrants based on the same snapshot taken before.
Furthermore, the throughput of each of the quadrants will be
compared to another threshold “ �

sub” ; if the calculated value
of a quadrant’s throughput is less than �

sub, the quadrant will
be further divided into another four quadrants because it is
the most likely quadrant to contain the faulty node. The zone
master will keep repeating the division process until it
reaches to a quadrant that only contains a single node.
Depending on the calculated throughput and the comparison
with thresholds, the node causing the throughput to be lower
than the threshold is identified and is considered as a suspect
node that suffers from a communication fault.

In order to decide whether the suspect node is faulty, a
technique that makes use of the redundancy in sensor
networks is applied. In other words, based on the
information stored in the registration table, the zone master
will start searching for the nearest sleeping node to the
suspect. After identifying such a node the master will wake it
up so that it can start sensing. After a period of time the
master will calculate the throughput of the suspect node and
the node it woke up based on a new snapshot of the
information table. If the difference between the two values of
the throughput is larger than a threshold “

�
” and the

throughput of the suspect is less than that of the awakened
node, another sleeping node will be awaken in order to be
able to decide whether the suspect is faulty or the awakened
node i.e. having a third node sensing in the same area will
help to solve the conflict.

After activating two nodes, which are the nearest to the
suspect node, the suspect node and the other two nodes will
start sensing. After a period of time the throughput of the
three nodes will be calculated and compared to

�
, if the

values of the throughput of the awakened nodes are similar
and their differences with the value of the suspect node is

large, the master can decide that the node that was suspected
to be faulty is suffering form a communication fault and will
be switched off and one of the awakened nodes that is nearer
to the faulty node will be kept awake and the other one will
go back to sleep.

The presence of a sensing fault is detected by comparing
the data received from a node to its entry in the grid table. If
the data reported is within the correct range and the node has
a correct or a matching status, it will be considered fault free
otherwise, the master will start dividing its zone virtually
until it finds the suspected node, after that the same
technique that was mentioned above to test the suspect node
by waking sleeping nodes up is used.

For each zone
 Initialize Information table for zone_master
End Loop
For Each zone_master
 If message destination = zone_master
 Update Information table of the zone_master
 End If
End Loop
Set period to 2
Set time to the result of dividing current time by period
Set threshold to 100
 Set decrement to 10
 Set i to 1 // this variable is used to control the access of the
 subzone array and make the process recursive
 If time = 0
 Calculate throughput for each zone until current time
 Set subthreshold to 50
 Set new_threshold to subthreshold
 For each zone
 If zone throughput < threshold
 Divide zone
 For each subzone
 If zone throughput < threshold
 Divide zone
 For each subzone
 If the number of nodes in the subzone >1
 Calculate throughput of the subzone
 If subzone throughput < subthreshold
 Divide the subzone
 Get division_array

// array where the subzones arrays are stored
 While i <= 4
 get number of nodes in subzone(i)

// the first subzone array in the division_array
 Calculate subthroughput of subzone(i)
 If (number of nodes > 1 and
 (subthroughput < new_threshold – decrement))
 divide subzone
 set divison_array to new_array

 // replace the old division_array with a new division array resulting
 //from the new division

 If new_threshold > 10
 Set new_threshold to new_thresold-
 decrement

236

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

Figure 6. Communication Fault Identification Pseudo Code.

The pseudo code in Fig.6 illustrates how a faulty node is

identified. Note that, the throughput is calculated according
to equation (1).

PLNT /)*(= (1)

where T is the throughput to be calculated, N is the number
of messages received by the master, L is the message length
and P is the time period on which throughput is calculated.

Figure 7. Sensing Fault Identification Pseudo Code.

In Fig.7, the variable status is used to check that the data

reported by the node is correct according to its status, while
the variable data is used to check if the data reported is
correct and is actually within the expected range according to
the nodes status and the ranges stored in the zone master.

Figure 8. Division Procedure.

In Fig 8, the code that is used to divide the zone into

subzones is illustrated. A zone is divided into subzones by
calculating the zone center as the x and y axis values of the
main zone which are stored in the registration table and
according to the node position and the value of the zone
center. Therefore, the node will be allocated to an array that
represents each subzone. Note that the ID of the zone master
will be known to this procedure from the code in Fig.3.

VI. SIMULATION

A. The Simulator

The simulator used to conduct the experiments is
TrueTime 1.5 which is MATLAB/Simulink based. Its main
feature is that it gives its users the ability to co-simulate the
interaction between the continuous dynamics of the real
world and the architecture of the computer [21], [22].

B. Simulation Scenarios

1) Faults Occurring At The Zone Master Level Only

 End If
 Else
 If number of nodes in the subzone =1
 Set suspect_node to node ID in the
 subzone
 Find a neighboring sleeping node to
 wake up
 Increment i by 1
 End If
 End If
 End Loop
 End If
 Else
 If number of nodes in the subzone = 1
 Set suspect_node to node ID in the subzone
 Find a neighboring sleeping node to wake up
 End If
 End If
 End Loop
 End If
 End Loop
End If
Get current time
Set time to the result of dividing current time by period
If time = 0
 Calculate throughput of the three nodes until current time
 Compare the values and find the faulty node
End If

For each entry in the grid table
 Find node ID that is equal to the message source
 If (status = high and data = high) or (status = medium and data =
 medium) or (status = low and data = low)
 Set suspect to 0
 Else
 Divide zone
 While i <= 4
 get number of nodes in subzone(i)
 If (number of nodes > 1
 Divide subzone
 Set divison_array to new_array
 Else
 Set suspect to nodeID
 Find a neighboring active node
 Incremenr i by 1
 End If

Calculate zone_center
For each node in the zone_master registration table
 Compare node position to the center
 Allocate node to a subzone according to its position
End loop

 End Loop
 End If
End Loop
Set sensing_threshold to 5
Get current time
Set time to the result of dividing current time by period
If time = 0
 Get data provided by both nodes
 Compare the data of both nodes
 If difference in readings > sensing threshold
 Find a neighboring sleeping node and wake it up
 End If
End If
Get current time
Set time to the result of dividing current time by period
If time = 0
 Get data provided by the three nodes
 Compare the data of the three nodes and find the faulty node
End If

237

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

In this scenario, faults were injected at the zone master
level, i.e. sensor nodes associated with a faulty zone master
were fault free and the zone master was suffering from
processing fault, as a result throughput was calculated
erroneously. Note that, only one fault was injected at the
masters level as the algorithm can detect one fault only. In
this scenario, the faulty master was in different level in the
diagnosis tree; in one case it was a leaf node in tree A. In
another case, it was a non leaf node in tree A. Thus, tree B
was built in order to detect the fault in such case.

This scenario is proposed to show the ability of the
algorithm to detect faults at the zone masters level occurring
at different levels in the diagnosis tree.

2) Faults Occurring In One Zone Only

In this scenario, all the active nodes in the network will

be providing data to their masters. However, only nodes
belonging to one zone will be suffering from faults as a
result, the technique to identify and locate faulty nodes will
be initiated in that zone only. In addition, the faulty nodes in
that zone will be in different positions within the zone, which
means that when the division process is started the faulty
nodes will be in different quadrants or subzone and each
quadrant may contain more than one faulty node. Also, a
chemical spill will occur and affect nodes in this zone only.

This scenario was proposed to show the ability our
technique to divide more than one quadrant into different
levels until the faulty node is identified and replaced. Figure
9 illustrates the described scenario.

Figure 9. The Second Scenar io.

Similar to the second scenario, all active nodes in the

network will be providing data to their zone master but, the
nodes that belong to two different zones will be faulty. The
chemical spill will occur and will affect nodes in both zones.

This scenario is created to show the ability of our
technique to locate and identify faulty nodes in different
zones synchronously. The faulty nodes in this scenario might

not be in the four quadrants of each zone when the division
starts. In other words, after the zone is divided into
quadrants, some quadrant may provide values of the
throughput higher than the threshold mentioned in section
V., while other will have throughput value lower than that
threshold which indicates that there is a problem in that
quadrant. Figure 10 illustrates the scenario.

Figure 10. The Third Scenar io.

C. Simulation Results

The scenarios studied were based on a network
consisting of 50 nodes deployed randomly in 60x60 units
region. The performance of the two fault diagnosis
algorithms described in this paper was not compared
because, they work at different levels in the network.

The distributed fault diagnosis algorithm used to detect
fault zone masters is evaluated according to the number of
messages required to detect the faulty master. Table 4 shows
the number of messages required by the first algorithm
depending on the level at which the faulty node occurs in the
diagnosis tree.

Cases 1 and 2 in table 4 represent the cases where the

faulty nodes were the leaf nodes in the first test tree, while
the remaining two cases are gained when we have to build
the second test tree. It can be observed that the distributed

Table 4. Number of Messages for the First Algorithm.

Case

Number of Messages

1 4

2 6

3 10

4 12

238

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

diagnosis algorithm requires a small number of messages to
be exchanged between the masters; because these master
nodes are more rich in energy they can afford to send a small
number of messages to accomplish the diagnosis process.

Figure 11.Compar ison of the Performance of De Bruijn Network.

Figure 11 shows the performance, in terms of average

end-to-end delay for 4-node De Bruijn based network. It can
be observed that both paths have similar delay under fault
free conditions. However, when a fault was injected, the
nodes in the network had to switch between path 1 and path
2 to detour around the faulty node, which caused the average
end-to-end delay to increase. Not that, these results were
gained by selecting random source and random destinations
and the result for each case was obtained by averaging the
results of 10 runs.

In the simulation, sensor nodes were faulty nodes were
randomly chosen and the technique was tested with the
following number of faulty nodes 2, 4, 6 and 8. In addition,
the performance of the technique presented in this paper was
compared, in terms of detection accuracy, to that of the
Randomized Decision Scheme (RDS) presented in [11],
where the detection accuracy can be defined as the
percentage of the number sensor nodes that are detected to be
faulty by a technique to the total number of faulty nodes the
WSN [9].

Figure 12 shows the detection accuracy with respect to
the number of faulty nodes. From Fig 8, it can be observed
that as the number of faulty nodes increases, the detection
accuracy decreases. This can be regarded to the ratio of
neighboring sleeping nodes to the suspected node because
the studied technique depends on awaking two nodes for
every suspect node. As a result it can be inferred that the
higher the redundancy of the network, the better the
performance of our technique. In some cases, when there are
not enough sleeping nodes near the suspect, the technique
will awake the first sleeping node that is the nearest to the
suspect but, because of not having enough sleeping node, the
awakened node could be a bit far from the suspect and may
not be under the same conditions as a result, not providing
similar readings.

Figure 12. Compar ison of Communication Faults Detection Accuracy.

Figure 13 shows the detection accuracy of our technique

when having sensor nodes suffering from a sensing fault. It
can be observed that when the number of faulty nodes was
increased, the detection accuracy decreased because of not
having enough fault free nodes near the faulty nodes.

Our technique has shown better performance than that of
RDS, because in RDS the threshold value is selected
randomly. As a result, in some cases the threshold value was
suitable to help RDS detect fault node. However, in other
cases this value was not suitable to be used in the detection
which results in reducing the accuracy of fault detection in
RDS.

Figure 13. Compar ison of Sensing Faults Detection Accuracy.

VII. CONCLUSION

In this paper, we proposed a new technique, consisting of
two algorithms, to identify and substitute faulty nodes in
wireless sensor networks. The proposed technique divides
the network into four zones while having a master node for
each zone. The first algorithm proposed in this paper is used

239

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

to diagnose faulty zone masters. On the other hand, the
second algorithm is used to test and substitute faulty sensor
nodes, i.e. non master nodes, in the network.

The simulation has shown that the proposed technique
does not require a lot of messages to be exchanged in order
to detect the fault master node. Also, it has shown that
because the master nodes are connected in a De Bruijn
graph, the end-to-end delay is low under faulty and fault free
conditions. Furthermore, the simulation has shown the ability
of the technique to identify several faulty nodes in the same
zone. Also, it has illustrated that the technique is capable of
identifying more than one faulty node in more than one zone
at the same time. Finally the algorithm is tested by
simulating two different scenarios. Our results show that the
detection accuracy was very high when the number of faulty
nodes was small compared to the number of sleeping node.

Future work for this work may include studying the
effect of the second algorithm on the energy consumption
and the life time of the network. In addition, the effect of
having the sensor nodes in a zone connected in a De Bruijn
graph will be studied.

REFERENCES
[1] A.A.Taleb, D.K. Pradhan and T. Kocak, "A Technique to Identify and

Substitute Faulty Nodes in Wireless Sensor Networks," Third
International Conference on Sensor Technologies and Applications,
2009. SENSORCOMM '09., pp.346-351, 18-23 June 2009.

[2] A. Mainwaring, Culler, D. Culler, J. Polastre, R. Szewczyk and J.
Anderson , “Wireless Sensor Networks for Habitat Monitoring,” First
ACM Workshop on Wireless Sensor Nerworks and Applications,
Atlanta, Georgia, USA, Sept 2002.

[3] Y. Zou and K. Chakrabarty, “A Distributed Coverage and
connectivity Centric Technique for Selecting Active Nodes in
Wireless Sensor Networks,” on IEEE Trans. on Computers, vol. 54,
no. 8, pp. 978-991, Aug 2005.

[4] K. Ssu, C. Chou, H. C. Jiau and W. Hu,“Detection and diagnosis of
data inconsistency failures in wireless sensor networks,” in The Int.
Journal of Computer and Telecommunications Networking, vol.
50,no. 9, pp. 1247-1260, June 2006.

[5] G. Gupta and M. Younis, "Fault-tolerant clustering of wireless sensor
networks," IEEE Conf. on Wireless Communications and Networking,
(WCNC). pp.1579-1584, March 2003

[6] Q. Liang, “Fault-tolerant and energy efficient wireless sensor
networks: a cross-layer approach,” in Proceedings of IEEE Military
Communications Conference (MILCOM ’05), vol. 3, pp. 1862–1868,
Atlatnic City, NJ, USA, October 2005.

[7] A. Sheth, C. Hartung and R. Han (1999). A decentralized fault
diagnosis system for wireless sensor networks. In: Proceedings of the
2nd IEEE International Conference on Mobile Ad-Hoc and Sensor
Systems (MASS) 2005. pp. 192–194.

[8] I. Saleh, H. El-Sayed and M. Eltoweissy, "A Fault Tolerance
Management Framework for Wireless Sensor Networks," Innovations
in Information Technology, 2006 , vol., no., pp.1-5, Nov. 2006.

[9] J. Chen, S. Kher, and A. Somani “Distributed Fault Detection of
Wireless Sensor Networks” . In Proc of the 2006 Workshop in
Dependability issues in wireless ad hoc networks and sensor
networks, L.A., California, USA, Sept. 2006.

[10] J. Staddon, D. Balfanz and G. Durfee, “Efficient tracing of failed
nodes in sensor networks” . In Proc of the 1st ACM international
workshop on Wireless sensor networks and applications, Atlanta,
Georgia, USA, Sept 2002.

[11] B. Krishnamachari, S. Iyengar, "Distributed Bayesian algorithms for
fault-tolerant event region detection in wireless sensor networks,"

Computers, IEEE Transactions on , vol.53, no.3, pp. 241-250, March
2004.

[12] Yue-Shan Chang; Tong-Ying Juang; Chih-Jen Lo; Ming-Tsung Hsu;
Jiun-Hua Huang, "Fault Estimation and Fault Map Construction on
Cluster-based Wireless Sensor Network," . IEEE International
Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing, 2006, vol.2, no., pp.14-19, 5-7 June 2006.

[13] T. Clouqueur, K.K. Saluja, P. Ramanathan, "Fault tolerance in
collaborative sensor networks for target detection," Computers, IEEE
Transactions on , vol.53, no.3, pp. 320-333, Mar 2004.

[14] Yongxuan Lai; Hong Chen, "Energy-Efficient Fault-Tolerant
Mechanism for Clustered Wireless Sensor Networks," Proceedings of
16th International Conference on Computer Communications and
Networks, 2007. ICCCN 2007., vol., no., pp.272-277, 13-16 Aug.
2007.

[15] Tsang-Yi Wang; Han, Y.S.; P.K. Varshney, Po-Ning Chen,
"Distributed fault-tolerant classification in wireless sensor networks,"
IEEE Journal on Selected Areas in Communications, vol.23, no.4, pp.
724-734, April 2005.

[16] S. Hwang and Y. Baek, ”Fault Tolerant Time Synchronization for
Wireless Sensor Networks,” LNCS-3894, Springer, pp. 480–493,
March 2006.

[17] F. Koushanfar; M, Potkonjak; A, Sangiovanni-Vincentell, "Fault
tolerance techniques for wireless ad hoc sensor networks," Sensors,
2002. Proceedings of IEEE , vol.2, no., pp. 1491-1496 vol.2, 2002.

[18] M. R. Samatham and D. k. Pradhan, “THE De Bruijn Multiprocessor
Networ: A versatile Parallel Processing and Sorting Network for
VLSI,” IEEE Trans. on Computers, Vol 38, No. 4, April 1989.

[19] D. K. Pradhan and N. H. Vaidya, “Roll-Forward Checkpointing
Scheme: A Novel Fault-Tolerant Architecture,” on IEEE Trans. On
Computers, vol. 43, no. 10, pp. 1163-1174, Oct. 1994.

[20] D. K. Pradhan, and S. M Reddy, “A fault-tolerant communication
architecture for distributed systems,” IEEE Trans. on computers., pp.
863-870, 1982.

[21] M. Andersson, D. Henriksson, A. Cervin and K. Årzén, “Simulation
of wireless networked control systems” . In Proc of the 44th IEEE
conference on Decision and control and European Control onference
ECC, Seville, Spain 2005.

[22] TrueTime, Lund University. (2008, June 10) [Online]. Available:
http:// www.control.lth.se/truetime/

240

International Journal on Advances in Networks and Services, vol 2 no 4, year 2009, http://www.iariajournals.org/networks_and_services/

