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Abstract—The intensive use of portable and thin
client devices along with the continuously increasing
cost of IT management have pushed large IT
companies to look for solutions that allow the use of
such devices to access the massive computing power of
supercomputers available at the company. The cloud
computing concept has emerged with promises to
simplify and speed up application deployment and
maintenance. All these benefits should be provided
for a small fraction of current maintenance cost.
To be able to provide services to its customers, a
cloud requires high level of maintenance and an
appropriate strategy for change management. Re-
placing defective items (hardware/software), applying
security patches, or upgrading firmware are just few
examples of typical maintenance procedures needed in
such environment. While taking resources down for
maintenance, applying efficient change management
techniques is a key factor to the success of the cloud.
Moreover, the increasing cost of energy consumption
in such systems has imposed an additional constraint
on proposed techniques making the problem more
challenging. In this paper, we propose a proactive
energy efficient technique for change management
in cloud computing environments. We formulate the
management problem into an optimization problem
to minimize the total energy consumption of the
cloud. We validate our analytical model by providing
scenarios that illustrate the mathematical relation-
ships for a sample cloud and that provide a range
of possible power consumption savings for different
environments.

Keywords-Cloud Computing, Autonomic Manager,
Policy languages, Change Management, Energy Effi-
cient.

I. INTRODUCTION

A computing cloud [4] can be defined as a pool of
computer resources that can host a variety of differ-
ent workloads, ranging from long-running scientific
jobs (e.g., modeling and simulation) to transactional
work (e.g., web applications and payroll processing).
A cloud computing framework should be able to
autonomously and dynamically provision, configure,
reconfigure, and deprovision servers as needed in
order to satisfy the needs of the cloud users. Servers
in the cloud can be physical machines or virtual
machines. Cloud-hosting facilities, including many
large businesses that run clouds in-house, became
more common as businesses tend to outsource their
computing needs more and more.

While intermixing workload can lead to higher
resource utilization, we believe that the use of sub-
clouds will be more appropriate for future clouds. Not
all hardware is created equal: high-end workstations
often contain co-processors that speed scientific com-
putations; lower-end workstations can be appropriate
for limited I/O requirements; mainframe comput-
ers are designed for efficient intensive computing;
and so on. For efficiency reasons, we believe that
workloads will be partitioned and assigned to sub-
clouds comprised of homogeneous hardware, which is
suitable for executing the assigned workloads. A cloud
infrastructure can be viewed as a cost-efficient model
for delivering information services and reducing IT
management complexity. Several commercial realiza-
tions of computing clouds are already available today
(e.g., Amazon, Google, IBM, Yahoo, etc.) [7].

Managing large IT environments can be expensive
and labor intensive [1], [2]. Typically, servers go
through several software and hardware upgrades.
Maintaining and upgrading the infrastructure, with
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minimal disruption and administrative support, can
be extremely challenging especially for complex IT
environments where a change in some part of the
network may have unexpected impacts on other parts
due to the complex connectivity and dependency
relationships. Currently, most IT organizations handle
change management through human group interac-
tions and coordination. Such a manual process is
time consuming, informal, and not scalable, especially
for a cloud computing environment. The continuously
increasing cost of energy consumption in IT systems
has imposed an additional constraint on the manage-
ment problem making it more challenging [5], [6].

The impact of high power consumption is not just
limited to the energy cost but extends to the cost of
initial investment of the cooling systems needed to
get rid of the generated heat and the continuous cost
needed to power these systems. To reduce operational
cost at these centers while meeting any performance
based SLAs (Service Level Agreement), efficient tech-
niques are needed to provision the right number of
resources at the right time.

Several software techniques like operating sys-
tem virtualization, and Advanced Configuration and
Power Interface (ACPI) have been proposed to reduce
server energy consumption. Other hardware tech-
niques have also been proposed like processor throt-
tling, dynamic voltage and frequency scaling (DVFS),
and low-power DRAM states. Modern computing
devices have the ability to run at various frequencies
each one with a different power consumption level.
Hence, the possibility exists to choose frequencies at
which different servers run to optimize total power
consumption while staying within the constraints of
the SLA that govern the running applications.

The process of updating both software and hard-
ware as well as taking them down for repair and/or
replacement is commonly referred to as change man-
agement. In an earlier work [1], we proposed and
implemented an infrastructure-aware autonomic man-
ager for change management. In [2], we enhanced our
proposed autonomic manager by integrating it with
a scheduler that can simplify change management
by proposing open time slots in which changes can
be applied without violating any of SLAs reser-
vations represented by availability policies require-
ments. Motivated by the importance of developing
energy efficient techniques, we extend our previous
work by proposing a pro-active energy-aware tech-
nique for change management in a cloud computing
environment.

In this paper, we analyze the mathematical rela-
tionship of these SLAs and the number of servers
that should be used and at what frequencies they
should be running. We discuss a proactive provision-

ing model that includes hardware failures, devices
available for services, and devices available for change
management, all as a function of time and within con-
straints of SLAs. We validate our analytical model by
providing scenarios that illustrate the mathematical
relationships for a sample cloud and that provides
a range of possible power consumption savings for
different environments. In other ways, we simply
develop a mathematical model that will - under certain
assumptions - allow system administrators to calculate
the optimal number of servers needed to satisfy the
aggregate service needs committed by the cloud owner
along with the computation of the frequencies the
servers should use.

It is instructive for the reader at this point to note
the differences between the analytical model presented
in this paper and the model we previously published
in [3]. In the previous model, the derivation for the
optimal number of servers, k, was based on two main
assumptions: (1) The expected cycles per instruction
is 1, (2) The approximation that for the same cloud
load, the sum of normalized frequencies (L =

∑
i fi)

is independent from the number of running servers
k. Unfortunately, this turns out not to be true when
servers running frequencies were normalized within
[0, 1] range. In this paper, we get rid of this ap-
proximation by representing k as a function of the
running frequencies. We also generalize the model
for processors with CPI > 1. Although, the resulting
formula we obtained from new model are much more
complex than the simplified model, the results turns
out to be more accurate. Furthermore, we tried to
validate the new model by providing more scenarios.

The remainder of this paper is organized as follows.
In Section II, we describe how interactive jobs can be
distributed over servers in clouds. In Section III we
provide our assumptions about the underlying infras-
tructure, and the power consumption analysis model
we assume in the paper. In Section IV, we provide
a robust analysis for energy consumption within the
cloud. In particular, we provide two formulas that
can be used to obtain optimal number of servers
and optimal running frequencies for these servers. In
Section V, we apply the equations from our analysis to
change management and provide various scenarios to
illustrate the power savings one can expect for various
cloud environments. Section VI gives our conclusions
and future work.

II. JOB DISTRIBUTION PROBLEM

It is important to understand the complexity of the
problem of distributing jobs to servers. Actually, this
problem can be viewed as a modified instance of the
bin packing problem [8] in which n objects of different
sizes must be packed into a finite number of bins each
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with capacity C in a way that minimizes the number of
bins used. Similarly, we have n jobs each with different
processing requirements; we would like to distribute
these jobs into servers with limited processing capacity
such that the number of servers used is kept to the
minimum. Being an NP-hard problem, there is no fast
polynomial time algorithm available to solve the bin
packing problem. Next, we attempt to simplify the
general problem to a more constrained version for
which we can obtain a solution efficiently.

Basically, applications that run in a cloud comput-
ing environment can be broadly classified into two
different types. The first type includes applications
that require intensive processing and usually these
are non-interactive applications. The best strategy to
run such applications in a cloud environment is to
dedicate one or more powerful servers to each of
these applications. Obviously, the number of dedicated
servers depends on the underlying SLA and the
availability of servers in the cloud. These servers
should run at their top speed (frequency) so the
application can finish as soon as possible. The reason
behind this strategy is to allow dedicated servers to
be idle for longer periods saving their total energy
consumption.

On the other hand, the second type includes appli-
cations that heavily depend on user interaction. Web
applications and web services are typical examples of
this type of applications. Although, in general, inter-
active applications do not require intensive processing
power, they have many clients. If the number of clients
for any of these applications is large, then it might
be appropriate to run multiple instances of the same
application on different servers and balance the load
of each server to satisfy the required response time
determined by the SLA. Due to the overwhelming
number of web based applications available today,
it is highly expected to find these applications more
common in a cloud computing environment; hence, in
this paper we focus on user interactive applications.

As shown below, by focusing on interactive appli-
cations, we simplify the problem of distributing jobs
into servers. The key idea behind this simplification
is to make a job divisible over multiple servers. To
clarify this point, we introduce the following example.
Assume that, based on its SLA; Job X requires s
seconds response time for u users. From the historical
data for Job X, we estimate the average processing
required for a user query to be I instructions. Assume
that job X is to be run on a server that runs on
frequency F and on the average requires CPI clock
ticks (CPU cycles) to execute an instruction. Within
s seconds the server would be able to execute s·F

CPI

instructions. Thus, the server can execute q = s·F
I·CPI

user queries within s seconds. Basically, if q < u, then

the remaining (u− q) user requests should be routed
to another server. This can be done through the load
balancer module at the cloud gateway. When a new
job is assigned to the cloud, the job scheduler analyzes
the associated SLA and processing requirements of the
new job. Based on this information and the availability
of servers, the job scheduler module estimates total
processing requirements and assigns this job to one
or more of the cloud servers.

III. SYSTEM MODEL AND ASSUMPTIONS

A cloud consists of a number of server groups;
each group has a number of servers that are identi-
cal in hardware and software configuration. All the
servers in a group are equally capable of running
any application within their software configuration.
Cloud clients sign a service level agreement SLA with
the company running the cloud. In this agreement,
each client determines its needs by aggregating the
processing needs of its user applications, the expected
number of users, and the average response time per
user request.

To be able to estimate the computing power (MIPS)
needed to achieve the required response time, the
client should provide the cloud administrators with
any necessary information about the type of the
queries expected from its users. One way of doing
this is through providing a histogram that shows
the frequency of each expected query. Cloud admin-
istrators run these queries on testing servers and
estimate their computing requirements from their
response time. Based on the frequency of each query,
cloud administrators can estimate average computing
requirement for a user query.

Average response time for a user query depends
on many factors, i.e., the nature of the application,
the configuration of the server running the applica-
tion, and the load on the server when running the
application. To reduce the number of factors and
to simplify our mathematical model, we replace the
minimum average response time constraint in SLA
by the minimum number of instructions that the
application is allowed to execute every second. This
kind of conversion can be easily done as follows. If
user query has average response time of t1 seconds
when it runs solely on a server configuration with
x MIPS (million instructions per second, this can be
benchmarked for each server configuration), then to
have an average response time of t2 seconds, it is
required to run the query such that it can execute a
minimum of t1·x

t2
million instructions per second. We

assume that each application can be assigned to more
than one server to achieve the required response time.
When a server runs, it can run on a frequency between
Fmin (the least power consumption) and Fmax (the
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Fig. 1. Distribution of jobs onto servers

highest power consumption), with a range of discrete
operating frequency levels in-between.

In general, there are two mechanisms available
today for managing the power consumption of these
systems: One can temporarily power down the blade,
which ensures that no electricity flows to any compo-
nent of this server. While this can provide the most
power savings, the downside is that this blade is not
available to serve any requests. Bringing up the ma-
chine to serve requests would incur additional costs,
in terms of (i) time and energy expended to boot up
the machine during which requests cannot be served,

and (ii) increased wear-and-tear of components (the
disks, in particular) that can reduce the mean-time be-
tween failures (MTBF) leading to additional costs for
replacements and personnel. Another common option
for power management is dynamic voltage/frequency
scaling (DVS).

The dynamic power consumed in circuits is pro-
portional to the cubic power of the operating clock
frequency. Slowing down the clock allows the scaling
down of the supply voltages for the circuits, resulting
in power savings. Even though not all server compo-
nents may be exporting software interfaces to perform
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DVS, most CPUs in the server market are starting to
allow such dynamic control [5], [6]. The CPU usually
consumes the bulk of the power in a server (e.g., an
Intel Xeon consumes between 75-100 Watts at full
speed, while the other blade components including
the disk can add about 15-30 Watts) [5]. The previous
example shows that DVS control in cloud computing
environment can provide substantial power savings.

When the machine is on, it can operate at a
number of discrete frequencies where the relationship
between the power consumption and these operating
frequencies is of the form [3], [5], [6]

P = A + B · F 3

so that we capture the cubic relationship with the
CPU frequency while still accounting for the power
consumption of other components (A) that do not scale
with the frequency. In Section V, we shall provide
sample values of the constants A and B.

Cloud Environment And Assumptions: for a cloud,
requests from cloud clients flow to the system through
a cloud gateway. After necessary authentication and
based on the current load on the cloud servers, a
load balancing module forwards client requests as
described in Section II to one of the cloud servers
dedicated to support this type of requests. This implies
that the load balancing module at the cloud gateway
should have up-to-date information about which client
applications are running on which servers and the
load on these servers. In addition, the system has a
‘power-optimizer’ module that computes the optimal
number of servers and operational frequencies for a
particular load requirement. Client applications are
assigned to servers based on the requirements of the
SLA for each client. This process may involve running
the same application on several servers and distribut-
ing requests of the same client over different servers
based on the load on these servers. To distribute the
load on cloud servers correctly, the gateway and the
load balancers must have access to the traditional
schedule information as well as the information from
the power-optimizer.

Homogeneity: in the introduction we described the
motivation for using homogeneous sub-clouds that
exist within a larger cloud infrastructure. Within
each sub-cloud, we assume that resources can be
treated homogeneously. That does not mean that all
computing devices in a sub-cloud are the same, only
that all computing devices in the sub-cloud are capable
of executing all work assigned to that sub-Cloud. With
the increasing adoption of virtualization technology,
including Java JVM and VMware images, we believe
that this assumption is valid. For the rest of the paper
we shall assume that a cloud is homogeneous

Interactive Applications: Applications that run in a

cloud computing environment can be broadly classi-
fied into two different types. The first type includes
applications that require intensive processing; such
applications are typically non-interactive applications.
The best strategy to run such applications in a cloud
environment is to dedicate one or more powerful
servers to each of these applications. Obviously, the
number of dedicated servers depends on the un-
derlying SLA and the availability of servers in the
cloud. These servers should be run at their top speed
(frequency) so the application will finish as soon as
possible. The reason behind this strategy is to allow
dedicated servers to be idle for longer periods saving
their total energy consumption.

The second application type is those that depends
heavily on user interaction. Web applications and web
services are typical examples. Although, in general,
interactive applications do not require intensive pro-
cessing power, they have many clients, leading to a
large aggregate processing demand. If the number of
clients for any of these applications is large, to satisfy
the required response time determined by the SLA,
it might be appropriate to run multiple instances of
the same application on different servers, balancing
the load among them.. Due to the overwhelming
number of web based applications available today,
such applications are likely to be prevalent in a cloud
computing environment; hence, in this paper we focus
on user interactive applications. We leave analysis of
the former application type to future work.

Power consumption in our model will be manipu-
lated by changing the frequencies at which instruc-
tions are executed at a server. As SLAs are typically
expressed in many different ways we need to map
these compute requirements into a standard form
that relates to the number of instructions executed
over a period of time. We chose to represent the load
an application will put on the cloud in terms of the
familiar MIPS. For example, in Fig. 1 we show how
a particular client of the cloud has at that time 150
users who require a total of 500 MIPS for the next
period of time.

To estimate the computing power (MIPS) needed
to achieve the required response time, the client must
provide the cloud administrators with any necessary
information about the type of the queries expected
from its users. One approach is to provide a histogram
that shows the frequency of each expected query.
Cloud administrators run these queries on testing
servers and estimate their computing requirements
from their response time. Based on the frequency of
each query, cloud administrators can estimate average
computing requirement for a user query.
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Fig. 2. Cloud Architecture

IV. POWER CONSUMPTION

To summarize the model assumptions: a cloud
consists of a number of server groups; each group
has a number of servers that are identical in hardware
and software configuration. All the servers in a group
are equally capable of running any application within
their software configuration. Cloud clients sign a ser-
vice level agreement SLA with the company running
the cloud. In this agreement, each client determines
its needs by aggregating the processing needs of its

user applications, the expected number of users, and
the average response time per user request. When
a server runs, it can run on a frequency between
(the least power consumption) and (the highest power
consumption), with a range of discrete operating
frequency levels in-between. In general, there are
two mechanisms available today for managing the
power consumption of these systems: One can tem-
porarily power down the blade, which ensures that
no electricity flows to any component of this server.
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While this can provide the most power savings, the
downside is that this blade is not available to serve any
requests. Bringing up the machine to serve requests
would incur additional costs, in terms of (i) time and
energy expended to boot up the machine during which
requests cannot be served, and (ii) increased wear-
and-tear of components (the disks, in particular) that
can reduce the mean-time between failures (MTBF)
leading to additional costs for replacements and per-
sonnel. Another common option for power manage-
ment is dynamic voltage/frequency scaling (DVS). The
dynamic power consumed in circuits is proportional
to the cubic power of the operating clock frequency.
Slowing down the clock allows the scaling down of
the supply voltages for the circuits, resulting in power
savings. Even though not all server components may
be exporting software interfaces to perform DVS, most
CPUs in the server market are starting to allow such
dynamic control [5], [6]. The CPU usually consumes
the bulk of the power in a server (e.g., an Intel Xeon
consumes between 75-100 Watts at full speed, while
the other blade components including the disk can add
about 15-30 Watts) [5]. The previous example shows
that DVS control in cloud computing environment can
provide substantial power savings.

When the machine is on, it can operate at a
number of discrete frequencies where the relationship
between the power consumption and these operating
frequencies is of the form [5], [6]

So that we capture the cubic relationship with the
CPU frequency while still accounting for the power
consumption of other components (A) that do not scale
with frequency.

Let F (t) be the total computing load of the cloud
at time t. To provide the required computing load,
the cloud has k servers that run on frequencies
F1, F2, · · · , Fk respectively. We normalize frequencies
in the range [0, 1] using,

fi =
Fi − Fmin

Fmax − Fmin
(1)

Define,

L =

k∑
i=1

fi (2)

where fi is the normalized frequency on which server i
runs. Assuming that the average clocks per instruction
for the cloud servers is CPI , we can relate normalized

frequencies to cloud total load as follows.

L =

k∑
i=1

fi

L =

k∑
i=1

Fi − Fmin

Fmax − Fmin

k∑
i=1

Fi = (Fmax − Fmin)L + k · Fmin

∑k
i=1 Fi

CPI
=

(Fmax − Fmin)L + k · Fmin

CPI
= F (t)(3)

and from equation (3), we can express L as follows,

F (t) =
(Fmax − Fmin)L + k · Fmin

CPI

L =
F (t) · CPI − k · Fmin

Fmax − Fmin

= C1 + C2 · k (4)

where

C1 =
F (t) · CPI

Fmax − Fmin
(5)

C2 = − Fmin

Fmax − Fmin
(6)

Total energy consumption is given by,

P =

k∑
i=1

[
A + B · f3

i

]

= k ·A + B

k−1∑
i=1

f3
i + B

[
L−

k−1∑
i=1

fi

]3

Now our interest is to evaluate the optimal values
for fi such that the total energy consumption is mini-
mum. Assuming a continuous frequency spectrum, we
evaluate the first partial derivative of the total energy
consumption with respect to each frequency.

∂P

∂fi
= 3Bf2

i − 3B

[
L−

k−1∑
i=1

fi

]2

∀i ∈ {1, · · · , k − 1}
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To minimize P , we set ∂P
∂fi

= 0.

∂P

∂fi
= 3Bf2

i − 3B

[
L−

k−1∑
i=1

fi

]2

= 0

3Bf2
i = 3B

[
L−

k−1∑
i=1

fi

]2

fi =

[
L−

k−1∑
i=1

fi

]
= fk ∀i ∈ {1, · · · , k − 1}

fi =
L

k
∀i ∈ {1, · · · , k} (7)

In other words, to minimize the total energy consump-
tion, cloud servers must run at frequency L

k
.

Now we turn our interest to evaluate, k, the
optimal number of servers to run. Using a similar
approach, we first rewrite the equation of total energy
consumption after substitution each frequency using
equation (7) as follows.

P =

k∑
i=1

[
A + B · f3

i

]

= k ·A + k ·B
[

L

k

]3

= k ·A +
B(C1 + C2k)3

k2
(8)

After that we obtain the first derivative of the total
energy consumption with respect to k. Mathemati-
cally, this can be expressed as,

∂P

∂k
= A +

3BC2(C1 + C2k)2k2 − 2B(C1 + C2k)3k

k4

Setting ∂P
∂k

= 0,

Ak3 = 2B(C1 + C2k)3 − 3BC2(C1 + C2k)2k

Ak3

B
= (C1 + C2k)2(2(C1 + C2k)− 3C2k)

Ak3

B
= (C1 + C2k)2(2C1 − C2k)

Ak3

B
= (C2

1 + 2C1C2k + C2
2k2)(2C1 − C2k)

Ak3

B
= 2C3

1 + 4C2
1C2k + 2C1C

2
2k2 − C2

1C2k

−2C1C
2
2k2 − C3

2k3

After rearranging terms,
[

A

B
+ C3

2

]
k3 − 3C2

1C2k = 2C3
1

k3 − 3C2
1C2

A
B

+ C3
2

k =
2C3

1
A
B

+ C3
2

k3 + pk = q (9)

where

p = − 3C2
1C2

A
B

+C3
2

(10)

q =
2C3

1
A
B

+C3
2

(11)

To solve equation(9), we can use Vieta’s substitution
[9] by defining x as follows,

k = x− p

3x
(12)

After substituting k into equation (9),
[
x− p

3x

]3

+ p(x− p

3x
) = q

x3 − px +
p2

3x
−

[ p

3x

]3

+ px− p2

3x
= q

x3 −
[ p

3x

]3

= q (13)

Multiplying both sides of equation (13) by x3 converts
it into the standard quadratic form.

(
x3)2 − q(x3)− p3

27
= 0 (14)

Solving equation (14),

x3 =
q +

√
q2 + 4p3

27

2

=
q

2
+

√( q

2

)2

+
p3

27

=
C3

1
A
B

+ C3
2

+

√√√√
(

A
B

+ C3
2

)
C6

1 − C6
1C3

2(
A
B

+ C3
2

)3

x3 =
C3

1
A
B

+ C3
2

+ C3
1

√√√√
A
B(

A
B

+ C3
2

)3

x = C1 · 3

√√√√√ 1
A
B

+ C3
2

+

√√√√
A
B(

A
B

+ C3
2

)3 (15)

From equations (12) and (15), we can evaluate
k, the optimal number of servers, that should by
running in the cloud to optimize power consumption.
Interestingly, the value of k depends on the constants
A and B, the frequency range of server processors
(i.e., Fmin, Fmax), and the total computing load F (t).
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Fig. 3. (a) Cloud total load as imposed by SLAs (b) Actual vs. Approximated total load due to several SLAs

V. CHANGE MANAGEMENT SCENARIOS

The computing load of the cloud can be expressed
as a function of time, and it usually changes when a
new application is started or completed. Typically, the
sum of the commitments in service level agreements is
periodic with a daily, weekly or even monthly period.
To include the dynamic nature of the cloud load into
our model, we divide the time line into slots. During
one slot, the cloud total load does not change. To
eliminate minor changes in the total cloud load curve,
we approximate the load on the cloud by an upper

bound envelope of this curve such that the length of
any slot is larger than a predetermined threshold.

The derivations in Section IV for the optimal
number of servers and optimal running frequencies
should not change for this simplification. All we need
to do is to replace L by L(t). Thus, in each time
segment, the number of idle servers in the cloud
equals the difference between the total number of
cloud servers and k(t). An idle server is a candidate
for change management. Figure 4, shows a plot for the
number of servers available for change management
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based on the cloud load determined in Figure 3-a.
We define change management capacity as the aver-

age number of servers available for changes per time
unit. Based on this definition, change management
capacity can be evaluated as the area under the curve
of Figure 4 divided by the periodicity of the SLAs.
For example, for the cloud load shown in Figure 3-b,
change management capacity as follows,

Capacity =
3 · 5 + 5 · 4 + 6 · 5 + 2 · 7 + 7 · 3 + 1 · 5

24

=
75

24
= 3.125 servers/hour.

From historical and statistical change management
information about the applications running on the
cloud, administrators can estimate change manage-
ment capacity requirements for these applications.
This can be used to determine the optimal number
of servers to have in the cloud for a particular set
of clients. Particularly, the area under the curve in
Figure 4 is proportional to the number of available
servers for maintenance in the cloud. Basically, this
area can be adjusted by raising the curve up or down,
which in turn can be done by changing the total
number of servers in the cloud. For example, in Figure
4, we estimated cloud change management capacity
to be 3.125 servers/unit time. If statistics showed that
applications running on the cloud require an average
of 4 servers to be available for changes per unit time,
then the total number of servers in the cloud should be
increased by one server to satisfy change management
requirements.

It is worthwhile to mention that under our proposed
model it is straightforward to incorporate hardware
failures into the model, increasing the reliability of
the cloud. Hardware failure rates can be statis-
tically estimated using information about previous
hardware failures, expected recovery rates, hardware
replacement strategies, and expected lifetime of the
hardware equipments. Given hardware failure rate
expressed in terms of failed servers per unit time,
cloud applications change requirements can be ad-
justed to reflect hardware failures. The new change
management capacity is estimated based on the sum
of application changes requirements and hardware
failure requirements. In the previous example of
Figure 3-b, if the hardware failures rate is less
than 0.875 failed servers/hr, then an average of 4
servers available per unit time is enough to satisfy
change and hardware failure requirements. However,
if hardware failures rate goes above 0.875 servers/hr,
then additional servers are needed.

In this section, we compare the performance of our
proposed change management technique against other
techniques based on over-provisioning. The main idea

behind these techniques is to overly provision com-
puting resources to compensate for any failure or
change management requirements. Our calculations
for over-provisioning techniques assumes a 5% over-
provisioning rate, which means that the available com-
puting power available at any time is 5% higher than
what is needed to satisfy the service level agreements.

In our scenario, we assume a computing cloud
with 125 servers. Each server has a range of discrete
running between 1 − 3 GHz. Maximum processing
power is achieved when the server runs at 3 GHz.
We assume that if the required running frequency
is unavailable, the next higher available frequency
will be used. To numerically correlate the running
frequency with the achieved computing power, we
must estimate the average number of cycles needed
to execute one instruction on any of these servers.
Given running frequency, F , and number of cycles
per instruction, CPI the computing power of a server
can be estimated in MIPS, million instructions per
second, as F

CPI·106 . In this scenario, we set CPI to
3.00 cycles/instructions. To be able to measure energy
consumption, we assume the energy model described
in Section III (i.e., P = A + BF 3

n) where A and
B are system constants, is the normalized running
frequency. In our scenario, we use the same values
of the constants A and B as was published in [6].
This also requires to normalize the running frequency
to the range [0,1], where stands for the minimum
running frequency (1.0 GHZ), and stands for the
maximum running frequency. Mathematically this can
be obtained through, Fn = F−Fmin

Fmax−Fmin
.

We assume that the cloud administrators have
determined that they will need a change management
capacity of 1.2 servers/hr. For a more realistic sce-
nario, we include also server failures in our model. We
assume a failure rate of 0.6 servers per hour, which
is included as an additional computing requirement.
In terms of periodic load, here we assume a period
of one day.

During the day, the cloud total load changes as
described in Table I. To remind the reader, this infor-
mation is obtained from client applications historical
data and is expressed in SLAs.

Under these assumptions, we compare total energy
consumption using our proposed approach against
using a 5% over-provisioning. Figure 7 shows how
using our approach can reduce cloud energy con-
sumption against over-provisioning. Both approaches
can achieve the required level of change management
capacity.

Figures 5 and 6 respectively show the total energy
consumption and the associated number of servers
needed for different frequency ranges. From the
figures, it is easy to verify that the optimal running
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Fig. 4. Servers available for changes as a function of time
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Fig. 5. Total energy consumption when using different frequencies
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Fig. 6. Average number of servers when using different frequencies
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TABLE I
CLOUD LOAD DURING DIFFERENT TIMES OF THE DAY

From To Cloud Load (BIPS)
12:00 AM 04:00 AM 70
04:00 AM 06:30 AM 65
06:30 AM 09:00 AM 50
09:00 AM 01:00 PM 45
01:00 PM 04:00 PM 55
04:00 PM 07:00 PM 70
07:00 PM 12:00 AM 80

TABLE II
TOTAL ENERGY CONSUMPTION IN THE CLOUD DURING ONE

DAY ASSUMING 5% PROVISIONING

Frequency Total(Watt.Hour) Average(Watt)
1.0 GHZ 64861 2703
2.0 GHZ 39325 1639
2.4 GHZ 42743 1781
3.0 GHZ 58246 2427

frequency is around 2 GHZ as determined by our
proposed formula.

We also compare the total energy consumption
during one period (one day) using both approaches.
Under the proactive approach, the total energy con-
sumption is evaluated to be 37304.76 Watt.Hour, for
an average of 1554.36 Watt. Table II, summarizes the
total and the average energy consumption when using
5% over-provisioning. Table II shows that using the
proactive approach, cloud total energy consumption
is smaller than energy consumption using 5% over-
provisioning for different running frequencies.

VI. CONCLUSIONS

In this paper we have created a mathematical
model for power management for a cloud comput-
ing environment that primarily serves clients with
interactive applications such as web services. Our
mathematical model allows us to compute the optimal
(in terms of total power consumption) number of
servers and the frequencies at which they should run.
We show how the model can be extended to include
the needs for change managements and how the other
type of typical applications (computing intensive) can
be included. Further, we extend the model to account
for hardware failure. In Section V, we compare our
scheme against various over-provisioning scheme For
example, with a cloud of 125 servers, a change
management capacity of 1.2 servers/hr, a failure rate
of 0.6 servers/hr, the total power consumption for
a day with our scheme is 37, 305 Watt.Hour versus
64, 861 Watt.Hour at 5% over-provisioning, and the

savings range from 5 − 74% for various parameters
of the cloud environment. In the future we plan to
relax some of the model’s simplifying assumptions. In
particular we can rather straightforwardly adapt the
model to have the frequencies assume discrete values
rather than be part of a continuous function.
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