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Abstract — In the context of large-scale indoor spaces location-

based services still lack a feasible technology for localization 

and tracking in terms of ubiquitous operation. In this article, 

we present a tracking system based on wireless local area 

network infrastructure that is capable of simultaneously 

tracking numerous and diverse mobile clients (i.e., cell phones, 

laptops, personal digital assistants and alike) in multistory 

buildings within a campus facility at a near real time resolution 

and without client software to be installed. In the course of a 

real-life project at the campus of the University of Linz we 

have been studying deployment issues and environmental 

influences on infrastructure-based tracking in a large-scale 

setup that comprises various types of building structures and 

architecture. We contribute our findings regarding effects of 

arbitrary environmental conditions on radio signal based 

person tracking and present our current results. Furthermore, 

we demonstrate the feasibility of integrating infrastructural 

tracking technology into a location-based services platform 

called “Digital Graffiti” that handles user and privileges 

management while sustaining the privacy of the individual. 

Keywords-indoor infrastructural wlan tracking; scalability; 

large scale; real time; location-based services.  

I.  INTRODUCTION  

At the core of mobile computing is the most prominent 
context information about the user: location. The user’s 
current location as well as the awareness of the location of 
friends and things of interest have been a decisive driver for 
the ongoing trend towards smart phones and mobile 
applications up to date. The integration of the Global 
Positioning System (GPS) into commercially available 
mobile devices (smart phones and personal digital assistants 
for instance) carved the way for a broad variety of location-
based services (LBS) covering outdoor spaces and public 
places in the form of navigation systems, location-based 
social networks and city guide applications. However, still 
no convincing counterpart regarding indoor location 
acquisition has prevailed in real-life LBS scenarios. In the 
last decade, several approaches towards realizing a 
ubiquitous indoor localization technology that could compete 
with the quality and reliability of outdoor GPS have been 
presented. The underlying sensor technologies were 
manifold (Bluetooth, Infrared or Ultrasonic, just to name a 
few). Concluding from the GPS story of success, a key factor 
of influence is the broad availability of the respective 
technology in a common mobile device. As we demonstrated 
in [1], WLAN (Wireless Local Area Network) technology 
seems to have the most promising potential in this context. 

We pointed out that the approach of exerting tracking 
infrastructure for the localization of a large number of 
concurrent users has shown feasible, even in terms of large-
scale setups covering vast building complexes (e.g., the 
campus of a university). Using WLAN in this context offers 
certain benefits concerning costs, accuracy, scalability and 
deployment compared to other popular radio localization 
technologies, not least because of its availability in modern 
mobile phones [2]. 

Recently, commercial WLAN localization products have 
been introduced [3][4] following a localization method 
having the mobile device acting as sensor or even estimating 
its position itself (client-based). In this article, we propose a 
converse system where sensor hardware as well as position 
estimation is decoupled from the client, but achieved by a 
backend server combined with WLAN infrastructure within 
a complex of buildings (infrastructure-based).  

This setup allows us to look into the subject of indoor 
localization from a different point of view, being able to 
support a vast range of client devices. Instead of providing 
software for different client platforms and sensor 
arrangements our infrastructure comprises a network of 
homogeneous, permanently active sensors that assure 
accurate measurements for convenient location estimation of 
numerous clients operating on several platforms.  By this 
means we avoid forcing CPU prerequisites since 
infrastructure bears the processing load. Consequently, 
power consumption is reduced on the client side.  

Another benefit of our setup is its robustness with respect 
to a constantly changing WLAN environment, a 
disadvantage that affects accuracy in client-based setups 
because they mainly rely on stable signal strength 
fingerprints of access points (APs) in the vicinity. Since the 
system solely depends on measurements of client signals 
additional WLAN signal sources have no consequences on 
the position estimation process. 

The system presented in this article meets the following 
prerequisites: first of all, localization accuracy of room-level 
granularity is reached. The system is able to provide a 
mapping of geo-coordinates to symbolic names at detailed 
spatial level (such as “Office 306, Management Center, 
University of Linz”), which facilitates users’ perception of 
location information. In order to attain a ubiquitous user 
experience, the system operates 24 hours a day, 7 days a 
week and is open to public access from within the wireless 
campus network. Accordingly, our architecture has to attend 
to scalability in terms of providing a near real time service to 
a potentially unbounded amount of users. Furthermore, we 
have developed a service based on our LBS framework that 
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enables the finding and tracking of friends given their 
anytime revocable permission. In this context we refer to the 
notion tracking almost similarly as to localization, with one 
distinctive exception: localization describes the process in 
which the current location of a certain client is estimated. 
Tracking on the other hand uses previously calculated 
location estimates to create a traceable path that is further 
used to render the client’s position more precisely and to 
conclude to the client’s course. 

The rest of this article is organized as follows. Section 2 
discusses related work to the broad topic of indoor 
localization with respect to WLAN signal strength based 
approaches concentrating on infrastructure. In Section 3 we 
describe the architecture of our system in detail, focusing on 
its 3 main components in particular. Subsequently, Section 4 
deals with our real-life setup in the course of the Smart 
Information Campus project at the University of Linz, 
discussing detailed facts of campus-wide deployment as well 
as the users’ view of the system. In Section 5, we compare 
tracking results surveyed in different types of buildings at the 
campus. Finally, Section 6 concludes with a discussion on 
our efforts to realize the described system and gives a brief 
outlook on future research questions in context of our setup. 

II. RELATED WORK 

In the last years, numerous contributions have discussed 
the subject of indoor localization and tracking on WLAN 
basis as an alternative to obtaining positions using GPS. 
Most of them concentrated on signal strength localization 
algorithms that emphasized a client-based application, i.e., 
the client device is operated as sensor collecting signal 
strength information of nearby APs. These systems broadly 
depend on special hardware in the form of tags [4][5] or 
native libraries supporting certain network interface card 
(NIC) features at client-side [6][7][8]. 

We envision a client-device independent setup in order to 
not constrain the usage of our system to certain hardware. To 
this end we have studied an infrastructure-based approach to 
achieving WLAN signal strength localization. In this context 
the notion “infrastructure-based” refers to a setup that 
comprises stationary sensor nodes for measuring client radio 
transmissions [9][10][11]. 

Early contributions to this approach are presented in [12]. 
The RADAR system uses a setup of ordinary PCs as 
stationary signal strength sensors. This experimental setup 
showed the feasibility of WLAN for indoor localization. In 
[9], the LEASE system is proposed, an infrastructure-based 
framework using sniffers and reference-emitters. The sniffers 
are constructed as embedded sensor platforms. The emitters 
were used as signal strength references to constantly rebuild 
an active radio profile. The main focus of this work concen-
trated on deployment issues and consequences of radio 
propagation for location estimation in potential real life 
scenarios. A detailed description of the sniffers used for 
LEASE is given in [13]. In this article, the issues of 
capturing conventional WLAN traffic as well as the 
placement of sniffer nodes for convenient location estimation 
are explored.  

Embedded devices have also been the basis for Pinpoint 
[14], a system that uses the Time-Of-Arrival localization 
method. In order to achieve accurate estimations, the main 
functionality of their devices was to maintain high precision 
clock synchronization. The usage of Linksys WRT54 (the 
previous generation of the devices used in our work) as 
platform for localization applications has been a matter of 
research as well. In [15], customized kismet software is used 
on a Linksys device to report signal strength measurements. 
The authors report experiments in a calibration-free 
localization setup. In [16], another calibration-free 
fingerprinting system is proposed that applies probabilistic 
methods for constructing radio profile model and position 
estimation. Due to heavy computational load it uses PCs as 
sniffers. In this work another focus lies on WLAN channel 
characteristics and fluctuations in signal strength. 

However, all the systems depicted above discuss the 
infrastructural localization on a prototypical basis. Most of 
them solely cover a 2-dimensional area of interest; often a 
dedicated test bed is constructed to make a proof of concept. 
The work presented in this article reports experiences of a 
campus-wide real life setup comprising multistory buildings 
of various characteristics at the Johannes Kepler University 
in Linz. In this context we experimented with commercial 
products as well. Since the campus-wide WLAN network 
uses Cisco Aironet 1250 devices we evaluated a trial setup of 
the Cisco Wireless Location Appliance (Version 3.1.35.0) 
based on RSS fingerprints [17]. Our findings were that the 
update frequency of the clients’ location was too low (one 
estimate in 30 seconds up to 1 minute) for our purposes, 
since it solely listens for client probe request frames. Our 
system in contrary uses a near real time resolution (updated 
every 3 seconds). Furthermore, we strongly focus on a 
scalable, robust system addressed to a public audience in 
order to provide a convenient LBS experience.  

III. WLAN-BASED TRACKING INFRASTRUCTURE 

Our main design objective was to implement a system 
capable of concurrently tracking multiple mobile clients 
within multistory buildings across a campus areal. We aim at 
serving a vast variety of mobile devices not requiring 
specific hardware but a WLAN interface. This had two 
profound implications on system architecture. First of all, the 
sensor component of the system is implemented 
infrastructural to avoid heterogeneity of measuring data. And 
second, the client’s radio communication with the system 
can be reused as signal data for position estimation. 

Even though indoor WLAN localization systems have 
been widely studied in the last decade most contributions 
concentrated on a client-based approach. With few 
exceptions (cf. Section 2) infrastructure-based WLAN 
localization has been relegated to a niche existence [13]. This 
is mainly due to the cost for an area-wide infrastructure 
deployment (i.e., purchasing sensor hardware, permanent 
power consumption, setup and maintenance costs and the 
alike) on the one hand [11], as well as privacy and security 
concerns on the other hand [18]. In fact, it is easier to sustain 
user privacy in a client-based localization setup since the 
respective information is computed on the client side. But if 

139

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



client-side contextual data is transmitted to an untrusted 
server for LBS consumption (as in most public application 
scenarios), this advantage does not remain existent.  

Another important concern is system scalability. If 
location estimation for each client is calculated on a central 
backend server and not on each client device individually, 
the computation load poses an obvious bottleneck. A main 
focus of our research lies on this aspect. To overcome the 
scalability issue we explored the potential of the sensor 
infrastructure itself, further discussed in Section 3B. 

Opposing these difficulties that arise as a consequence of 
our design decisions we have to point out some benefits as 
well. First and most of all, the system is able to operate 
without any client pre-requisites but a WLAN 
communication interface. At the moment we solely support 
WLAN 802.11b/g/n (802.11a/n support is a work-in-
progress at the moment). This implies that every mobile 
device equipped with such an interface currently on the 
market is able to use our tracking service. Since consuming 
the localization service can basically be done via a web 
request, it poses an energy saving alternative compared to 
GPS for instance. Furthermore, no additional software needs 
to be installed at client-side. The system presented in this 
article consists of three main components (cf. Fig. 1) 
discussed in the following sections. 

 

 
Figure 1.  System Architecture 

A. Tracking Engine 

Our architecture bases on a two-phase signal strength 
fingerprinting system implemented in Java and hosted on a 
server backend. Every physical position used for location 
estimation is represented as a vector consisting of several 
tuples of a certain signal strength paired with a MAC address 
(cf. Table 1).  

 

TABLE I.  POSITION VECTORS 

Position Client Fingerprints 

LON LAT ALT Sniffer MAC RSS 

14.3182073  48.3363918 5.0 00:23:69:3B:2C:A7 -42 

00:23:69:3B:2C:FF -62 

00:23:69:3B:2E:E7 -78 

14.3180591  48.3363577 5.0 00:23:69:3B:2C:FF -58 

00:23:69:3B:2E:AF -62 

00:23:69:3B:6D:77 -81 

 

Traditionally, the MAC address identifies an AP that is 
observed by the client. Since the infrastructure-based setup 
estimates positions observing client transmissions on the 
contrary, the MAC address identifies the sniffer device that 
reads the client’s signal strength. A database holding all of 
these positions (candidate points) is created in the initial 
training or offline phase, representing a radio profile for the 
targeted physical space. Fig. 2 (left) shows a clipping of an 
office floor with its respective candidate points. The colors 
of the candidate points indicate the quality of the signal level 
(green: ≥ 5 sniffer receptions, blue: ≥ 3, red: < 3). As the 
figure illustrates, each office comprises 2 to 4 candidate 
points with varying signal quality. To cope with several 
different transmitter characteristics (antenna properties, 
transmitting power) we created an individual radio profile for 
each supported device type (laptop, cell phone, PDA).  

In the online phase, location estimation is computed with 
the commonly used Nearest-Neighbor-In-Signal-Space (or 
kNN) algorithm [12] that queries the database for the k best 
matches with the least Euclidean distance to the client’s 
current signal vector. This approach has been discussed and 
proven feasible for position estimation in numerous 
publications [19][20][21] and won’t be explained further. An 
important factor for the estimation quality especially when 
dealing with large-scale setups in this context is the accurate 
weighting of both the client’s signal vector entries and the 
candidate points vector entries, which decisively accounts for 
the localization result. This weighting has to reflect the 
density of sensors in the vicinity of the candidate point. 
Consequently, it uses (i) the amount of different sniffer 
entries forming one fingerprint vector, (ii) the averaged 
signal level of the fingerprint and (iii) the actual strength of 
each entry in the vector to reflect the probability of the 
appearance of the signal at the respective position. If a vector 
entry is missing in comparison with the database, it has to be 
taken into account as well.  

 Since system scalability is of most importance we don’t 
use probabilistic localization approaches that might provide 
better accuracy for account of CPU load, as the HORUS 
system [8] does for instance. 

 

  
Figure 2.  Candidate points (left), floor sectors (right) 

Using signal strength (i.e., the RSSI value of the sensor 
device’s WLAN NIC) for client localization has practical 
implications on the tracking engine. First of all, signal 
strength measurements underlie fluctuations. As [12][16] 
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reported, multipath signal propagation and other propagation 
effects such as reflection, refraction, and scattering falsify 
the signal strength measurement. If not filtered (cf. Section 
3B) or handled using appropriate mathematical models as the 
Wall Attenuation Factor (WAF) model [12], these effects can 
produce grave estimation outliers that have to be 
compensated later in the processing chain. Additionally, a 
person or a group of people between the measurement device 
and the transmitter can pose a dynamic signal attenuation 
component in the measuring process affecting especially 
radio signals at 2.4GHz frequency. Consequently, a daytime-
dependent fluctuation in public spaces can be observed [22]. 
We are currently developing a mechanism to compensate 
such fluctuations by monitoring AP beacon signals.  

Within an interval of 3 seconds (which corresponds to 
two channel hop cycles, cf. Section 3B) the engine calculates 
a position estimate. We represent a position according to the 
World Geodic System WGS84 as spherical polar coordinates 
in longitude, latitude and altitude. The estimate then passes a 
chain of filters. The first filter evaluates the plausibility of 
the estimate by testing if the position is within an accessible 
area of a building modeled in the database. Each building has 
at least one floor represented by a north aligned floor map 
and partitioned into several sectors (cf. Fig. 2 right). Each 
sector models a distinct type of an enclosed area, as rooms, 
hallways, stairs or elevators. If the position estimate is within 
a sector modeled as invalid, the estimate is identified an 
outlier and is not considered further. 

The next filter bases on a set of rules that specify possible 
transitions from one sector to another. The rule set takes into 
account the building’s characteristics, modeling direct paths, 
sector connections and next hop neighborhoods. Changing 
floors is only possible within a stairway or elevator sector. 
At this point, the track of the client’s last positions is 
considered for stabilizing purpose as well, i.e., to ensure that 
a client is not considered moving if he is not. 

Alternatively, we experimented with a particle filter 
algorithm [11][23]. Results showed that the filter did not 
perform much better in compensating outliers. Due to a large 
increase in computational demand we consider this 
alternative as not feasible for a large scale setup. 

B. Sniffer Drones 

The work presented in this article emphasizes enhancing 
WLAN infrastructure with a sensor overlay consisting of of-
the-shelf network devices. In related publications these 
devices are often referred to as sniffers [9][16] or sniffer 
drones [15]. Our architecture comprises a network of such 
sniffer drones, forming the core component of the system. In 
general, sniffers can be denoted as passive components, 
meaning that they do not emit radio signals themselves since 
they use an Ethernet backbone to drain their measurement 
data. Currently, we’re running a campus wide sniffer 
network consisting of custom Linksys WRT610N APs with 
some modifications to firmware and software.  

Basically, these devices can be considered as embedded 
systems, operating a MIPS32 platform at 466MHz with 8MB 
RAM and providing two separate WLAN interfaces to 
support both 2.4GHz and 5GHz radio. A Linux kernel 2.6 

[24] allows developing applications at system level. Our 
sniffing software (implemented in C) uses the low-level 
packet capturing library libpcap [25] that addresses a feature 
of the WLAN interface driver to collect signal strength 
measurements, the so called monitoring mode. Monitoring 
mode describes an alternative mode of operating a WLAN 
interface (such as the master mode for access point operation 
or the managed mode for client operation) and is a 
mandatory feature that facilitates using access points as 
sensors. This way sniffing the wireless medium in real time 
is possible, which is crucial to our architecture. First 
experiments we conducted made use of SNMP (Simple 
Network Management Protocol) for collecting signal 
strength measurements, as demonstrated by [26], for 
instance. A benefit was to be able to abstract from AP hard- 
and software as long as they supported SNMP. This 
approach however did not satisfy our demand for conducting 
real time measurements (cf. Section 2). 

As the sniffer drones network is conceived as an overlay 
to existing WLAN infrastructure, we consequently have to 
deal with the usage of three non-overlapping channels in the 
2.4GHz frequency band (typically the channels 1, 6 and 11 
or 2, 7 and 12) - the 5GHz band will not be covered in this 
article. Hence, we can’t assume the transmission channel of a 
mobile client precisely. Therefore, all possible channels are 
subsequently iterated while monitoring each prospective 
channel for a certain period of time. In order to assure 
collection of sufficient measurements per channel 500 
milliseconds of channel dwell time have proven applicable. 
A completed iteration will further be addressed as a channel 
hop cycle.  

In Section 3A we pointed out that a measurement vector 
consists of several entries, one for each drone that detects the 
client’s signal at a certain place. To calculate a position these 
entries are proportionally weighted according to several 
properties, such as the signal intensity. Hence, the absence of 
a presumably intensive drone’s measurement in this vector 
can lead to a grave estimation error. If it is not assured that 
adjacent drones concurrently listen on the same channel it is 
likely that the measurement vector is incomplete. To avoid 
this effect we implemented a synchronization mechanism 
that concurrently triggers restarting of the channel hop cycle 
at every sniffer drone in the network. The triggering 
component resides on the server backend, centrally 
orchestrating the sniffer network by sending a UDP restart 
broadcast every 60 seconds. In this context, we experimented 
with an alternative approach to avoid a hop cycle restart 
every minute. The Precision Time Protocol (PTP), as defined 
by the relevant IEEE 1588 standard [27], provides clock 
synchronization accuracy of less than one microsecond. Our 
embedded hardware platform on the contrary offers a system 
timer resolution (often referred to as Jiffy) of just 10 
milliseconds. If we applied a predefined, hard coded hop 
cycle schedule on each Sniffer Drone along a daemon 
process updating the system clock via PTP on a daily basis, 
the maximum drift between the networked Sniffer Drones 
could be reduced to these 10 milliseconds, in theory. In 
practice, this has turned out not to work satisfactorily. Due to 
a varying workload on each separate sensor device correlated 

141

International Journal on Advances in Networks and Services, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/networks_and_services/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



to differing radio environments, a measureable internal clock 
drift within the whole sensor network might appear already 
after a few minutes, especially between idle sensors and busy 
ones. Considering the protocol overhead produced by the 
PTP synchronization, an every minute clock update is not a 
better choice compared to the UDP restart solution. 

During normal sensor operation, each single sniffer 
continuously reports its measurement data to a collector 
process within the tracking engine while constantly 
switching through the channel hop cycle. The sniffer is able 
to apply packet filters to reduce the subsequent processing 
load for the engine. System architecture implies that a user 
has to request a position from a frontend (cf. Section 3C) that 
operates on a special high port. This port is used as indicator 
for WLAN traffic to be tracked; traffic on other ports is 
filtered out. Filter functionality can also be activated 
remotely by a controller process within the tracking engine, 
for instance if a certain MAC address has to be blacklisted. 
As another additional load reduction effort, each sniffer 
groups measurement data by MAC addresses and averages 
them before sending. 

C. LBS Framework  

In the previous sections we explained how an 
infrastructural sensor overlay is used to estimate a user’s 
location. This section deals with how to deliver this 
information to the user to achieve additional benefit. For 
these purposes we use the Digital Graffiti system. 

Digital Graffiti is a stand-alone framework for location-
based services developed in the course of a research project 
between Siemens Corporate Technology Munich, the 
University of Linz and the Ars Electronica Futurelab Linz. 
Conceived as a system to manage and visualize localized 
information within the context of a mobile user (respectively 
a mobile device) [28], it has been enhanced with 
functionality to fulfill the demands for a social network 
system as well. It comprises a map server, an elaborated user 
and privileges management concept that additionally handles 
communication encryption and a messaging component.  

Similar to conventional cellular telephony the system 
uses a distributed provider model for the server-side 
component where users all over the world can join the 
provider of their choice in order to take part in the mobile 
location-based information service. This proven model 
distributes the load ensuing from (asynchronously) 
communicating users and guarantees scalability of the 
service all over the world as each provider only handles a 
limited number of clients. Information elements (graffiti) are 
stored in corresponding databases at the providers. 

The clients are supposed to be executed on any mobile 
platform, either as a native application particularly designed 
for the device or as a web application (utilizing the novel 
W3C standard and HTML5 for accessing GPS out of a 
browser). In the context of infrastructure-based indoor 
tracking, we accentuate the web application, for it complies 
with our requirements of a bare device without the needs of 
installing client software. Fig. 3 illustrates the architectural 
layers of the Digital Graffiti client framework. 

The framework utilizes Java for maximizing the variety 
of potential target platforms (e.g., Symbian, Android). For 
Java-incompatible systems (such as the Apple iPhone) the 
framework comprises a Java-based proxy (built upon the 
same kernel, although without a user interface) which runs 
on a web server and dynamically transmits data via Ajax to a 
web browser for display. Thus the service can also be 
consumed on platforms that are not natively supported, and it 
abstains from tedious download and installation procedures.  

 

Web Browser Web Server JVM, Android, Windows

Generated Client Framework

Protocols, (De-)Serialization Routines, ...

Protocol

Generator

Client Framework

Caches, Graffiti-Lists, Friend-Lists, ...

Graffiti Client Proxy

Java Application

Graffiti Client

Java Application

Java

Package 

Descriptions

JVM

Basic Framework

Peers, Channels, Proxies, Facades, Protocol-Basis, -

Graffiti Web Client

Ajax Application

Ajax

uses

Applications

Framework Components

Generated Components

Virtual Machines

Proxy Application  
Figure 3.  LBS Framework architecture 

The architecture envisioned in this article employs the 
Digital Graffiti framework as third component. The 
framework acts as frontend for the tracking system, allowing 
any device equipped with an 802.11b/g/n interface and a web 
browser to consume location. Once registered and logged in, 
the user is visualized as an avatar at his exact residing 
position in front of a map and his geographical position is 
textually resolved into a human readable address. Digital 
Graffiti therefore provides a “spatial coding” component to 
map geographical addresses to corresponding names at 
detailed spatial levels (i.e., buildings, floors and even distinct 
rooms). Alternatively to indoor WLAN localization the 
system supports a seamless transition from and to outdoor 
GPS tracking as well. The position of the user is updated at a 
near real time frequency (due to the hop cycle length every 
three seconds; cf. Section 3B). Alongside user’s own 
position, the system also offers to track the position of the 
user’s friends, provided that the respective friend has granted 
permission. To sustain privacy this permission can be 
revoked by one click in the user interface. 
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IV. APPLICATION 

The applicability of the infrastructural approach of 
WLAN tracking using the Digital Graffiti framework as a 
user frontend is being demonstrated within a campus-wide 
live system at the University of Linz, called the Smart 
Information Campus (SIC) Project [29]. It covers an area of 
about 800x300 meters campus space (cf. Fig. 4) including 15 
multistory buildings varying from 1 to 11 stories equipped 
with the proposed sniffer technology, which in total results in 
320 access points (Cisco Aironet 1250) and the same amount 
of co-located sniffer drones (Linksys WRT610N). Co-
locating the sensor drones has been decided due to practical 
reasons such as the availability of power and Ethernet 
connections, but is still a matter of discussion [13] in terms 
of localization accuracy.  

 

   
Figure 4.  Overview of the building complex at the JKU campus 

Table 2 gives an overview of the complete indoor areal of 

the campus site, showing the abbreviations of each building 

and a description of the respective area correlated to 

deployment numbers of the tracking infrastructure (amount 

of deployed sensor nodes, total number of calibrated 

candidate points, costs measured in working hours). Due to 

the system rollout procedure, some details are still to be 

determined at the time of this writing. As on every typical 

university campus, these buildings host office spaces, 

laboratories, meeting rooms and lecture halls, varying in 

room dimensions, furnishing and technical equipment. The 

campus has been built starting in the year 1964 and is 

continuously expanding since then. Consequently, the 

structural design and building characteristics reflect the 

ideology of the decade in which each respective building 

has been realized.  In terms of indoor tracking, this has two 

important implications. For one, the amount of sniffer 

drones to be deployed varies correlated to wall construction 

substances since each substance shows its own attenuation 

characteristics. To assure an appropriate coverage, a 

traditional radio site survey gives a first guide number for 

planning the deployment of tracking infrastructure. The 

other implication for the campus-wide tracking setup is the 

divergence of tracking accuracy with respect to wall 

attenuation and the respective room layout. In Section 5 the 

tracking accuracy within three exemplary buildings on the 

campus are compared to highlight the effects of differing 

building design and structure on infrastructural tracking. 

 

TABLE II.  CAMPUS COVERAGE STATISTICS 

Building Floors 
Area 

(m2) 
Nodes 

Candidate 

Points 

Effort 

(h) 

MZ 5 10.500 26 517 39 

KE 3 19.293 50 818 47 

HF 5 6.650 26 424 29 

ScP 7 64.232 32 978 40 

SL 3 3.255 8 172 7 

UC 4 6.600 11 275 15 

BI 3 6.720 12 386 22 

HP 4 2.600 8 213 10 

ME 1 450 3   

HT 3 2.925 3   

BA 4 3.840 10   

PH 4 3.844    

JU 5 11.970    

Turm 11 18.810    

KG 7 4.256    

  165.945 189 3.783 209 

 
The Smart Information Campus system offers several 

means of consuming the provided location-based services on 
a broad variety of mobile platforms. To this end, we focus on 
four basic directions of implementation. We offer a native 
Windows desktop application for laptop and netbook service 
consumption based on Microsoft WPF. Java compatible 
mobile phones (such as Symbian based phones, etc.) are 
supported by the J2ME client implementation using the Kuix 
UI framework [30]. For Android based smart phones we 
additionally implemented a touch screen application utilizing 
the sophisticated features this modern platform is offering. 
To provide access for the remaining mobile platforms (e.g., 
Apple iPhone and iPad, Blackberry, Linux, etc.) we 
implemented a web application client based on AJAX. Fig. 5 
and 6 show screenshots of all four client variants. 

 

    
Figure 5.  Client Snapshots (Desktop and Android) 
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Figure 6.  Client Snapshots (J2ME and web application) 

The system has started its beta phase in January 2010 and 
is since then publically available 24 hours a day, 7 days a 
week [28]. Students as well as lectors, administrative staff 
and guests (a total number of about 16.000 people) are able 
to track themselves and their selected friends (Fig. 7 right 
presents a snapshot of the SIC application revealing our own 
position by a blue avatar and those of the friends by green 
ones) and perceive and post location-based information at the 
university campus due to their detected position within 
buildings and outside. For instance, students may find their 
way to their lecture halls displaying the current lecture type 
and times for these rooms; the event management announces 
upcoming activities or presentations to the users related to 
their location; teachers are able to ad-hoc exchange 
documents with students just because of their geographical 
attendance in a lecture room; etc. Generally, the SIC is 
supposed to enhance social, scientific and organizational 
networking within the campus, e.g., enabling the creation of 
communities and providing a practical research platform for 
location-based service issues. 

As of this writing, the system is at the end of phase 2 of 3 
rollout phases, providing indoor localization for 8 of 15 
buildings, already covering about 72% of the whole indoor 
area. Due to their age these buildings have dissimilar 
construction characteristics that imply different radio 
propagation properties. To provide accurate localization in 
such an environment, the application of an architecture based 
on an a priori off-line training process has proven to be 
feasible. Consequently, a radio profile was taken at a larger 
number of spots in every building (cf. Table 2). 

V. RESULTS 

The system setup is under constant assessment by 200 
selected beta users at the university, with an average number 
of 33 concurrent position requests per second during a 
regular working day. In order to provide a satisfying LBS 
experience our tracking system is set up to assure the correct 
symbolic reference rather than the exact position. For most 
places on the campus this does not make a perceivable 
difference since the position has room level accuracy. If 
localized within one of the bigger lecture halls though, our 
approach might result in a bigger estimation error. 

Fig. 7 shows a live snapshot of the J2ME client running 
on a Nokia E52 on an office floor. The position is indicated 
by the blue avatar in the center of the map. The symbolic 
name of the actual position appears at the top of the display, 
indicating the name of the building along with the floor. 
Since located in a corridor, no office name is displayed. 

 

   

Figure 7.  Tracking snapshot at office floor on J2ME client 

The accuracy of the system primarily depends on the 
density of sniffer drones, their positions and the buildings’ 
characteristics. Consequently, we encounter different 
localization precision at different sites. The following 
Figures 8, 9 and 10 depict exemplarily captured tracks of a 
Nokia E52 client walking along a predetermined path 
(indicated by the red line) in 3 different buildings on the 
campus of Johannes Kepler University. All position 
measurements (indicated by the red crosses in the figures) 
were taken weekdays around midday. As the data was 
collected during the academic semester, the offices and hall 
ways were averagely crowded with students and university 
staff. The effects of the time of day on an indoor localization 
system have already been studied by Tao et al. in [31]. Their 
studies showed that the signal strength histograms of 
measurements vary noticeably as a function of the time of 
day, with significantly more noise when more people are in 
the building. Consequently, our sample tracks were captured 
at the same time of day. However, the bias provoked by an 
arbitrary amount of people interfering with signal 
measurements is not compensated in our framework yet. 
Thus, we have to keep in mind that our test cases are 
compared under slightly divergent environmental conditions. 
A more detailed investigation on effects derived from 
building characteristics and people-depending signal strength 
variations has been presented in [32] along with an approach 
of compensating for consequential positioning errors.  

Fig. 8 shows the first test track recorded on the ground 
floor of the Kepler Building (KE). It comprises a base area of 
11782m

2
 on 3 stories and is one of the oldest buildings on 

the campus, consisting of several lecture halls, libraries and 
public meeting places. Since its wall structure is thick and 
radio absorbing (concrete and brick walls) it is equipped with 
50 Sniffer Drones to cover the whole building (cf. Table 2). 
The actual track through the building started and ended at the 
lower left quadrant of the figure and took 4:11 minutes for a 
distance of 328m, using a client transmission interval of 1 
second. It comprises 80 position updates, all of which 
correctly located at the ground floor. 
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Figure 8.  Track through auditorium building (KE) 

 

 
Figure 9.  Track through office building (MZ) 
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Figure 10.  Track through laboratory building (HF) 

In Fig. 9, the track is captured within the Management 
Zentrum (MZ), a typical office building comprising meeting 
rooms and smaller lecture rooms as well. It has been built in 
1990 using light-frame construction. The small circle in the 
upper left picture marks the starting point in an office at the 
third floor. The client then descends to the ground floor 
using the stairway and passing the second and the first floor 
(cf. upper right and lower left picture). Each floor transition 
has been estimated correctly. The track finally ends in a 
small lecture room indicated by another red circle in the 
lower left quadrant of the lower right picture. It took 3:28 
minutes for a distance of 126m, featuring 37 position updates 
at the same transmission interval as above but at a lower 
walking pace.  

The third track (cf. Fig. 10) was measured inside the 
Hochschulfond Building (HF), which has been built in the 
year 2003. Because it is mainly dedicated to practical 
research, it houses technical laboratories, offices and storage 
spaces. The constructive form of the building can be 
characterized as modern architecture, emphasizing glass as 
building substance and a large galleria section spanning from 
the first to the third floor. The track started at the south 
entrance (at the bottom of the left picture) on the ground 
floor. The diamond marks the entering of an elevator that 
ascended to the third floor (right picture). The track led 
alongside the galleria towards the north elevator. After 
descending again, the track ended on the ground floor (in the 
middle of the picture on the left). Since the elevator is 
surrounded by a glass construction, the tracking engine was 
able to estimate each floor and position correctly even within 
the elevator. The track was finished after 3:56 minutes, even 
though the covered distance was only 96m including 33 

position updates. The long duration was mainly caused by 
elevator waiting times. Transmission interval and walking 
pace correspond to track two.  

 

TABLE III.  ERROR DISTANCE STATISTICS 

 KE MZ HF 

Average 4.11 m 2.40 m 2.90 m 

Std. deviation 2.30 m 1.38 m 1.69 m 

25th percentile 2.33 m 1.30 m 1.75 m 

Median 4.08 m 2.15 m 2.47 m 

75th percentile 5.21 m 3.38 m 3.53 m 

90th percentile 7.59 m 4.14 m 5.07 m 

Maximum error 10.09 m 6.47 m 7.13 m 

 
Detailed results of these three test tracks based on the 

error distance are summarized in Table 3. Fig. 11 depicts a 
comparison chart that clearly highlights the differences in 
accuracy referring to the respective building. Track one as 
well as Track three both showed two phases without a 
position update indicating that the new estimate would have 
been an outlier. For the first track, this can be explained by a 
sudden appearance of a larger group of people since these 
positions were near a lecture hall (Fig. 8, upper right) and a 
cafeteria (Fig. 8, upper left). In the third track, this 
phenomenon is caused by the open space from the galleria 
(Fig. 10, in the middle of the right picture). Due to the gap in 
the middle section ranging from the first up to the third floor, 
the signal strength fingerprints tend to be very similar on 
both sides of the galleria. 

 

 
Figure 11.  Comparison of the tracking accuracy in exemplary buildings 

Concluding from these results, the tracking framework 
presented in this article shows a clear tendency towards 
better performance and accuracy within younger buildings. 
As reported in the context of client-based indoor localization 
setups [32], this can be explained with building 
characteristics such as radio absorbing wall substances or 
large spaces that provoke indistinguishable fingerprints. Out 
of all types of campus facilities, office floors turn out to 
provide the most promising environment for indoor tracking 
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because of their room arrangement diversity that results in 
unambiguous fingerprints. 

In terms of overall accuracy, the presented system still 
leaves room for improvement (compensating mechanisms 
for dynamic attenuation provoked by people for instance). 
Whereas newer contributions report mean estimation errors 
under 2m [18][22], our setup reveals values from 2.4m up to 
4.11m (depending on the building properties). However, 
comparable tracking systems are commonly investigated 
under laboratory conditions (i.e., small areas of 500-1000m

2
, 

tailored radio coverage, homogeneous building structures, 
single-story localization, etc.), not considering real-life 
scenarios in a continuous operation mode, as well as 
economic factors of comprehensive infrastructure 
deployment.  

VI. CONCLUSION AND FUTURE WORK 

In this article, we presented a system capable of 
concurrently tracking numerous clients with no special 
client-side hardware prerequisites within a large-scale indoor 
setup. The proposed architecture has been deployed in a real-
life setup at the University of Linz and is part of a project 
providing campus-wide LBS to an academic audience, 
outdoor as well as indoor. As the campus comprises diverse 
buildings of manifold types of architecture, the tracking 
system has to cope with a variety of different radio 
distribution characteristics. By comparing the performance 
of our system in three exemplary test cases that reflect the 
three most diverging radio environments on the campus site, 
we pointed out the feasibility of our architecture. The results 
clearly indicate that system accuracy benefits from the more 
modern style of building construction on the one hand, as 
well from an office floor layout. Overall, the system 
performance can compete with other related systems, even 
under real-life conditions and on a campus-wide scale.  

We reported detailed deployment numbers and costs (in 
working hours) that were invested in our large-scale setup. In 
this regard, a clear disadvantage still exists in the form of the 
tedious training process (approximately 40 working hours for 
the full sensor coverage of an average building) that precedes 
the life system. Therefore, we are exploring alternatives to 
our two-phased fingerprinting architecture. We envision a 
benefit from making use of beam-forming technology that is 
one of the most promising features of the new 802.11n (still 
draft) standard for WLAN localization. Unfortunately, the 
driver used by the sniffer drones does not support obtaining 
lower level antenna reception information yet. Further 
experiments need to be conducted relating to the 802.11a 
standard in order to cope with the greater amount of 
alternative radio channels, that common 5GHz WLAN 
networks make use of (at JK University we’re using 12) and 
that imply a greater hop cycle length in our current system. 
Since some WLAN NIC drivers capable of both 2,4GHz and 
5GHz communication tend to favor the 5GHz band, the 
respective NIC drivers have to be configured explicitly to 
use 2,4GHz first. In the future we hope to avoid this user 
inconvenience. 

The compensation of signal strength fluctuation effects 
provoked by people passing by is another important issue we 

are investigating at the time of this writing. Our focus lies on 
achieving a solution for our network consisting of 320 
Sniffer Drones that solely runs decentralized, i.e., 
exclusively on the sensor platform to avoid a potential 
bottleneck at the backend. To this end, a mechanism to 
reliably detect spontaneously emerging crowds of people has 
to be realized that relies on pure radio environment 
fluctuations and does not depend on emitters carried by the 
people within the crowd [22]. This way, an even more 
accurate and temporarily stable tracking experience could be 
provided. 
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